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Electron transport in nanostructures is calculated and compared using a time-independent
and a time-dependent first-principles framework. The time-independent approach uses the non-
equilibrium Green’s function technique to calculate the current, while the time-dependent method
extracts the current from the time propagated wave function. The approaches have been tested
using gold-benzene-dithiolate-gold and gold-bipyridine-gold molecular junctions. The reasons for
the differences in the current-voltage curves predicted by the two methods are discussed.

I. I. INTRODUCTION

The non-equilibrium Green’s function approach
(NEGF)1–3, combined with the density functional theory
(DFT)4 Hamiltonian is one of the most important tools
to describe steady state electron transport in nanostruc-
tures. DFT provides a single particle framework with an
effective Hamiltonian. Powerful approaches have been
developed for localized basis representations of the DFT
Hamiltonian5. The localized basis representation facil-
itates a straightforward and efficient implementation of
NEGF using simple matrix algebra. Due to the simplic-
ity of the formulation the NEGF-DFT framework, it has
become a popular approach to calculate transport prop-
erties of nanostructures2,6–15. This approach is based on
the assumption that ground state DFT provides a good
approximation to the current-carrying scattering states
in a non-equilibrium transport process. The calculated
transport properties, however, do not fully agree with
the experiments; the calculated conductances, for exam-
ple, are typically an order of magnitude larger16 than
the experimentally observed ones. This discrepancy, to-
gether with the fact that there are emerging experiments
measuring time-dependent transport properties17,18 mo-
tivated the application of time-dependent density func-
tional theory (TDDFT)19 to study the problem of elec-
tron transport.

Transport calculation schemes based on TDDFT have
been proposed as an alternative to the NEGF-DFT
framework20–35. Electron transport is an intrinsically
dynamical non-equilibrium process, therefore, the time-
dependent approach is a more natural choice to solve
quantum transport problems. In TDDFT the time-
dependent density of an interacting system moving in an
external time-dependent local potential can be calculated
using a fictitious system of non-interacting electrons in a
local, effective time-dependent potential. The TDDFT
approach is expected to improve several shortcomings of
the NEGF-DFT approach:

(1) In static DFT, the transmission functions are com-
puted at the non-interacting Kohn-Sham excitation en-
ergies, which in general do not coincide with the true
excitation energies. The true excitation energies of inter-
acting systems are accessible using TDDFT.

(2) The NEGF-DFT approach is based on an unphysical
separation of the system into disconnected parts (con-

tacts and device/molecule) at infinite past20,22. In the
remote past the left and right electrodes are disconnected
and are in equilibrium with two different chemical poten-
tials; the conducting part of the Hamiltonian is switched
on adiabatically and eventually a steady state develops.
This artificial partitioning introduces subtle questions
about how the steady state is reached25. TDDFT can be
used in a partition-free framework21 allowing the inclu-
sion of interaction between the electrodes and the device
in a realistic way.

A number of theoretical works have been devoted to
laying down the foundation of transport calculations
in the framework of TDDFT20,36–39. Stefanucci and
Almbladh20 have derived exact equations of motion for
the two-time Green’s functions using TDDFT. This ap-
proach has been extended to a scheme in which the
wave function is propagated in time with open boundary
conditions22. Alternatively, a microcanonical TDDFT
approach has been proposed for finite isolated systems25

which treats electronic transport as a discharge across a
nanocontact connecting two large but finite charged elec-
trodes.

Before the TDDFT calculation of electron transport
can become a practical alternative to the static NEGF-
DFT approach, a number of technical problems have to
be addressed. The present implementations of TDDFT
transport calculations fall into two categories. The first
approach uses the Green’s function formalism in the time
domain23,24,26,40, and the second one is based on the
time propagation of the wave function28,29,31,35,41. The
time domain calculation of the Green’s function is not
a simple task and the application of the Green’s func-
tion method is mostly limited to non-self consistent tight
binding models. Only a very few self consistent TDDFT
calculations have been carried out in the time domain
Green’s function framework24.

The second approach, the TDDFT calculation of elec-
tron transport by time propagation of the wave func-
tion is an attractive alternative because one can exploit
the advanced computional methods that have been de-
veloped to solve the time-dependent Kohn-Sham equa-
tions. Efficient numerical schemes have been proposed
and implemented42–45 to calculate the optical absorption
spectrum, nonlinear polarizabilities, dielectric constant,
and other physical quantities by direct time propaga-
tion of the wave functions. Various time propagators
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have been tested23,44,46 including the Chebyshev, Tay-
lor, and Crank-Nicholson methods. The main challenge
in the application of these time propagating approaches
in transport calculations is the proper treatment of the
boundary conditions. Calculational methods employing
absorbing47 and open36 boundary conditions have been
developed to address this problem.

The aim of this work is to calculate the steady state
transport properties in both the time-dependent and
time-independent frameworks and compare the calcu-
lated conductances and current-voltage characteristics.
This question has been raised earlier20 in the framework
of a tight-binding model and the answer was that the
dynamical approach quantitatively reproduces the static
results.

In this work, we use time-dependent and time-
independent first-principles simulation to calculate the
electron transport in molecular junctions and compare
the calculated current voltage characteristics. To make
the two methods comparable, the same simulation cell,
Hamiltonian, and basis representation are used in both
cases.

TDDFT will be used in the time-dependent approach.
It will be shown that by using the domain decomposi-
tion method48,49 to set up an efficient basis and complex
absorbing potentials to handle the open boundary con-
ditions, one can calculate the electron current by time
propagating the electron orbitals in an external bias.

In the time-independent approach, the transport prop-
erties will be calculated using the NEGF method1–3.
The only significant modification of the standard NEGF
method is that the self-energies are calculated with the
complex potential approach50 in the present calculations.

Multidomain decomposition is used to set up the basis
and complex absorbing potentials are employed to make
the simulation cell finite in both the time-dependent and
the time-independent calculations. In the multidomain
decomposition approach, one divides the system into
smaller overlapping subdomains. The Kohn-Sham equa-
tions can be solved independently in each subdomain.
Using the subdomain eigenfunctions as basis states one
obtains a structured sparse block matrix representation
of the Hamiltonian. This structure allows both matrix in-
version and matrix multiplication to be performed very
efficiently.

