
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Engineering a p+ip superconductor: Comparison of
topological insulator and Rashba spin-orbit-coupled

materials
Andrew C. Potter and Patrick A. Lee

Phys. Rev. B 83, 184520 — Published 25 May 2011
DOI: 10.1103/PhysRevB.83.184520

http://dx.doi.org/10.1103/PhysRevB.83.184520


BC11639

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N
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Spin-Orbit Coupled Materials
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We compare topological insulator materials and Rashba coupled surfaces as candidates for engi-
neering p+ip superconductivity. Specifically, in each type of material we examine 1) the limitations
to inducing superconductivity by proximity to an ordinary s-wave superconductor, and 2) the ro-
bustness of the resulting superconductivity against disorder. We find that topological insulators
have strong advantages in both regards: there are no fundamental barriers to inducing supercon-
ductivity, and the induced superconductivity is immune to disorder. In contrast, for Rashba coupled
quantum wires or surface states, the the achievable gap from induced superconductivity is limited
unless the Rashba coupling is large. Furthermore, for small Rashba coupling the induced super-
conductivity is strongly susceptible to disorder. These features pose serious difficulties for realizing
p+ip superconductors in semiconductor materials due to their weak spin-orbit coupling, and suggest
the need to seek alternatives. Some candidate materials are discussed.

I. INTRODUCTION

Superconductors with p + ip pairing symmetry have
long been expected to posses zero-energy Majorana
bound states in vortex cores2 or at the ends of one-
dimensional structures4. These Majorana fermion bound
states are expected to exhibit non-Abelian exchange
statistics1,2, and have been proposed as a basis for topo-
logical quantum computers which would be protected
from decoherence3–5. Consequently, there is a growing
interest in realizing a robust p + ip superconductors in
the laboratory. Such p+ ip superconductors are thought
to naturally occur in triplet paired fermionic superflu-
ids (such as 3He A or Sr2RuO4)

6,7, and in the Pfaffian
quantum Hall state8 at ν = 5/2. However, these systems
are all experimentally delicate, and despite extensive ex-
perimental work, direct evidence of Majorana fermions
remains elusive.

Recently, the possibility of engineering effective p +
ip superconductors in more conventional materials has
arisen9–17. A common thread in these proposals is the
use of spin-orbit coupling to convert conventional super-
conductivity into p + ip superconductivity, typically by
inducing s-wave superconductivity in a 2D material with
spin-orbit coupling by proximity to an ordinary bulk su-
perconductor. Among these proposals, two dominant
classes of candidate materials have emerged: 1) surface
states of topological insulator (TI) materials16 and 2)
semiconducting quantum-wires or two-dimensional elec-
tron gases (2DEGs) with Rashba spin-orbit coupling UR

and induced magnetization Vz
9,10,12. In this work, we

provide a detailed comparison of induced superconduc-
tivity in these two classes of materials and discuss the
comparative advantages and disadvantages of using each
of these materials to construct a p+ ip superconductor.

We first examine the prospects for inducing supercon-
ductivity in TI surface states and Rashba materials by
the proximity effect. For TI surface states, the induced
s-wave pairing is always converted into p+ ip pairing due
to the topologically protected winding of the TI surface

Bloch wave-functions. Consequently, for a sufficiently
good interface between the TI surface and a bulk su-
perconductor, it is possible to induce the full bulk pair-
ing gap ∆0 on the TI surface18. The situation is more
complicated for Rashba materials, where a more delicate
balance of spin-orbit and magnetization is required to
achieve p+ip superconductivity. For these materials, the
size of the induced superconducting gap is limited not
only by the transparency of the interface to the bulk su-
perconductor, but also by the magnetization and Rashba
energy scales which we denote by Vz and UR respec-
tively (see Section II B for detailed definitions). In par-
ticular for small Rashba coupling (UR ≪ Vz ,∆0), we
find that the induced superconducting gap is limited to
1
2

√
UR∆0 ≪ ∆0.
We then analyze the effects of disorder on the induced

superconductivity. Since superconductivity in the 2D
surface layer is induced by proximity rather than spon-
taneously developed by phonon interaction, and since
the induced superconductivity has s-wave symmetry one
might expect that the disorder cannot reduce the induced
pairing gap. On the other hand, disorder is pair-breaking
for p-wave superconductors, and the induced supercon-
ductivity is effectively converted into p+ip superconduc-
tivity. Therefore it is not a priori clear what the effect
of disorder will be. By computing the disorder averaged
density of states, we find that, for TI materials, the in-
duced superconductivity is immune to disorder, and ar-
gue on general grounds that this immunity is a direct
consequence of time-reversal invariance. In the Rashba
2DEG’s however, the induced magnetization required to
realize a single helicity p+ ip superconductor inherently
breaks time-reversal symmetry leaving the induced su-
perconductivity vulnerable to disorder. We find that,
while the induced superconducting gap ∆ never fully
closes from disorder, it can be sharply reduced from its
clean value. The degree of vulnerability to disorder de-
pends again on the size of the Rashba coupling UR. For
small UR, ∆ is strongly suppressed even for very weak
disorder for which the superconducting coherence length
ξ0 is only a few percent of the mean-free path ℓ. This
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sharp decrease is more drastic than the case of magnetic
impurities in a conventional superconductor, for which
superconductivity is destroyed only when ξ0/ℓ ∼ 1.

In both regards, the TI materials offer advantages, al-
lowing robust induced superconductivity that is immune
to disorder. This suggests that TI materials may there-
fore be the most promising route to realizing topological
superconductivity and Majorana fermions. However, im-
plementing a p + ip superconductor using a TI surface
state requires many further developements in material
growth and interface engineering, and therefore it may
still be desirable to work with more conventional mate-
rials with strong Rashba splitting.

So far, the theoretical and preliminary experimental
work on building a p + ip superconductor from Rashba
2DEGs has largely focused on semiconductor materials
and in particular on semiconductor nanowires11. How-
ever, in light of our analysis, the very low Rashba en-
ergy scales in semiconductors raise serious challenges for
inducing superconductivity. Namely, small UR greatly
limits the size of the induced superconducting gap and
furthermore, renders the resulting superconductor ex-
tremely sensitive to disorder. These drawbacks suggest
that an alternative class of materials with stronger spin-
orbit coupling should be sought.