The leads are made finite by adding a complex absorb-
ing potential to the leads’ Hamiltonian. The complex
absorbing potential (CAP) goes to infinity in the asymp-
totic region, effectively chopping off the lead beyond a
certain range. The CAP approach gives the same trans-
mission probability as the NEGF-DFT calculations50 and
allows the propagation of the wave function without re-
flections from the boundaries.

The outline of the paper is as follows. In Section II the
basis functions used in the calculations will be described.
Section III will introduce the time-independent approach,
and Section IV will show the time-dependent formalism.
The results will be presented and discussed in Section

V., followed by brief summary in Section VI. To make
the paper self-contained the most important expression
used in the calculations are collected in an Appendix.

II. II. REPRESENTATION OF THE

HAMILTONIAN

In this section we introduce the basis function repre-
sentation of the Hamiltonian. This representation will be
used in the time-propagation of the orbitals in the time-
dependent case and in the calculation of the Green’s func-
tion in the time-independent case. The system consists
of a left and a right lead and a central (scattering) region
(see Fig. 1). Both the leads and the central region are di-
vided into boxes (domains). The basis representations of
these domains are built up from the local solutions of the
Kohn-Sham equations. As we have shown in a previous
paper51 these locally optimized basis functions provide
an accurate representation for transport calculations.

A. II.1 Domain decomposition

In the domain decomposition approach the system is
divided into domains (see Fig. 1). In the present calcula-
tions rectangular boxes are used. In the leads the boxes
are defined by the periodically repeated supercells. Each
domain is described by a basis function set φi

j where i
is the domain index, (i = 1, . . ., N) and j is the index of
the basis function in domain i. The domain basis func-
tions are allowed to overlap with those in the neighboring
domains but only with the nearest neighbors. The con-
struction of these basis functions will be discussed in the
next subsection. The Hamiltonian and overlap matrices
in the ith domain are defined as

(HBi)kj = 〈φi
k|H |φi

j〉, (SBi)kj = 〈φi
k|φ

i
j〉, (1)

while those in the connecting neighboring domains are

(HAi)kj = 〈φi
k|H |φi−1

j 〉, (SAi)kj = 〈φi
k|φ

i−1
j 〉. (2)

The Hamiltonian and the overlap matrices will be sparse
block tridiagonal structured matrices

H =









HB1 H†
A2 0 0 . . .

HA2 HB2 H†
A3 0 . . .

H†
AN

0 . . . HAN HBN









, (3)

S =









SB1 S†
A2 0 0 . . .

SA2 SB2 S†
A3 0 . . .

S†
AN

0 . . . SAN SBN









, (4)

where HBi (SBi) are ni ×ni and HAi (SAi) are ni ×ni−1

matrices. Once the block tridiagonal matrices have been
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generated, any linear combination of these matrices, e.g.
F = S+i∆t

2
H which is used in the Crank-Nicholson step,

or F = ES−H used in the Green’s function calculation,
can be factorized by a block-LDL decomposition (see
Ref.48 for details)

F = L†DL =









D1 L†
1 0 0 . . .

L1 D2 L†
2 0 . . .

L†
N−1

0 . . . LN−1 DN









, (5)

where Li are lower diagonal andDi are diagonal matrices.
Note that the LDL decomposition of a block tridiagonal
matrix preserves the block tridiagonal form. The LDL
factorization can be generated by a recursive procedure
as described in48. The advantage of the LDL decom-
position is that the inverse of the whole matrix can be
easily calculated by forward and backward substitutions
using the low dimensional Li matrices without inverting
the entire F matrix directly.

In time-independent transport calculations the Hamil-
tonian matrix is written in the form2,3,

H =





HL HLC 0

H†
LC HC H†

RC

0 HRC HR



 , (6)

where HL,HR and HC are the Hamiltonian matrices of
the left and right leads and of the central region, and
HLC and HRC are the coupling Hamiltonians. By com-
paring Eqs. (3) and (6) one can easily group the domain
Hamiltonian matrices of Eq. (3) to set up the matri-
ces in Eq. (6). The details of this mapping are given
in Appendix A. Note that the advantage of the domain
decomposition is that in addition to HL and HR, HC

is also a block tridiagonal matrix and the accuracy of
the calculations, as will be shown in the next subsection,
can be controlled by the number of basis functions of the
domains.

B. II.2 Basis functions

Each domain has its own set of basis functions. The
identical domains in the lead region have the same basis
function sets. The domain basis functions are defined as
the local eigenstates of the domains. The Lagrange ba-
sis functions will be used to generate the domain basis
functions. Using the Lagrange basis functions the Kohn-
Sham equation is solved in each domain. Once a self-
consistent potential is obtained, the Kohn-Sham Hamil-
tonian is diagonalized using the basis functions. The low-
est ni eigensolutions φi

j are retained in each domain as
domain basis functions to represent the Hamiltonian of
the whole system.

The Lagrange basis is defined on a grid and each sub-
domain has its own set of gridpoints. These grids extend
beyond the boundary of the domains and so the basis
functions in the adjacent domains overlap. In practice a

rectangular computational cell is chosen and the compu-
tational cell is divided into N intervals in the x direction

[ai, bi] (i = 1, . . ., N), (7)

where ai+1 < bi but ai < ai+1, that is, there is an overlap
between the neighboring domains but there is no overlap
with the second neighbors (Fig. 2). The overlap, lo =
bi − ai+1 is chosen to be the same for each domain.

The jth basis function in the ith domain is ex-
panded in terms of a tensorial product of Lagrange basis
functions52,

φν(r) = φi
j(r) =

∑Mx

l=1

∑My

m=1

∑Mz

n=1C
i
j,lmnL

i
l(x)Lm(y)Ln(z),

(8)
where ν = (ij). In the x direction, the Lagrange func-
tions are defined on grid points ai < xi

k < bi as

Li
n(x) = πn(x)

√

w(x), πn(x) =
Mx
∏

k=1
k 6=n

x− xi
k

xi
n − xi

k

(9)

where w(x) is the weight function and the index i in-
dicates that the Lagrange function is defined in the ith
domain. The computational cell is not divided into do-
mains in the y and z directions. The Lagrange functions
Lm(y) and Ln(z) are used in the y and z directions in
each domain. These basis functions are defined in the
same way as the basis functions in the x direction ex-
cept that there is no explicit dependence on the domain
indices.