Extremely large Rashba splittings on the order of 1eV
have been observed in surface alloys of metals and heavy
elements such as Bi on Ag(111)19. In an earlier paper13,
we had proposed this surface alloy as a promising can-
didate material. However, this extreme Rashba strength
can also create new problems. Namely, large Rashba cou-
pling leads to large carrier density, making it difficult to
adjust the chemical potential by gating. This is problem-
atic because one must be able to fine-tune the chemical
potential to achieve topological superconductivity and to
manipulate Majorana end-states. It is therefore desire-
able to find materials with strong enough Rashba cou-
plings to avoid problems with induced superconductivity
and disorder, but not so strong that gating becomes im-
possible.

One particularly promising candidate is the (110) sur-
face of Au, which first-principles calculations predict will
exhibit surface bands with sizeable Rashba splitting20.
These surface bands naturally lie within . 50meV of the
bulk Fermi level, indicating that it should be possible to
move the chemical potential into the topological regime
using gating. Furthermore, the crystal symmetry of the
(110) surface allows for a combination of Rashba and
Dresselhaus type spin-orbit couplings. If both types of
spin orbit coupling are present, magnetization could be
induced by applying an in-plane field rather than by prox-
imity to a ferromagnetic insulator12. This would greatly
simplify the proposed setup for realizing Majoranas.

This paper is organized as follows: we begin with a
review of the proposed route to engineering a p+ ip su-
perconductor from TI and Rashba 2DEG materials. We
then introduce a simple model of the proximity effect in
these materials, and show how to choose system parame-

ters in order optimize the induced superconducting gap.
Subsequently, we turn to the issue of disorder, and de-
rive the disorder averaged Green’s functions and density
of states for weak to moderate disorder (kF ℓ ≫ 1). Fi-
nally, we close with a discussion of the relative strengths
and weaknesses of each class of materials for realizing a
p+ ip superconductor.

II. OVERVIEW OF PROPOSED ROUTES TO

TOPOLOGICAL SUPERCONDUCTIVITY

In this section we briefly review the proposed routes
to creating a topological superconductor from the sur-
face state of a bulk topological insulator (TI) or from a
2DEG with strong Rashba spin-orbit coupling. In both
classes of materials, spin-orbit coupling creates surface
bands in which electron spin is locked with respect to
the direction of propagation. This helical locking of elec-
tron spin direction to propagation directions causes the
electron spin to wind as one traverses a loop around the
Brillouin zone. Consequently, if s-wave superconductiv-
ity is induced by proximity to a bulk superconductor, the
helical winding of the surface Bloch wave-functions effec-
tively converts the induced superonductivity into p + ip
superconductivity. Specifically, when re-expressed in the
basis of the surface bands, the induced s-wave pairing
term takes the form of a p-wave pairing term12,16.
Throughout the paper, we work in the basis of time-

reversed pairs:

Ψk =

(

ψk

T ψk

)

=

(

ψk

−iσyKψk

)

=











(

ck,↑
ck,↓

)

(

c†−k,↓
−c†−k,↑

)











(1)

which is convenient for discussing superconductivity.
Here we take the usual representation T = −iσyK of the
time-reversal operator, where {σx,y,z} are Pauli matrices
in the spin basis, and K denotes complex conjugation.
We consider inducing the pairing term:

H∆ = ∆
∑

k

c†k,↑c
†
−k,↓ + h.c.

=
∑

k

∆ψ†
k (T ψk)

†
+ h.c. =

∑

k

Ψ†
k∆τ1Ψk (2)

by proximity to an ordinary superconductor, where
{τ1,2,3} are Pauli matrices in the particle-hole basis. Here
we have chosen a gauge in which the pairing order pa-
rameter ∆ is purely real (this is justified, as we are not
presently concerned with situations where the supercon-
ducting phase is inhomogenous or fluctuating).
In proposals to realize Majorana fermions, there are

two relevant energy scales protecting the coherence of
information stored among the Majorana fermions. The
first is the (p-wave component of the) induced supercon-
ducting pairing gap, ∆, which sets the energy scale for
single particle excitations that can change the fermionic
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parity of a pair of Majoranas. The second is the so-
called mini-gap to localized excitations near each Majo-
rana. Since localized excitations cannot change non-local
fermion parity, the mini-gap is important only when two
Majoranas are brought close to each other for measure-
ment purposes21. For Majoranas realized as end-states,
the mini-gap also scales linearly with the induced p-wave
pairing gap14. Therefore, in order to perform quantum
coherent manipulations of Majorana fermions, it is im-
portant to achieve a robust pairing gap, and to work at
temperatures much lower than this gap.

A. Topological Insulators

The low-energy continuum Hamiltonian, HTI =
∑

k Ψ
†
kHTI(k)Ψk of a TI surface is16:

HTI = (vẑ · (σ × k)− µ) τ3 (3)

where v is the Dirac cone velocity. The surface eigen-
states with energies ±v|k| form the upper and lower
branches of a single Dirac cone with definite spin-helicity:

c± =

(

ck,↑ ± e−iφkck,↓√
2

)

(4)

where φk = tan−1 (kx/ky).
When expressed in the c± basis, the pairing term

(Eq. 2) takes the form of an ideal spinless p + ip
superconductor16

H∆ =
∑

k

∆
(

eiφkc†k,+c
†
−k,+ + e−iφkc†k,−c

†
−k,− + h.c.

)

(5)

B. Rashba 2DEG

The low-energy continuum Hamiltonian, HR =
∑

k Ψ
†
kHR(k)Ψk of a Rashba coupled 2DEG with induced

magnetization is:

HR(k) = [ξk + αRẑ · (σ × k)] τ3 + Vzσz (6)

where ξk = k2

2m − µ is the spin-independent dispersion,

µ is the chemical potential, UR = 2mα2
R is the Rashba

coupling strength, and Vz is the induced Zeeman splitting
responsible for the surface magnetization.
In contrast to the TI case, without breaking time-

reversal symmetry, there are two helicities present at
each energy. Consequently, in order to construct a single
species p+ ip superconductor, it is necessary to explicitly
break time-reversal symmetry, in this case by introducing
magnetization, Vz, to remove one of these helicities.
The Rashba coupling αR creates two helical bands with

energies ε
(R)
± = ξk ±αR|k| and spin-wavefunctions c± (as

for the TI case). Vz cants the helical bands by angle

FIG. 1. (Color online) Band-structure with Rashba coupling,
magnetization, and induced superconductivity. Three rele-
vant energy scales are labelled: 2∆BG is the energy gap be-
tween the ε+ and ε

−
bands at the Fermi surface, ∆FS is the

induced p-wave pairing gap at the Fermi surface, and 2VZ is
the induced magnetization gap.

θM (k) out of the xy-plane modifying the surface eigen-
states and corresponding dispersions:

ε
(R/FM)
± = ξk ±

√

V 2
z + U2

R
k2

2m

c
(R/FM)
± = e−iφkσz/2e−iθMσx/2

(

ck,↑ ± ck,↓√
2

)

θM (k) = tan−1

(

Vz/
√

V 2
z + U2

R
k2

2m

)

(7)

Re-expressingH∆ in the eigenbasis of both Rashba and
Zeeman couplings, one finds that, in addition to p ± ip

pairing ∆p(k)k̂
± ∼ 〈ck,±c−k,±〉 between fermions both

in band ε±, the canting θM introduces an s-wave pair-
ing component ∆s(k) ∼ 〈ck,+c−k,−〉 between fermions
c+ and c− in bands ε+ and ε− respectively where:

(

∆s(k)
∆p(k)

)

=
1

2
√

V 2
z + U2

R
k2

2m

(

Vz

−
√

U2
R

k2

2m

)

∆ (8)

and k̂± = (ky ± ikx) /k. As discussed in12, one has
a topological superconductor with potential Majorana
bound states so long as Vz > ∆, and so long as µ lies
within the Zeeman gap (|µ| < Vz). It is most advanta-
geous to set µ = 0, placing the chemical potential in the
middle of the Zeeman gap (which can be done either by
electrostatic gating or chemical doping), and we will take
µ = 0 throughout the remainder of this paper.
In this system, there are two excitation gap energy-

scales: the first is the pairing gap at the Fermi surface
(k = kF ) given by:

∆FS = 2∆p =

√

UR

∆BG
∆ (9)

∆BG =
ε
(R/FM)
+ − ε

(R/FM)
−

2
=

√

V 2
z + UR

k2F
2m

(10)

The second is the Zeeman gap at k = 0, given (for µ = 0)
by |Vz −∆|. The smaller of these two energy scales sets
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the bulk gap to single-particle excitations which would
destroy the non-local information stored among Majo-
rana bound-states. We note that the relative strength
of the Rashba spin-orbit coupling UR and the Zeeman
splitting Vz determines the size of the pairing gap at kF .
For Vz ≫ UR, the pairing gap is only a small fraction of
originally induced ∆. If the Zeeman gap closes (i.e. if
Vz ≤ ∆), then both helicities are present and the system
is topologically trivial.

III. PROXIMITY INDUCED

SUPERCONDUCTIVITY

A. Simple Model of Proximity Effect

In this section, we consider the interface between a
bulk s-wave superconductor and either a topological in-
sulator surface or a Rashba coupled surface state with
induced magnetization Vz. As a simple model of this in-
terface, we consider a bulk superconductor described by
the BCS Hamiltonian:

HB =
∑

k,σ

[

εB,kb
†
k,σbk,σ +

(

∆0b
†
k,↑b

†
−k,↓ + h.c.

)]

(11)

coupled to the surface through a clean planar interface
described by the bulk–surface tunneling term:

HB–S =
∑

k‖,k⊥,σ

Γb†(k‖,k⊥),σck‖,σ + h.c. (12)

which conserves momentum k‖ parallel to the interface,
and is independent of the transverse momentum k⊥ per-

pendicular to the interface. Here b†k,σ and c†k,σ are the

electron creation operators (with momentum k and spin
σ) for the bulk superconductor and surface respectively,
εB is the non-superconducting bulk dispersion which we
will linearize about the chemical potential µ, and ∆0 is
the bulk s-wave pairing amplitude.
Since surface–bulk tunneling conserves in-plane mo-

mentum, the bulk tunneling density of states (in the
absence of superconductivity) is given by the one-

dimensional expression NB(εB(k)) = (∂εB(k)/∂kz)
−1

.
Assuming that NB varies slowly with energy, HB–S in-
duces the following self-energy correction to the surface
Green’s function:

ΣΓ(iω) =
πγ

√

∆2
0 + ω2

(−iω +∆0τ1) (13)

where γ = NB(0)|Γ|2 is convenient measure of the
strength of surface-bulk coupling corresponding to the
width of the surface resonance that would result from
HB–S without bulk-superconductivity (∆0 = 0).
Incorporating ΣΓ into the surface Green’s function

gives:

GS(iω) =
ZΓ

iω − ZΓHTI/R − (1− ZΓ)∆0τ1
(14)

where ZΓ is the reduced in quasi-particle weight due to
the bulk–surface hybridization:

ZΓ(iω) =

(

1 +
πγ

√

∆2
0 + ω2

)−1

(15)

The quasi-particle weight can be interpreted as the frac-
tion of time that a propagating electron resides in the
surface, as opposed to the bulk. The surface-bulk tun-
neling induces a pairing term ∆̃τ1 in the surface where:

∆̃ = (1− ZΓ)∆0 (16)

For strong surface-bulk coupling (γ ≫ ∆0 or equivalently
ZΓ ≪ 1) a sizeable fraction of the bulk pairing is induced
on the surface.
However, this is not the only effect of the interface.

From Eq. 14 we see that the surface-bulk coupling renor-
malizes the surface Hamiltonian, effectively rescaling the
coefficients by a factor of ZΓ:

HTI/R → H̃TI/R = ZΓHTI/R (17)

The effects of this renormalization are markedly different
for topological insulators and Rashba 2DEG’s, and we
will consider each case in turn.

1. Proximity Effect for TI Surface

Renormalization of the topological insulator surface
due to coupling to a bulk superconductor simply results
in rescaling the Fermi velocity vF → ṽF = ZΓvF and
chemical potential µ→ µ̃ = ZΓµ. However, the nature of
the induced pairing is independent of vF and |µ|, rather,
it depends only on the helical spin-winding of the sur-
face Bloch-wavefunctions as one traverses a loop around
the single Dirac cone in the surface Brillouin zone. Since
this helical winding is unchanged by the bulk-surface cou-
pling, the induced pairing symmetry will be preserved
regardless of γ.
Therefore, for TI materials there are no funda-

mental restrictions to pursuing arbitrarily strong cou-
pling between the TI surface and the nearby bulk-
superconductor, and consequently it is in principle possi-
ble to induce the full bulk-gap ∆0 on the TI surface. This
advantageous feature of TI surfaces was first pointed out
in Ref. 18. In the subsequent section, we will see things
are not so simple for the inducing superconductivity in a
Rashba coupled 2DEG.