Each Lagrange function is nonzero at one grid point
and zero at all other grid points, oscillating between the
grid points. Due to their continuity and analytical form,
these basis functions represent the wave function not only
on the grid points but everywhere in space. The Lagrange
functions form an orthonormal complete set of states and
the convergence of the calculated energy is exponential
with respect to basis dimension. On the Lagrange func-
tion basis, similar to the finite difference approaches53–55,
the potential energy matrix is diagonal leading to a very
sparse Hamiltonian that is ideal for iterative inversion
and diagonalization.

There are M = Mx ×My ×Mz Lagrange basis func-
tions in each domain. The domain basis functions φk

j are
generated by solving the eigenvalue problem

HAkC
k
j = EjSAkC

k
j (10)

for Ck
j of eq. (8) and keeping the lowest nk eigenstates

(below a preset cutoff energy, Ecutoff ).

C. II.3 Complex absorbing potentials

The same finite computational cell will be used in both
the time-dependent and time-independent calculations.
The finiteness of the computational cell requires proper
handling of the wave function at the boundary. This will
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be achieved by a complex absorbing potential in both the
time-dependent and in the time independent case.

In the conventional time-independent NEGF-DFT
transport calculations2,6–15 the leads are infinite and the
Green’s functions of the leads have to be calculated for
every energy. In the present calculations the leads are
made finite by adding a complex absorbing potential to
the leads’ Hamiltonian. The complex absorbing poten-
tial (CAP) goes to infinity in the asymptotical region
effectively chopping off the lead beyond a certain range.
The CAP approach gives the same transmission proba-
bility as the NEGF-DFT calculations50. The advantage
of the CAP method is that it can be used with a finite
computational cell and the computationally demanding
calculation of the Green’s function of the infinite leads is
avoided50. Using the CAP the resulted finite dimensional
matrices can be diagonalized and the self-energies can be
calculated for each energy at once50.

In the time-dependent calculations the CAP is used
to prevent reflections from the boundaries. CAPs are
often used in time-dependent quantum mechanical sim-
ulations, for example for time-dependent wave packet
propagations56–62. The complex potentials not only ab-
sorb the outgoing waves but can also produce reflec-
tions. The construction and optimization of reflection-
free CAPs is therefore very important. Many different
forms of pure imaginary potential have been investigated,
including, power-law57,59, polynomial60, and other pa-
rameterized functional forms (see58 for a recent review).
Besides purely imaginary potentials, complex potentials
have also been proposed61.

In this work we will adopt the CAP suggested in62.
This negative, imaginary CAP is derived from a physi-
cally motivated differential equation and its form is (see
Fig. 3)

iw(r) = −i
~

2

2m

(

2π

∆x

)2

f(x̃) (11)

where ∆x = x2 − x1, x1 is the start and x2 is the end of
the absorbing region, c is a numerical constant, m is the
electron’s mass and

f(x̃) =
4

c

(

1

(c− x̃)2
+

1

(c+ x̃)2
− 2

)

, x̃ =
c(x− x1)

∆x
.

(12)
The CAP goes to infinity at the end of the absorbing
region and effectively cuts off the leads beyond that dis-
tance. The left and right CAPs are wL(x) and wR(x) and
their starting points, xL

1 and xR
1 are deep inside the lead

so the complex potential does not affect the middle re-
gion. Both the left and the right CAP has the same range
(∆x). The accuracy of the approach can be improved by
increasing the range of the complex potentials62 which
decreases reflections.

In the calculations we need the matrix representation
of the CAP in the left and in the right. These matrices
are denoted by WL and WR and defined in the Appendix.

The Hamiltonian matrix when adding the complex po-
tentials takes the form

H =





H ′
L HLC 0

H†
LC HC H†

RC

0 HRC H ′
R



 , (13)

where

H ′
X = HX − iWX , (X = L,R). (14)

Note that the complex potential starts in the lead region,
therefore HLC and HRC are not affected by the addition
of the CAP.

III. III. THE TIME-INDEPENDENT

APPROACH

In the time-independent case the non-equilibrium
Green’s function combined with the CAP approach is
used to calculate the current. The expression for the
steady state current for an applied bias Vb is1

I(Vb) =
2e2

h

∫ +∞

−∞

T (E, Vb) [f(E−µL) − f(E−µR)] dE,

(15)
where µL and µR are the chemical potentials, f is the
Fermi function, and T (E, Vb) is the transmission proba-
bility (see Appendix A) for electrons from the left lead
to right lead with energy E under bias Vb.

In the NEGF-DFT calculations the Kohn-Sham
Hamiltonian of the central region subjected to a bias
voltage is calculated self-consistently. Using the density
matrix (defined in Appendix A) the electron density can
be calculated as

ρ(r) =
∑

µ,ν

φ∗µ(r)Re
[

(DC)µν

]

φν(r), (16)

and the matrix elements of the Hamiltonian are evaluated
using this density,

(HC)µν = 〈φµ|HKS |φν〉 . (17)

The Kohn-Sham Hamiltonian is defined as

HKS = −
~

2

2m
∇r + VA(r) + VH [ρ](r) + VXC [ρ](r), (18)

where VA(r) is the atomic potential, VH [ρ](r) is
the Hartree potential, and VXC(r) is the exchange-
correlation potential. The pseudopotential approach is
used to represent the atomic potentials VA(r). The
exchange-correlation potential VXC(r) is constructed us-
ing the local density approximation63, and the Hartree
potential is calculated by solving the Poisson equation.

The calculation starts with the self-consistent solution
for the left and right leads. Once the self-consistent den-
sity for the leads are found, HL and HR ( are calculated
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the self-energy can be evaluated50 as shown in Appendix
A. The bias potential in the leads is incorporated by
adding a constant potential, Vb/2, to the electrostatic po-
tential of the left lead and subtracting Vb/2 from the elec-
trostatic potential of the right lead. Due to this change
of the potential, the Hamiltonian of the leads has to be
replaced by

HL → HL +
Vb

2
SL, HR → HR −

Vb

2
SR, (19)

and similarly, the chemical potentials of the leads un-
dergo the transformation

µL → µL +
Vb

2
, µR → µR −

Vb

2
. (20)

In other words, the effect of the bias voltage is an energy
shift in the leads.

The calculation proceeds with a self-consistent solution
for the central region. The central region contains several
lead boxes (see Fig. 4). The number of lead boxes is
chosen so that in the outermost boxes, the self-consistent
electron density and potential are identical to those of the
leads. In this way the effect of the perturbation in the
middle is screened and the assumptions used in setting
up the block matrices (see Appendix A) are satisfied.

The solution of the central region is obtained by cal-
culating the density self-consistently using Eqs. (18),
(A32), and (16) together with the solution of the Poisson
equation for the Hartree potential. The Poisson equation
is solved on a real space grid with the boundary condition

VH(r) = V L
H (r) +

Vb

2
r ∈ left boundary plane (21)

VH(r) = V R
H (r) −

Vb

2
r ∈ right boundary plane (22)

where V L
H and V R

H are the Hartree potentials of the left
and right leads. Periodic boundary conditions are used
in the perpendicular directions.

IV. IV. THE TIME-DEPENDENT APPROACH

In this section the time-dependent transport approach
will be presented. The multidomain decomposition
method provides an accurate and efficient scheme for
solving the time-dependent Kohn-Sham equations by real
time propagation of the orbitals. The applicability of the
approach has been tested in calculations of the photoab-
sorbtion spectra of long molecules49.

In the TDDFT framework19 the electronic motion is
described by the following time-dependent Kohn-Sham
equation (TKSE)

i~
∂

∂t
ψi(r, t) = Hψi(r, t), (23)

with

H = HKS + Vext (24)

where

HKS = −
~

2

2m
∇r+VA(r)+VH [ρ](r, t)+VXC [ρ](r, t), (25)

and Vext(r, t) is the time-dependent external potential.
In this study Vext(r, t) will be the slowly turned on
bias potential. The time dependence of the Kohn-Sham
Hamiltonian, HKS , is due to the time dependence of the
electron density,

ρ(r, t) =

Nocc
∑

i=1

|ψi(r, t)|
2. (26)

By representing the electron wave function ψi in terms
of domain basis functions φν

ψi(r, t) =
∑

k

biν(t)φν(r) (27)

the TKSE takes the form

i
∂B

∂t
= S−1HB (28)

where B is a matrix formed by the linear combination
coefficients bik(t) from Eq. (27). The formal solution of
Eq. (28) is

B(t) = U(t, 0)B(0) = T exp

(

−i

∫ t

0

S−1H(t′)dt′
)

B(0),

(29)
where T is the time ordering operator. In practical appli-
cations, most approaches break up the [0, t] time interval
into Nt time steps of size ∆t and use a “small time prop-
agator” to evolve the wave function from t to t+ ∆t. ∆t
is chosen to be sufficiently small so that the potential can
be treated as constant in time over the time step. The
time propagation using the short time propagator

U(t+ ∆t, t) = exp
(

−iS−1H(t)∆t
)

, (30)

can be written as

U(t, 0) ≃

Nt−1
∏

n=0

U((n+ 1)∆t, n∆t), (31)

where ∆t = t
Nt

. Various techniques have been

developed42,44,64–68 to approximate the exponential oper-
ator in Eq. (30); in this work we use the Crank-Nicholson
method. The coefficients between time steps n and n+1
are related by the equation

Bn+1 =
S − iH(tn)∆t

2

S + iH(tn)∆t
2

Bn. (32)
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The Crank-Nicholson method is unitary, strictly preserv-
ing the orthonormality of the states for an arbitrary time
evolution. For time-independent Hamiltonians it is also
explicitly time reversal invariant, and exactly conserves
energy. In practice, with a suitable choice of ∆t, the en-
ergy is satisfactorily conserved even when the Hamilto-
nian changes with time. One can increase the stability of
the solution by including more terms of the expansion in
the numerator and denominator of the Crank-Nicholson
operator69.

As shown in Section II.A, the Hamiltonian and the
overlap matrices will be block tridiagonal in the domain
decomposition representation facilitating the efficient cal-
culation of the inverse of (S + iH ∆t

2
) for the time prop-

agation of the wave function49.
In the time-dependent approach we first calculate the

ground state Kohn-Sham eigenstates,

ψi(r, 0) =
∑

ν

biν(0)φν(r) (i = 1, . . ., Nocc). (33)

These orbitals are time propagated using Eq. (32). At
t = 0 the bias potential is turned on slowly with a ramp-
ing function. The bias potential is defined as

Vext(r, t) =











f(t)Vb

2
r ∈ left lead

0 r ∈ central region

−f(t)Vb

2
r ∈ left lead

(34)

with the ramping function

f(t) =

{

t/τ t ≤ τ

1 τ < t
. (35)

Once the bias potential is turned on, the electrons start
to move from left to right. In a finite simulation box
the electron current quickly reaches the boundary and
gets reflected producing standing waves leading to spu-
rious results. One can avoid these effects by stopping
the simulation before the current reaches the boundary
but this restricts the simulation to short times. In the
present work, as it is described in Section II.3, a CAP
is added to Hamiltonian in the leads to absorb the out-
going waves. This allows long time simulation without
reflections. In the region where the CAP is zero the wave
function of the system is unchanged and can be used to
calculate the desired physical properties. In the region
where the CAP is nonzero the wave function is absorbed
and distorted (see Fig. 3). In most applications of CAP
this does not cause any problems because one is only in-
terested in the wave function in the region where there
is no complex potential.

In the present application, however, the CAP causes
electron density depletion in the leads which, through
the Hartree and exchange correlation potentials, would
affect the result even in the region where the CAP is zero
(see Fig. 3). We have tested two approaches to avoid
this effect. In the first approach, which was proposed

in Ref.47, the CAP only acts on the orbitals which are
unoccupied in the ground state of the system. To this
end the CAP is multiplied by a projector P ,

W → PWP, (36)

which projects into the space of unoccupied orbitals,

P = 1 −

Nocc
∑

i=1

|ψi(r, 0)〉〈ψi(r, 0)|, (37)

assuring that electrons which are not excited above the
Fermi level of the leads are not absorbed. Using this
projector corrected CAP, the occupied states in the lead
remain unperturbed and the electrostatic and exchange
correlation of the lead does not change.