2. Proximity Effect in a Rashba Coupled 2DEG

Inducing superconductivity in Rashba coupled surface
states is a more delicate matter than in TI surfaces.
Whereas the helical TI surface states are topologically
guaranteed to convert induced s-wave pairing into effec-
tive p + ip pairing, constructing effective p + ip pairing
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FIG. 2. Optimal parameters for producing a large pairing
gap in a Rashba coupled surface via the proximity effect as
a function of Rashba coupling strenght UR. Panels a.–d. re-

spectively show the optimal excitation gap ∆
(opt)
FS , Zeeman

splitting V
(opt)
z , quasi-particle residue Z(opt), and surface-

superconductor coupling energy γ(opt). All energies are mea-
sured with respect to the pairing amplitude ∆0 of the bulk
superconductor.

in a Rashba coupled 2DEG requires a careful balance of
spin-orbit coupling to create helical winding and magne-
tization Vz to remove one of the helicities. In particular,
the Zeeman gap at k = 0 is given by |Ṽz − ∆̃|, and must
not close. Consequently, in order to engineer a topo-
logical superconductor, one must arrange for the surface
magnetization to exceed the induced pairing amplitude:
ṼZ > ∆̃. Since Ṽz = ZΓVz, and ∆̃ = (1 − ZΓ)∆0, one
immediately sees that a balance must be struck to en-
sure that the bulk–surface interface is sufficiently strong
to induce pairing, but not so strong that it destroys the
magnetization gap at k = 0.
We now turn to a quantitative analysis of the effect of

proximity induced pairing in a Rashba 2DEG. The goal
will be to find the optimum set of parameters in order
to achieve a large p-wave superconducting gap on the
Rashba coupled surface. There are two excitation gaps,
the magnetization gap, |Ṽz−∆̃| = |ZΓVz−(1−ZΓ)∆0|, at
k = 0 and the p-wave pairing gap ∆̃FS = (1−ZΓ)∆FS at
the Fermi-surface. The smaller of these two energy scales
sets the minimum excitation energy gap. The former
decreases with ZΓ, whereas the latter increases with ZΓ,
indicating that the optimal ZΓ is:

Z(opt) =
∆FS +∆0

Vz +∆FS +∆0
(18)

which corresponds to an optimal excitation gap of:

∆
(opt)
FS =

Vz
Vz +∆FS +∆0

∆FS (19)

where ∆FS is a function of UR, Vz, and ∆0 given by Eq.
9.

Figure 2a. shows the optimum achievable value of
Egap as a function of Rashba coupling strength UR, and
Figure 2b–d. show the corresponding optimal values of
Vz, ZΓ, and γ. In practice, it will likely not be possi-
ble to fine-tune the interface transparency, γ, between
the Rashba surface and the adjacent superconducting
layer, or the induced magnetization Vz . Rather, these
parameters will be determined by the detailed structure
of the surface-superconductor and surface-magnetic in-
sulator interfaces. Therefore, one should view Figure 2a.
as an upper bound on the practically achievable induced
pairing gap. Even so, the general trend is clear: for small

Rashba splitting, UR, only a small fraction of the bulk
pairing gap ∆0 is induced on the surface, whereas for

large UR a substantial fraction of ∆0 is achievable.
This analysis highlights one of the potentially serious

drawbacks of using materials with weak spin-orbit cou-
pling. In the limiting case of small UR, it is advantageous
to arrange ZΓ ≃ 1/2 , large ∆0 ≫ UR, and Vz = ∆0, in
which case:

lim
UR → 0

Egap .

√
UR∆0

2
(20)

In particular for semiconductor materials in which typi-
cal Rashba couplings are typically of the order of 0.2 −
0.8K12), even after carefully optimizing Vz , γ, and ∆0

only a p-wave pairing gap on the order of 0.1 − 0.4K
is achievable. Such small excitation gaps would require
operating at temperatures much smaller than 0.1K in
order to avoid thermal excitations, which could pose dif-
ficulties for experiments. Furthermore, as will be shown
in more detail below, small UR puts stringent restrictions
on sample purity, as even small amounts of disorder will
further suppress induced pairing. In contrast, the situa-
tion is much more hopefull for materials with strong spin
orbit couplings. For strong Rashba couplings, one induce
nearly the full superconducting gap, ∆0, given sufficiently
transparent superconductor-surface interfaces.

B. Surface Resonances

So far, we have been implicitly considering an artifi-
cial interface between a 2D material (either a TI surface
or Rashba 2DEG) and a different superconducting mate-
rial. A potentially simpler alternative for realizing p+ ip
superconductivity, is to use the naturally occuring in-
terface between a bulk-superconductor and its surface.
This approach would eliminate the need to find compat-
ible materials to engineer an appropriately transparent
interface.
The formalism developed above applies equally well

in this case. Namely, if electronic states on the surface
of a bulk metal occur at the same energy and momen-
tum as bulk states, then the surface states decay into the
bulk leaving behind broadened resonances. If the bulk
becomes a superconductor, the surface-bulk coupling in-
duces superconductivity on the surface. Denoting the
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width of the surface-resonance (in the absence of bulk-
superconductivity) by γ, the induced superconductivity
is again described by Eqs. 14 and 15. It is also pos-
sible that surface states coexist at the same energy as
bulk bands, but reside in regions of the Brillouin zone
for which there are no bulk-states. In this case there is
no direct tunneling from the surface into the bulk, and
the surface state would remain sharp state rather than
broadening into a resonance. Consequently to obtain su-
perconductivity on the surface, one would need to rely on
some scattering process (e.g. phonon, electron-electron,
or disorder scattering) to transfer electrons between sur-
face and bulk states.

For natural superconducting metals with strong spin-
orbit coupling (such as Pb), the electrostatic potential
created by the material’s surface interupts the bulk inver-
sion symmetry, giving rise to a surface Rashba coupling.
If the surface Hamiltonian has appropriate combinations
of Rashba spin-orbit coupling and magnetization (as de-
scribed above), then the induced surface superconductiv-
ity will again have effective p+ ip pairing symmetry.

A related approach is possible for topological insulator
materials, where it has been demonstrated22 that doping
can produce superconductivity with transition tempera-
tures TC ∼ 0.15 − 5.5K. Furthermore, it is common23

that samples of materials such as Bi2Se3 that are ex-
pected to be bulk-insulators, are actually metallic. In
these “topological metals”, the topologically protected
surface states that would appear for a bulk insulator ap-
pear instead as resonances23. In fact a large amount of
experimental effort is currently focused on finding materi-
als with genuinely insulating bulks in order to investigate
surface electron transport. However, for the purpose of
engineering a p+ ip superconductor, this surface-bulk co-
existence is actually advantageous, and the combination
of bulk superconductivity and surface-bulk coupling will
result in an effective p+ ip superconductor at the surface
of a superconducting topological metal.