In the second approach the density is only updated in
the region where the CAP is zero and the the potential
is kept constant in the region where the CAP is nonzero.
This is basically the same restriction as is used in the
time-independent calculation. In our test calculations
both of these approaches gave nearly identical results.
The first approach is computationally less efficient be-
cause the projector destroys the block diagonal structure
of the H and S matrices. In the calculations presented
in this paper the second approach will be used because it
is faster and more closely mimics the time-independent
approach allowing better comparison.

In the time-dependent approach the current is calcu-
lated by monitoring the number of electrons in the left
and right leads. This is done by defining a measurement
region in the left and right lead. Denoting the the num-
ber of electrons in the left and right measurement region
by NL(t) and NR(t), the number of electrons transfered
from the left to the right is

N(t) =
1

2
(NR(t) −NL(t)) (38)

and the current is the time derivative of N(t),

I(t) =
dN(t)

dt
. (39)

The current can also be calculated from the wave function
by using the expression:

j(r, t) =
e~

2mi

Nocc
∑

i=1

(ψ∗
i (r, t)∇rψi(r, t) − ψi(r, t)∇rψ

∗
i (r, t)) .

(40)
By integrating the x component of j(r, t) on the y − z
plane in the the lead,

I(t) =

∫

A

jx(r, t)dydz. (41)

In the numerical calculations the x position of the plane
where the current is calculated is usually taken in the
measurement region.
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An alternative possibility70 to extract the current from
the time-dependent calculations is to calculate the trans-
mission coefficient either by using from the time propa-
gated orbitals71 or with the help of the NEGF formalism
as described in70 (see Eq. (23) in70). This approach is
somewhat more complicated then the method used here.

V. V. RESULTS AND DISCUSSION

In this section numerical examples will be presented for
calculation of conductance and current-voltage character-
istics using the time-independent and the time-dependent
approaches. A mono-atomic gold wire and two molecular
junctions, a benzene-dithiolate (BDT) and a bipyridine
(BPY) molecule sandwiched between Au(111) surfaces
will be used as examples.

As a first test case the conductance of a mono-atomic
gold chain is calculated. The transmission as a function
of energy calculated by using the time-independent ap-
proach is shown in Fig. 5. The conductance is quantized
and it is equal to nG0, where n the number of open chan-
nels (the number of Bloch waves) at a given energy and
G0 = 2e2/h is the unit of the conductance.

To calculate the conductance using the time-dependent
approach the current is calculated for three small volt-
ages, Vb = 0.005V , Vb = 0.01V , and Vb = 0.05V . The
number of electrons moved from the right from the left
as function of time is shown in Fig. 6. From the slope
of these curves (using eq. (39)) the current can be deter-
mined and using these currents the average conductance
is 1.04 G0. The conductance calculated by the time-
independent and time-dependent approaches are in excel-
lent agreement. The conductance of a mono-atomic gold
chain has also been calculated by a time-dependent tight-
binding approach29. The conductance value, G = 0.99G0

found in that work is also in good agreement with our re-
sults.

The current as a function of time at bias voltage Vb = 2
V is shown in Fig. 7. The bias potential is ramped
using Eq. (35) with τ=0.25 fs. After the ramping pe-
riod, the current oscillates but this oscillation slowly de-
cays and the current becomes constant. This oscilla-
tory behavior has been observed in other time-dependent
calculations28,35 as well. Using one-dimensional model
calculations (not shown here) we have carefully checked
that turning on a time-independent potential with lin-
ear ramping in the time-dependent Schrödinger equation
leads to steady solutions. In density functional calcula-
tions, however, the situation is more complicated because
the potentials depend on the time-dependent electron
density. The effect of this nonlinearity on the time depen-
dence of the solution is not clear. In our experience, if the
simulation time is long enough then with proper ramp-
ing one can reach a steady state. The problem of steady
states in time-dependent density functional calculations
has been the subject of numerous studies22,72–74. This is
an open question which needs further research exploring

how memory effects and the presence of bound and reso-
nance states in the molecular junction influence the long
time behavior of the wave function in time-dependent
simulations.

Fig. 7 also shows the effect of the finite size of the
simulation cell. The bias potential moves electrons from
the left to the right. In principle the lead is an infinite
reservoir of electrons. In the model calculation, how-
ever, the number of electrons in the left lead gradually
decreases. After some time this leads to an electron de-
ficiency and the current starts to decrease (see Fig. 7).
The finite size of the simulation cell presents a limitation
for the time-dependent simulation; one can only continue
the simulation while the charge deficiency in the left lead
is negligible. Fig. 7 shows that by increasing the size of
the system this finite size effect can be delayed and the
calculation can be continued for a longer time.

Next we calculate the current as a function of bias volt-
age for molecular junctions using two different molecules
sandwiched between gold electrodes. The first molecule,
the benzene-dithiolate (BDT) has a smaller (1.45 eV)
HOMO-LUMO gap, and the second molecule, the bipyri-
dine has a larger (3.05 eV) HOMO-LUMO gap (the
HOMO-LUMO gap is calculated with TDDFT using
Casida’s method75). The geometry of the molecular junc-
tions is taken from Ref.76. To make the calculations com-
putationally feasible the k‖ points are sampled only by
using the Γ point.

In the calculations presented in this paper each lead
domain contains three layers of gold atoms. The central
region has five domains: two lead domains in the left, two
in the right, and one domain containing the molecule and
one layer of gold (see Fig. 4). The extra layer of gold
is needed to make the system symmetric and the lead
in the left and right identical. The lead region contains
6 domains in both sides. The leads are large enough so
that the calculated current does not change by further
increasing the number of domains.

The first example is the gold-BDT-gold junction
which has been a prototypical example of molecular
junctions and attracted intense theoretical8,76–85 and
experimental86–90 interest.

The zero bias transmission coefficient calculated by
the time-independent approach is shown in Fig. 8. The
transmission curve is in good overall agreement with the
results presented in Ref.76. There are two large peaks
in the transmission: one is about 1 eV below the Fermi
energy, while the second is about 3 eV above. The con-
ductance at the Fermi energy is 0.20 G0, in a good agree-
ment with the results (0.24 G0 and 0.28 G0) presented
in Ref.76. The calculated current-voltage characteristics
are shown in Fig. 13.