To examine whether p+ ip superconductors built from
surface resonances also exhibit Majorana bound states,
for example in vortex cores or at the ends of one-
dimensional magnetic domains, one can write down the
T –matrix for scattering from a vortex or domain wall
and look for poles at zero-energy. For a static vor-
tex or domain wall configuration, the T –matrix at zero-
energy is constructed from various products of surface
Green’s functions (see Eq.14) also at zero-energy. Since
ΣΓ(ω = 0) = Z(ω = 0)∆0τ1, the surface Green’s func-
tion is identical to that of an ideal p+ ip superconductor
with gap ∆ = Z∆0. Therefore surface-resonance p + ip
superconductors will exhibit zero-energy Majorana bound-
states under exactly the same conditions as the effective

p + ip superconductor discussed previously. These Ma-
jorana states are localized to the surface layer and are
protected against decaying into bulk states because of
the bulk superconducting gap.

= + Σ

>>
x xx

x

Σ = + =
x x

x
x

+...

a)

b)

FIG. 3. Panel A shows a diagrammatic representation of Eq.
23 for the disorder averaged Green’s function and self-energy
respectively. Disorder scattering is represented by dashed line
originating from an ×. For delta-function-correlated impuri-
ties only multiple scatterings from the same impurity con-
tribute. Panel B shows an example of a crossed diagram
(right) that is sub-leading in (kF ℓ)

−1 compared to the non-
crossed diagram with the same number of disorder scatterings
(left).

IV. DISORDER

In this section we show that disorder effects the in-
duced superconductivity very differently in the TI scheme
as opposed to the Rashba scheme. To model disorder, we
consider a random on-site potential

HDis =
∑

r,σ

V (r)c†r,σcr,σ (21)

that has only short-range correlations

V (r)V (r′) =W 2δ(r − r′) (22)

where W is the disorder strength and (· · ·) indicates
an average over disorder configurations. It is useful
to parameterize disorder either by the scattering time
τ ≡ 1/N(0)W 2 or the mean free path ℓ = vF τ where
vF is the Fermi velocity of the surface layer and N(0)
is the surface–density of states. Furthermore, we con-
sider moderate disorder that is too weak to induce lo-
calization, specifically that kF ℓ ≫ 1, but make no other
assumptions on disorder strength. Since non-planar dis-
order scattering diagrams are sub-leading in (kF ℓ)

−1, the
regime kF ℓ≫ 1 allows for a controlled expansion for the
disorder self-energy.

The disorder averaged self-energy and Green’s function
are related by the following set of coupled equations:

G(iω, k) =
[

G0(iω, k)
−1 − Σ(iω)

]−1

Σ(iω) =W 2τ3
∑

k

G(iω, k)τ3 (23)

where the bare (non-disordered Green’s function) G0 is
given by Eq. 14, and incorporates the proximity induced
superconductivity.



7

A. Time-Reversal Symmetry

In the subsequent discussion of disorder, the presence
or absence of time-reversal (TR) symmetry plays a key
role. We will presently show that when (TR) symme-
try is present, induced superconductivity is immune to
the presence of disorder. The proof of this principle is
most conveniently conducted in the basis of time reversed
pairs24 (see Eq. 1), in which the Hamiltonian for the
disordered system with time-reversal symmetric s-wave
pairing induced by proximity effect can be written as the
following block-matrix:

H =

(

H0 + V ∆I

∆I −(H0 + V )

)

(24)

Here H0 is the Hamiltonian of the (clean) surface, V is
random on-site disorder, ∆ is the induced pairing am-
plitude, I is the N × N identity matrix where N is
the number of degrees of freedom in the system. Since
∆I commutes with H0 and V , the eigenvalue problem
det (H − ε) = 0 can be simplified:

0 = det (H − ε) = det
(

ε2I− (H0 + V )2 −∆2
)

(25)

Denoting the eigenvalues of H0 + V by {ε̃n}, the eigen-

values of H are ±Ẽn where:

Ẽn =
√

ε̃2n +∆2 (26)

which is bounded below by ∆, independent of the par-
ticular disorder configuration.
These manipulations show that, so long as the 2D sur-

face Hamiltonian is TR invariant, disorder cannot reduce
the superconducting gap. As an aside, it is useful to note
that the above considerations do not depend on V being
spin-independent so long as it preserves TRI. In partic-
ular strong spin-orbit impurity scattering will also not
reduce the superconducting gap.

B. Disordered Topological Insulators

Since the TI Hamiltonian (Eq. 3) is TR invariant, from
the previous discussion we know that the pairing gap can-
not be diminished by disorder. As a simple demonstra-
tion of this general principle, one can explicitly calculate
the disorder averaged Green’s function and self-energy
(see Eq. 23).
In typical experimental situations, the TI surface

states are intrinsically doped away from the surface Dirac
point leaving an appreciable density of states at the Fermi
surface23. In this case, µ≫ ∆, and one finds:

Σ(iω) =
τ−1

√
∆2 + ω2

(iω −∆τ1) (27)

where τ−1 = πN(0)W 2 is a measure of the disorder
strength. Incorporating this disorder self-energy into the

Green’s function results in a disorder averaged Green’s
function of the same form as the bare Green’s function
G0, except with a reduced quasi-particle weight Z due to
disorder scattering:

G(iω) = Z

iω − ZHTI −∆τ1

Z(iω) =

[

1 +
τ−1

√
∆2 + ω2

]−1

(µ ≫ ∆) (28)

For chemical potential tuned to the Dirac point, the re-
sults are similar except that the quasi-particle weight
takes a different form:

Z(iω) =

[

1 +
W 2

2πv2
ln

(

Λ2

∆2 + ω2

)]−1

(µ = 0) (29)

In either case, inspection of Eq. 28 reveals that the min-
imum excitation gap, ∆, is unchanged by disorder scat-
tering, in agreement with the general principles outlined
above for TR invariant systems.

C. Disordered Rashba 2DEGs

In contrast to the TI case, creating a topological su-
perconductor from a Rashba 2DEG requires explicitly
breaking TR symmetry by inducing surface magnetiza-
tion Vz . Without TR symmetry, the general arguments
outlined above do not apply, and the induced pairing
is vulnerable to disorder scattering. The analysis be-
low demonstrates that the pair-breaking effects of disor-
der scattering are dramatically enhanced by the singular
density of states at the superconducting gap edge, and
furthermore that these effects are especially pronounced
in systems with weak Rashba coupling. Since the pairing
on the surface is induced by the bulk, it never vanishes.
However, we shall see that pairing can be greatly reduced
by even a small amount of disorder unless UR ≫ Vz. In
fact, when UR ≪ Vz, the suppression due to disorder is
more severe than for conventional superconductors with
magnetic impurities for which the superconducting gap
typically closes for ξ0/ℓ ∼ 1. We will see, for UR ≪ Vz ,
that disorder strongly suppresses the induced supercon-
ductivity even for very weak disorder.
For superconductivity induced by proximity effect, the

surface state wave-functions are localized to the surface,
but extend into the superconductor with characteris-
tic lengthscale ξL. Therefore electrons residing in the
Rashba material are scattered not only by impurities in
the Rashba material and interface roughness, but also by
impurities in the superconductor. For example, even if
one starts with a pristine semiconductor structure (such
as a self-assembled nanowire), if superconductivity is in-
duced by proximity to superconductor with some impu-
rities then the mean-free path will be set by the super-
conductor rather than the semiconductor.
To better understand the distinction between impu-

rities residing in the Rashba coupled surface and those
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in the superconductor, we consider each separately. To
treat either case we find that it is sufficient to replace the
bare disorder scattering time τ−1 = πN(0)W 2 (where
N(0) is the surface density of states) by an effective dis-
order scattering time

(

τ−1
)

eff
=

{

Z2
Γτ

−1 ; Surface Disorder
(1− ZΓ)

2τ−1 ; Bulk Disorder
(30)

An explicit derivation of these expressions is given in Ap-
pendix A, but the effective scattering time can be under-
stood more simply as follows. The fraction of the surface–
resonance wave–function which lies on the surface is ZΓ

whereas the fraction residing in the bulk superconductor
is (1 − ZΓ). Therefore, the disorder scattering matrix
elements should be weighted by either ZΓ or (1 − ZΓ)
for surface and bulk disorder respectively. Eq. 30 can
then be simply understood by noting that the scattering
time is proportional to the square of the disorder matrix
element. By inspection, we see that effects of surface
disorder are suppressed in the limit of strong surface–
bulk tunneling, whereas the effects of bulk disorder are
suppressed in the limit of weak tunneling. Using this ef-
fective scattering time, we now turn to the problem of
solving the self-consistency relations given in Eq. 23 us-
ing the surface Green’s function in Eq. 14 which includes
the effects of proximity to the bulk superconductor.
For ordinary disordered superconductors, the strength

of disorder is conveniently parametrized by the ratio of
the coherence length ξ0 = πvF /∆ to the mean free path
ℓ = vF τ . For the proximity induced superconductivity
these parameters are renormalized by surface–bulk cou-
pling and also depend on the type of disorder (surface
or bulk). We will see that the effects of disorder de-

pends on disorder strength only through the ratio ξ̃0/ℓeff,

where ξ̃0 = πṽF /∆̃ is the surface coherence length and
ℓeff = ṽF τeff is the effective mean-free path for disorder
electrons. This effective ratio can be written in terms
of the intrinsic ratio of the intrinsic mean-free path, ℓ
(un-renormalized by proximity induced superconductiv-
ity) and coherence length of the bulk superconductor, ξ0,
as follows:

ξ̃0

ℓeff
=











Z2
Γ

1− ZΓ

ξ0
ℓ

; Surface Disorder

(1− ZΓ)
ξ0
ℓ

; Bulk Disorder

(31)

By working in terms of this effective ratio, it is possible
to treat both the cases of surface–impurities and bulk–
impurties on equal footing.

1. Analytic Expressions for Weak Disorder

For weak disorder (ξ̃0/ℓeff ≪ 1), it is sufficient to eval-
uate the self-energy to lowest order in disorder scattering
strength, corresponding to the first diagram for the self-

energy shown in the top line of Fig. 3:

Σ(1)(iω) =W 2τ3
∑

k

G̃0(iω, k)τ3 (32)

Here we emphasize that the value ofW 2 should be appro-
priately renormalized according to Eq. 30 depending on
whether the scattering considered occurs in the surface
or in the bulk superconductor. For ∆̃FS ≪ Ṽz, the dom-
inant contributions to the k-integral come from near the
Fermi-surface. Linearizing the Bugoliuobov dispersion
about the Fermi-surface, and performing the integration
yields:

ℑmΣ(1)(iω) ≃ −xω
[

1

2
+ 2

Ṽz

∆̃2
BG

σz

(

∆̃τ1 − ŨRτ3

)

]

(33)

ℜeΣ(1)(iω) ≃ x

∆̃2
BG

[

(

ω2 − ∆̃2
)

ŨRτ3 (34)

+ Ṽz

(

∆̃2 + ω2
)

σz + 2Ũ2
R∆̃τ1

]

(35)

x =
πN(0)W 2

√

∆̃2
FS + ω2

≡ τ−1
eff

√

∆̃2
FS + ω2

(36)

where τ−1
eff is a measure of the disorder strength, given

by Eq. 30.
This self-energy alters the spectrum of the disorder av-

eraged BdG Hamiltonian. For weak disorder, we expect
the gap at the Fermi surface to change only slightly. To
find the correction to ∆FS due to disorder, one needs
to analytically continue the self-energy to real frequency,
and then look for a pole in the disorder averaged Green’s
function at ω = ∆FS − δω, i.e. to solve

0 = det
[

∆̃FS − δ̃ω −H(kF )− Σ(1)
(

ω = ∆̃FS − δω
)]

(37)
to leading order in δω one finds:

δω = Ψ†
0Σ

(1)
(

ω = ∆̃FS − δω
)

Ψ0 (38)

where Ψ0 =
(

u↑ u↓ v↓ −v↑
)T

is the eigenvector of

H(kF ) with energy ∆̃FS .