In the time-dependent approach the Kohn-Sham or-
bitals (Eq. (33)) calculated for Vb=0 V are time propa-
gated to to calculate the time-dependent wave function
for a given bias voltage. The number of electrons moved
from the left to right electrode is shown in Fig. 9 for the
gold-BDT-gold junction for five different voltages. The
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current calculated using eq. (41) is shown in Fig. 10.
The current extracted from using Fig. 9 using Eq. (39)
and the current shown in Fig. 10 are in good agreement.
The charge transfer shows a linear increase of charge on
the right electrode after the bias voltage is turned on with
the linear ramping. After the ramping the current has
a short transient and approaches the steady state. For
higher bias voltages the current remains more oscillatory.
This makes the value of the current somewhat ambigu-
ous and, as the computational cost does not allow us to
continue the simulations until the oscillations completely
decay, we limit the calculations to small Vb < 3V bias
voltages. The current-voltage characteristics obtained by
the time-independent approach are shown in Fig. 13.

The currents calculated by the time-dependent and
time-independent approaches, except for very low bias
voltages, are significantly different. To explore the ori-
gin of this difference we have compared the potential and
the density calculated by the time-dependent and time-
independent approaches in Fig. 11. Fig. 11.b shows the
difference of the electron density at finite bias and the
electron density at equilibrium (Vb = 0V ). The change
of electron density is smaller in the time-dependent ap-
proach than in the time-independent one. The bias seems
to move electrons from the left sulfur atom to the right
sulfur atom. In the time-independent approach more
electrons are moved towards the right lead by the bias
voltage. As a consequence, the voltage drop across the
junction is smoother in the time-dependent case than in
the time-independent one. The smoother potential leads
to higher transmission probability allowing larger current
through the molecule. The reason behind the different
densities and potentials produced by the two approaches
is the fact that the non-equilibrium part of the density
(the part of the density induced by the bias voltage) is
calculated from different Hamiltonians. This question
will be addressed further by comparing the spectrum of
the two Hamiltonians. This example only shows that
the difference in the Hamiltonians leads to different cur-
rents, but there is no rule saying that the time-dependent
approach yields larger current. The particular results
are probably different for different systems and one ex-
pects that it strongly depends on the energy levels of the
molecule, as well as the coupling between the molecule
and the leads.

Fig. 12 shows the average potential at t=1 fs. Similar
to the time-independent case, the change of potential due
to the bias voltage is only significant around the molec-
ular junction in the time-dependent calculations. Fig.
12 shows that the potential is only affected by the bias
voltage up to 3-4 gold layers (between -10 and 10 Å).

Our next example is the gold-BPY-gold junction. The
geometry of the system is taken from Ref.76. The trans-
mission coefficient as a function of energy for the gold-
BPY-gold structure is shown is Fig. 14. This system
has been subject of study by various research groups
experimentally91 and theoretically76,92–96. The theoreti-
cal calculations have found that the transport properties

very strongly depend on the details of the contact geome-
try. The calculated zero bias transmission coefficient (see
Fig. 14) is in good agreement with the results presented
in Ref.76. The slight differences are due to the fact that
only the Γ point is used in our calculations.

The current as a function of the applied voltage is
shown in Fig. 15. Due to the small transmission proba-
bility around the Fermi energy, the calculated current is
very small for low bias voltages. This is in good agree-
ment with both the previous calculations92,94 and with
experimental results91. The Fermi energy of the system
is aligned about 0.5eV below the LUMO level (see Fig.
16). The current starts to increase when the bias voltage
is Vb > 0.5V and the transmission becomes significant
through the LUMO level. Up to that point, the currents
calculated by the time-dependent and time-independent
approaches are nearly equal. Beyond that region there is
a significant difference between the two results. Due to
the nonzero transmission around the Fermi energy in the
BDT case, the current is larger for BDT than for BPY
even for small bias voltages (see Fig. 13).

As we have seen, the currents calculated by the time-
dependent and time-independent approaches are signifi-
cantly different. In the two cases studied in this paper the
time-dependent approach predicts a larger current than
the time-independent one. One of the reasons for this
difference is that in the time-independent case the cur-
rent is calculated from the transmission function which is
based on the ground state Kohn-Sham Hamiltonian and
the excited states are approximated by the unoccupied
Kohn-Sham eigenstates. In the time-dependent case the
excited states are accessed through TDDFT providing
a better description of the current for finite bias volt-
ages. Figs. 16 and 17 show the difference between the
energies of the unoccupied Kohn-Sham states and the
energies of the excited states calculated by TDDFT us-
ing Casida’s method75 for the BDT and BPY molecules.
The BDT has a smaller HOMO-LUMO gap than the
BPY. Both ground state DFT and TDDFT predict sim-
ilar HOMU-LUMO gaps for both molecules. The en-
ergies of the higher states, however, are different in the
two approaches. The similarity of the currents calculated
for BPY (see Fig. 15) in the low bias voltage regime
can probably be attributed to the fact that the HOMO-
LUMO gap is large in both approaches. The higher ex-
cited states are predicted to be different by the two ap-
proaches and the calculated current is different as well.
Similar arguments are true for the BDT junction, except
for the fact that in the BDT case the HOMO-LUMO gap
is smaller causing the current to be different everywhere.

VI. SUMMARY

The multidomain decomposition method together with
the complex potential approach has been used to cal-
culate the current as a function of voltage in molecular
junctions using the time-dependent DFT and the time-
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independent NEGF-DFT method. The results of the
time-independent approach for molecular junctions and
for a mono-atomic gold wire are in good agreement with
previous calculations. The results of the time-dependent
calculations are significantly different from the static
NEGF-DFT results. This difference can mostly be at-
tributed to the fact that the TDDFT approach accesses
the excited states of the system while NEGF-DFT is re-
stricted to the ground state single particle orbitals.

In the present work the local density approximation
(LDA) is used for the exchange-correlation potential.
An obvious way to improve the calculations is to use
better exchange-correlation potentials. Intense research
is already devoted to this problem. The effect of the
self-interaction correction is investigated in97,98 and the
problem of the lack of derivative discontinuity in LDA-
based calculations has been illustrated. The impact
of exchange-correlation effects on the current-voltage
characteristics of a molecular junction has been stud-
ied in Ref.99. More rigorous approaches based on ex-
act exchange100 would be desirable, but their implemen-
tation is tedious101. Time-dependent calculations going
beyond the adiabatic LDA level are a necessary further
step for better description of the electron transport in
nanostructures.