In the limiting case where Ṽz ≫ ŨR, Ψ0 ≃
1√
2

(

0 1 0 1
)T

, and one finds

δω ≃ ∆̃2

4Vz
x ≃ ∆̃2τ−1

eff

4Ṽz
√

2∆̃FSδω
(39)

Using ∆FS ≃ ∆

√

UR

Vz
, and solving for δω gives the fol-

lowing expression for the disorder renormalized pairing
gap at the Fermi-surface:

∆̃FS(τ
−1
eff ) ≃ ∆̃

√

ŨR

Ṽz



1−
(

Ṽz

4
√
2ŨR

ξ̃0

ℓeff

)2/3


 (Ṽz ≫ ŨR)

(40)
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The unusual non-analytic dependence on disorder
strength stems from the singular behavior of x as ω →
∆̃FS , which in turn reflects the Van-Hove singularity in
the superconducting density of states at the gap edge.
This Van-Hove singularity enhances the effective disorder
strength x, and in particular leads to an infinite slope of
∆̃FS(τ

−1
eff ) as τ−1

eff → 0.

In the opposite limit, where ŨR ≫ Ṽz, Ψ0 ≃
1
2

(

1 −1 1 −1
)T

and consequently the weak disorder
correction to the gap energy vanishes to leading order.
Including sub-leading contributions in ŨR/Ṽz results in:

∆̃FS(τ
−1
eff ) ≃ ∆̃



1−
(

18√
2

Ṽ 2
z

Ũ2
R

ξ̃0

ℓeff

)2/3


 (ŨR ≫ Ṽ z)

(41)

2. Numerical Solution for Moderate Disorder

For stronger disorder, Eq. 23 must be solved self-
consistently, which can be done numerically. In order
to regulate the numerical integrals in the UV we replace
the continuum dispersion with a periodic one of the form
ξk = −2t cos(k) which naturally introduces a finite band-
width. The top and bottom panels of Figure 4 show the
dependence of the induced superconducting gap on dis-
order strength for ŨR & Ṽz and Ṽz ≫ ŨR respectively.

For very weak disorder, ξ̃0 ≪ ℓeff, the excitation gap
exhibits non-analytic infinite initial slope predicted by
Equations 40 and 41. Stronger disorder never fully closes
the superconducting gap, however for Ṽz ≫ ŨR, the gap
is largely suppressed even when ξ̃0 is only a few percent
of ℓeff. In most cases, Egap is suppressed smoothly with

increasing disorder strength, however, the Egap/∆̃ curves

for ŨR ≃ Ṽz have a knee-shaped kink at ξ̃0/ℓeff ≃ 0.07
after which Egap drops abruptly. This knee occurs when
disorder reduces of the magnetization gap at k = 0 below
the pairing gap ∆̃FS at the Fermi-surface.
These results can be readily applied both to the case

where disorder scattering is due to the adjacent super-
conductor, and when disorder scattering occurs in the
surface material, by choosing the form for ξ̃0/ℓeff from
Eq. 31. It is possible to reduce the sensitivity to bulk–
disorder by reducing the surface–bulk tunneling strength,
Γ. However, reducing Γ will also cause a smaller prox-
imity induced pairing gap ∆̃. Similarly, it is possible to
reduce the sensitivity to surface disorder by increasing
the surface–bulk tunneling rate, though, doing so will be
detrimental if the surface layer is cleaner than the bulk
superconductor.
Here we see a second drawback of using materials with

low Rashba coupling: in addition to limiting the size of
the induced pairing gap in the absence of disorder, small
Rashba coupling renders the topological superconductor
susceptible even to small amounts of disorder (ξ̃0/ℓeff ≪
1). While bulk semiconductors are typically cleaner than
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FIG. 4. The excitation gap Egap as a function of coher-

ence length ξ̃0 = πvF /∆̃ to the effective mean free path
ℓeff = ṽF τ

−1
eff . Egap is obtained from numerically solving

Eq. 23 for a Rashba 2DEG with induced magnetization

Ṽz and superconductivity ∆̃. Here (̃· · ·) indicates renormal-
ization due to the proximity effect. The effective disorder
strength has a different form depending on whether disorder
scattering occurs predominantly in the surface-layer or in the
bulk superconductor. Both cases can be treated by choos-
ing the appropriate expression for ξ̃0/ℓeff from Eq. 31. The

parameters used in this simulation were t = 1, Ṽz = 0.1,
∆̃ = 0.01, and various values of ŨR. The top panel shows
curves for Ṽz ≫ ŨR, the regime appropriate for semiconduc-
tor materials, whereas the bottom panel shows curves in the
ŨR & Ṽz regime which could be achieved by using metallic
thin films with stronger spin-orbit coupling. The magnetiza-
tion Ṽz breaks time reversal symmetry rendering the induced
pairing susceptible to disorder. For Ṽz ≫ ŨR the gap is al-
ready strongly supressed when ξ̃0 is only a few percent of ℓeff.

metallic thin films, their extreme sensitivity to disorder
will likely be problematic. In particular, great care would
need to be taken to limit interfacial roughness between
the semiconductor and adjacent bulk superconductor and
magnetic insulating film.

Before concluding, we remark on two possible exten-
sions of this analysis. Firstly, the effects of disorder were
treated for fully two-dimensional structures, whereas Ma-
jorana fermions emerge in one-dimensional (or quasi-one-
dimensional) geometries. The effects of disorder in quasi-
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one-dimensional Rashba coupled structures were ana-
lyzed numerically in Ref. 13 and 14, and give similar
results to those given above for two-dimensions. Finally,
while this analysis has been carried out for the case of
Rashba-type spin-orbit coupling, we expect similar re-
sults for systems in which both Rashba and Dresselhaus-
type spin-orbit couplings are present. The relevant factor
in either case is the presence of magnetization Vz which
breaks time-reversal symmetry and renders the induced
superconductivity susceptible to disorder regardless of
spin-orbit type.