The present work is concentrated on the study of elec-
tron transport in the presence of a time-independent ex-
ternal bias potential. The presented implementation of
the time-dependent approach provides an efficient frame-
work for transport calculations with time-dependent ex-
ternal potentials as well. Results of such calculations will
be reported in the future.

In the present work, the infinite open quantum sys-
tem has been transformed into a finite closed system,
which is an efficient and cheap way of to calculate elec-
tron transport in molecular junctions. The calculation of
electron current using TDDFT in open quantum systems
is a very active research area39,70,102–104. There are nu-
merous other approaches have been proposed to address
this problem including the extension of TDDFT to open
systems using a Liouville-master equation39,102,103, de-
scription of the environment introducing quantum Drude
friction104 and using a stochastic Schrödinger-equation to
tackle quantum dynamics105. A particularly attractive
feature of some of these approaches that they allow one
to go beyond TDDFT and use current density functional
theory106.

This work is supported by NSF Grants No.
ECCS0925422 and CMMI0927345.

Appendix A: Definition of the matrices used in the

time-independent calculations

In this Appendix we will define the matrices used in
the time-independent transport calculations. The def-
initions used in this paper conform with those in the
literature2,3. The purpose of this Appendix is to make

the paper self-contained and to connect the multidomain
expression presented in Eq. (3) to the standard transport
expression of Eq. (6).

In transport calculations, the left and right leads con-
sist of periodically repeated cells. The domains in the
leads are chosen to contain one or more cells. The num-
ber of cells included in the domains is selected in such a
way that the Hamiltonian and the overlap matrices only
connect adjacent boxes. As the boxes in the leads are
identical, so are the HBi, HAi, and SBi and SAi ma-
trices. Denoting the number of domains in the left and
right and center by nL, nR, and nC , respectively, we can
define

HBi = HL
B, HAi = HL

A, SBi = SL
B, SAi = SL

A,
(A1)

for (i = 1, . . ., nL)

HBi = HR
B , HAi = HR

A , SBi = SR
B , SAi = SR

A ,
(A2)

for i = nL +nC + 1, . . ., N . In the central region no such
simplification is possible, and we have

HBi = HC
Bi, HAi = HC

Ai, SBi = SC
Bi, SAi = SC

Ai,
(A3)

for i = nL + 1, . . ., nL + nC . Using this notation, the
Hamiltonian and the overlap matrices of the left and right
leads are

HL =



















HL
B HL†

A 0 . . . 0 0

HL
A HL

B HL†
A . . . 0 0

0 HL
A HL

B . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . HL
B HL†

A

0 0 0 . . . HL
A HL

B



















, (A4)

SL =



















SL
B SL†

A 0 . . . 0 0

SL
A SL

B SL†
A . . . 0 0

0 SL
A SL

B . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . SL
B SL†

A

0 0 0 . . . SL
A SL

B



















, (A5)

HR =



















HR
B HR†

A 0 . . . 0 0

HR
A HR

B HR†
A . . . 0 0

0 HR
A HR

B . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . HR
B HR†

A

0 0 0 . . . HR
A HR

B



















, (A6)

SR =



















SR
B SR†

A 0 . . . 0 0

SR
A SR

B SR†
A . . . 0 0

0 SR
A SR

B . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . SR
B SR†

A

0 0 0 . . . SR
A SR

B



















. (A7)
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In the central region the matrices are defined as

HC =









HC
B1 HC†

A2 0 0 . . .

HC
A2 HC

B2 HC†
A3 0 . . .

HC†
ANC

0 . . . HC
ANC

HC
BNC









(A8)

and

SC =









SC
B1 SC†

A2 0 0 . . .

SC
A2 SC

B2 SC†
A3 0 . . .

SC†
ANC

0 . . . SC
ANC

SC
BNC









. (A9)

The coupling matrices between the leads and the central
region are

HLC =

















0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

HLC 0 . . . 0

















, (A10)

HRC =

















0 . . . 0 HRC

0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 0

















. (A11)

where

HLC = HAnL+1, SLC = SAnL+1, (A12)

HRC = HAnL+nC+1, SRC = SAnL+nC+1. (A13)

Using this notation, the Hamiltonian and the overlap ma-
trices can be written as

H =





HL HLC 0

H†
LC HC H†

RC

0 HRC HR



 , (A14)

S =





SL SLC 0

S†
LC SC S†

RC

0 SRC SR



 . (A15)

The matrix representations of the CAP in the left and
right leads are

WL =



















WL
BnL

WL†
AnL−1 0 . . . 0 0

WL
AnL−1 WL

BnL−1 WL†
AnL−2 . . . 0 0

0 WL
AnL−2 WBL

nL−2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . WL
B2 WL†

A1

0 0 0 . . . WL
A1 WL

B1



















,

(A16)

WR =



















WR
B1 WR†

A2 0 . . . 0 0

WR
A2 WR

B2 WR†
A3 . . . 0 0

0 WR
B3 WR

B3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . WR
BnR−1 WR†

BnR

0 0 0 . . . WR
BnR

WR
BnR



















,

(A17)
where the block matrices, WL

Xi and WR
Xi correspond to

the principal layers and thus the block matrices HL
X and

HR
X of the Hamiltonian of the lead (X = A,B). Using

these CAP matrices the Hamiltonians of the leads are
defined as

H ′
X = HX − iWX , (X = L,R). (A18)

Next, we define the Green’s functions of the different par-
titions. The Green’s functions of the leads are

gX(E) = ((E + iǫ+)SX −H ′
X)−1 X = L,R (A19)

(where ǫ+ is an infinitesimally small positive number).
The Green’s function of the central region is

GC(E) = ((E + iǫ+)SC −HC − ΣL(E) − ΣR(E))−1.
(A20)

where

ΣL = (ESLC −HLC)† gL (ESLC −HLC) , (A21)

and

ΣR = (ESRC −HRC)
†
gR (ESRC −HRC) . (A22)

are the self-energy matrices of the leads. Using the block
matrix form of the leads’ Green’s functions

gL =





















gL
11 gL†

12 . . . . . . . . . gL†
n1L

gL
12 gL

22 gL†
23 . . . . . . . . .

gL
13 gL

23 gL
33 . . . . . . . . .