V. DISCUSSION AND CONCLUSION

In conclusion, we have compared the prospects for con-
structing an effective p+ ip superconductor from TI and
Rashba 2DEG based materials. We have focused on tech-
nical limitations to inducing superconductivity in these
materials, and examined the effects of disorder on the
induced superconductivity. In both regards, the TI ma-
terials offer natural advantages. In particular, the effec-
tive p + ip nature of induced superconductivity in a TI
surface is guaranteed by the intrinsic spin-helicity of the
bare TI surface states. As a consequence, there are no
fundamental limitations for inducing superconductivity
by the proximity effect. Furthermore, since time-reversal
symmetry remains intact in the TI surface, the induced
superconductivity is guaranteed, based on general prin-
ciples, to be immune to disorder.
While TI surface states offer certain advantages, TI

materials are relatively new and many materials chal-
lenges remain. It may therefore be desireable to construct
a p+ip superconductor from more conventional materials
with strong Rashba spin-orbit coupling. Here one needs
to induce superconductivity by proximity to a conven-
tional superconductor, and to induce magnetization for
example by proximity to a ferromagnetic insulator. In
this case one must strike a comparatively delicate bal-
ance of spin-orbit coupling and induced magnetization
to ensure that the resulting superconductor is effectively
p+ ip12.
In this regard, materials with small Rashba coupling

strengths face serious difficulties: 1) the size of the in-
duced superconducting gap is limited by the size of the
Rashba coupling and 2) for weak Rashba coupling the
induced superconductivity is quite fragile and is strongly
suppressed even by small amounts of disorder. Our anal-
ysis indicates that an alternative class of materials with
stronger spin-orbit coupling should be sought. For exam-
ple, metallic thin films with heavy atomic elements can
give orders of magnitude larger spin-orbit couplings than
the semiconductor materials that have so far dominated
the theoretical discussion.
Constructing a p + ip superconductor from a Rashba

2DEG in this way requires engineering a complicated set
of material interfaces between the Rashba 2DEG, super-
conductor, ferromagnetic insulator, and gate electrodes.

However, a fortuitous choice of material could obviate
the need for the superconducting and ferromagnetic in-
terfaces. For example, one could try to find bulk metals
with strong bulk spin-orbit coupling that naturally super-
conduct and possess surface resonances. In such a sce-
nario, the coupling between surface-and bulk will then
automatically induce superconductivity on the surface,
eliminating the need to build an artificial interface for this
purpose. A further simplification is possible the metallic
surface which has the appropriate symmetry such that
both Rashba and Dresselhaus type spin-orbit coupling is
present12. In this case, one could induce magnetization
by applying an external field rather than by depositing
a ferromagnetic insulator12. If a naturally superconduct-
ing material can be found with the appropriate spin-orbit
coupled surface resonances, this approach might offer the
simplest route to an artificial p+ ip superconductor and
Majorana fermions.
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Appendix A: Surface vs. Bulk Disorder

In the main text, we argued on conceptual grounds,
that the above analysis for disorder is easily modified
to separately treat the two distinct cases where disorder
scattering occurs predominantly in the surface layer or
the adjacent bulk superconductor, by replacing the bare
disorder scattering time by an effective scattering time
weighted by Z2

Γ or (1 − ZΓ)
2 respectively. Here we con-

sider each case separately and provide an explicit demon-
stration of this claim.

1. Surface Disorder

Consider first the case of a pristine superconductor
so that impurity scattering occurs only in the surface
layer. In this case the disorder scattering matrix ele-
ments are proportional to the fraction of the electron
wave-functions that resides on the surface. More pre-
cisely, we can calculate self-energy from disorder scatter-
ing in Eq. 23 using the surface Green’s function in Eq.
14. Equivalently, in Fig. 3, one should take single solid
lines to be the surface Green’s function in Eq. 14. By
inspection, we see that the effective disorder matrix ele-
ments are reduced by a factor of ZΓ < 1. Therefore, the
disorder self-energy for surface-disorder is suppressed by
a factor of Z2

Γ.
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The analysis in the main text can be easily modified
to treat the case where disorder occurs predominantly in
the surface layer by replacing τ1 for the surface (without
surface–bulk tunneling) by the effective ratio:

τ−1
eff ≡ Z2

Γτ
−1 (A1)

and keeping the same ratio UR/Vz (since this ratio is
unaffected by the surface–bulk coupling).

2. Bulk Disorder

When the dominant source of disorder is in the ad-
jacent bulk–superconductor, the surface electrons must
first tunnel into the bulk in order to scatter from the
disorder potential. This leads to an renormalized effec-
tive disorder strength which is different than the bulk
value. To demonstrate this, we focus on the limit where
surface–bulk tunneling is much stronger than bulk disor-
der (γ ≪ W ), in which case there is typically no more
than one disorder scattering event per surface–bulk tun-
neling event.
In this limit, it suffices to compute Eq. 23 using the

surface-Green’s function in Eq. 14, with an effective dis-
order vertex is given by the diagram shown in Fig. 5. In
this figure the circled Γ indicates surface–bulk tunneling
and the dashed line indicates scattering from disorder.
Written in terms of the bulk Green’s functions the effec-
tive disorder vertex for surface states is:

Ṽ
(

iω,k‖,Q
)

τ3

= V |Γ|2
∑

kz

1

iω − ξ(kz,k‖)τ3 −∆τ1
τ3

1

iω − ξk+Qτ3 −∆τ1

(A2)

We are interested primarily in low-frequency behavior for
which the external momenta {k‖,k‖ + Q‖} lie near the
surface Fermi-level. For a givenQ‖ connecting two points
on the surface Fermi-surface, there are two values of Qz

for which k and k+Q also lie on the surface. Since the
dominant contributions are for momenta lying near the

Fermi-surface, we linearize the bulk-dispersion in the z-
direction, and denote the tunneling density of states by

NB(0) ≡
(

∂εB(k)

∂kz

)−1

. With these approximations, the

effective disorder potential for surface electrons is inde-
pendent of momentum transfer Q‖:

Ṽ (iω) ≃ πNB(0)|Γ|2√
∆2 + ω2

(A3)

The disorder self-energy given by the diagram in Fig.
3a. can then be computed using the surface Green’s func-
tion from Eq.23 and the effective disorder strength in Eq.
A3. When this self-energy is incorporated into the sur-
face Green’s function, it comes with a factor of (ZΓ)

2
.

Since we are interested in the behavior for ω ≪ ∆, we
may neglect the frequency dependence of various quan-
tities, and we find that the effective disorder scattering
time for surface-electrons is weighted (compared to the
bulk quantity) by a factor:

(

τ−1
)

eff
=

(

πNB(0)|Γ|2
∆+ πNB(0)|Γ|2

)2
(

τ−1
)

bulk

= (1− ZΓ)
2
(

τ−1
)

bulk
(A4)

For a transparent surface–bulk interface (πNB(0)|Γ|2 ≫
∆), this factor approaches unity, justifying the claim
made in the main text.

Γ Γ

x

k+Q(k  ,k )z

Q

FIG. 5. Effective disorder vertex for surface–electrons in
the case where disorder scattering occurs predominantly in
the adjacent bulk–superconductor. The solid lines are bulk
Green’s functions, circled Γs indicate surface–bulk tunneling
events, and the dashed line ending in × indicates disorder
scattering that transfers momentum Q
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