...
...

...
. . .

...
...

...
...

... . . . gL
nL−1nL−1 gL†

nL−1nL

gL
1nL

. . . . . . . . . gL
nL−1nL

gL
nLnL





















,

(A23)
and

gR =





















gR
11 gR†

12 . . . . . . . . . gR†
nR1

gR
12 gR

22 gR†
23 . . . . . . . . .

gR
13 gR

23 gR
33 . . . . . . . . .

...
...

...
. . .

...
...

...
...

... . . . gR
nR−1nR−1 gR†

nR−1nR

gR
1nR

. . . . . . . . . gR
nR−1nR

gR
nRnR





















,

(A24)
and the special sparse structure of HLC and HRC the
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sigma matrices become

ΣL =

















σL . . . 0 0
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 0

















, (A25)

and

ΣR =

















0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 σR

















, (A26)

with

σL =
(

(E + iǫ+)SLC −HLC
)

†gL
nLnL

(

(E + iǫ+)SLC −HLC
)

(A27)

σR =
(

(E + iǫ+)SRC −HRC
)

†gR
11

(

(E + iǫ+)SRC −HLR
)

.
(A28)

Both ΣL and ΣR are NC×NC matrices with only a single
nonzero block matrix.

Lastly, using the self-energies and the Green’s func-
tions we can define the transmission probability and the
charge density matrix. The transmission probability is
related to Green’s functions by1

T (E, Vb) = Tr
[

ΓL(E)GC(E)ΓR(E)G†
C(E)

]

, (A29)

where

ΓL,R(E) = i
(

ΣL,R(E) − [ΣL,R(E)]
†
)

(A30)

represents the coupling at energy E between the central
region and the leads.

The electron density can be calculated from the density
matrix of the central region

DC =
1

2π

∫ +∞

−∞

dE
[

GC(E)ΓL(E)G†
C(E)f(E − µL) +GC(E)ΓR(E)G†

C(E)f(E − µR)
]

(A31)

= −
1

π

∫ +∞

−∞

dEIm [GC(E)f(E − µL)] (A32)

+
1

2π

∫ +∞

−∞

dE
[

GC(E)ΓR(E)G†
C(E)

]

× [f(E − µR) − f(E − µL)] .

The first integral is analytic (all poles of GC(E) are on
the real axis), and the integral can be evaluated by com-
plex contour integration. The second integrand is not
analytic, and it must be evaluated by integrating very
close to the real axis using a very fine energy mesh.

FIG. 1: Domain decomposition.

FIG. 2: Intervals in the x direction.
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FIG. 3: Top panel: Real part of a scattering wave
function in a complex absorbing potential. The wave

function is calculated for a step potential and it is equal
to the analytical solution in the [-20Å ,20Å ] region

where the CAP is zero. The nonzero CAP absorbs the
wave function and the wave function gradually decays
to zero. Bottom panel: Imaginary part of the complex
absorbing potential (thick solid line) and self-consistent

potential (thin solid line) for a gold-
benzene-dithiolate-gold junction. The potential is

obtained by averaging the self-consistent potential on
the plane perpendicular to the transport direction.

FIG. 4: Central region. The size of the system is chosen
in such a way that the self consistent solution in the

shaded boxes is identical to the self-consistent solution
of the lead boxes.
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FIG. 5: Conductance of a gold nanowire as a function
of the energy.
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FIG. 6: Number of electrons moved from the left to the
right as a function of time for three different bias

voltages, Vb = 0.005V (lower line), Vb = 0.01V (middle
line), and Vb = 0.05V (upper line).
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FIG. 7: Current as function of time in gold nanowires.
The applied bias voltage is Vb=2 V. The length of the

nanowires are 180 Å(dashed line) and 230 Å(solid line).
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FIG. 8: Transmission as a function of energy for the
gold-benzene-dithiolate-gold junction.

FIG. 9: The number of electrons moved from the left to
right electrode as a function of time for the

gold-BDT-gold junction for five different bias voltages.
The lowest curve corresponds to Vb = 1V , and the bias

voltage is increased by 1V for the successive curves.

FIG. 10: Current as a function of time for the
gold-BDT-gold junction for five different bias voltages.
The lowest curve corresponds to Vb = 1V , and the bias

voltage is increased by 1V for the successive curves.
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FIG. 11: Change of density (middle panel) and potential
(bottom panel) in a gold-benzene-dithiolate-gold
junction in the time-independent (solid line) and

time-dependent (dashed line) calculation. The density
(potential) is calculated by averaging the difference of

the densities (potentials) at Vb=2 V and Vb = 0 V. The
density and the potential is averaged over the y-z plane.
The top panel shows the position of the atoms. The two

vertical lines show the position of the first gold layer
(see also Fig. 4).
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FIG. 12: Potential of the gold-benzene-dithiolate-gold
junction calculated by the time-dependent approach at

t=1 fs. The bias voltage is Vb=3 V. The potential
shown on the figure is abtained by averaging the

self-consistent potential over the y-z plane.
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FIG. 13: Current as a function of bias voltage for the
gold-benzene-dithiolate-gold junction calculated by the

time-independent (solid line) and time-dependent
(dashed line) approaches.
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FIG. 14: Transmission as a function of energy for the
gold-bipyridine-gold junction.
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FIG. 15: Current as a function of bias voltage for the
gold-bipyridine-gold junction calculated by the

time-independent (solid line) and time-dependent
(dashed line) approaches.
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FIG. 16: Excited state spectrum of an isolated
bipyridine molecule. The left side corresponds to the

energies of the unoccupied the Kohn-Sham orbitals, the
right hand side shows the excited state energies

calculated by the TDDFT. The grey line at E = 0 is the
Fermi energy of the gold lead. The the Fermi level and

the molecular energies are aligned by equalizing the
vacuum potentials of the isolated molecule and the

semi-infinite lead.
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FIG. 17: Excited state spectrum of a benzene-dithiol
molecule. The left side corresponds to the energies of

the unoccupied the Kohn-Sham orbitals, the right hand
side shows the excited state energies calculated by the
TDDFT. The grey line at E = 0 is the Fermi energy of

the gold lead. See also the caption of Fig. 16.
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