
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anisotropic quasiparticle lifetimes in Fe-based
superconductors

A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry, H-P. Cheng, and P. J. Hirschfeld
Phys. Rev. B 83, 184516 — Published 23 May 2011

DOI: 10.1103/PhysRevB.83.184516

http://dx.doi.org/10.1103/PhysRevB.83.184516


BB11450

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Anisotropic quasiparticle lifetimes in Fe-based superconductors

A.F. Kemper,1, 2, 3, ∗ M.M. Korshunov,3,4, † T.P. Devereaux,1, 2 J.N. Fry,3 H-P. Cheng,3 and P.J. Hirschfeld3

1Stanford Institute for Materials and Energy Science,

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
2Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA

3Department of Physics, University of Florida, Gainesville, Florida 32611, USA
4L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia

(Dated: March 29, 2011)

We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnic-
tides within a 5-orbital model with onsite interactions. The leading contribution to the scattering
rate is calculated from the second-order diagrams with the polarization operator calculated in the
random phase approximation. We find one-particle scattering rates which are highly anisotropic
on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the
multi-orbital composition of each Fermi pocket. This fact combined with the anisotropy of the
effective mass and Fermi velocity, produce disparity between electrons and holes in conductivity,
Hall coefficient, and Raman initial slope in qualitative agreement with experimental data.

PACS numbers:

I. INTRODUCTION

The presence of several electronic orbitals in bands near the Fermi level of a metallic system provides both a
rich set of properties and complications in revealing the underlying physics. Some of the most widely discussed
examples of such systems are the recently discovered Fe-based superconductors with Tc up to 55K1,2 where multi-
orbital effects cannot be disregarded. In these quasi-two-dimensional compounds, Fe d-orbitals form a Fermi surface
(FS) consisting of nearly compensated small electron and hole pockets.3,4 Since the sizes of the hole and electron FS
pockets are roughly identical in the undoped system, one might expect a vanishingly small Hall coefficient and a roughly
electron-hole symmetric doping dependence. However, in the intensively studied 122 systems (Ba(Fe1−xCox)2As2,
Ba(Fe1−xNix)2As2) and 1111 systems (LaFeAsO1−xFx and SmFeAsO1−xFx), Hall effect measurements find that
transport is dominated by the electrons even for the parent compounds5–10. In the compensated case, this result
can be explained only if the mobilities of holes and electrons are remarkably different which suggests an order of
magnitude disparity in relaxation times, τe ≫ τh.

6 A similar large asymmetry of electronic and hole scattering rates
has also been suggested in the analysis of the electronic Raman measurements which can selectively probe different
parts of the Brillouin zone (BZ) using various polarizations11. Optical conductivity as measured by THz spectrometry
provides and estimate of τe ≈ 4τh,

12 and reflectivity measurements also suggest the presence of two distinct scattering
rates with a large disparity between them.13–15 Theoretical analysis of the normal state resistivity ρ in the two-band
model for Ba1−xKxFe2As2 shows that the experimental temperature dependence ρ(T ) can be reproduced only if one
assumes order of magnitude larger scattering in the hole band16. Finally, quantum oscillation experiments on P-doped
systems indicate that the electron pockets have a longer mean free path17–19. It is clearly important to understand
whether this conjectured dichotomy between electron and hole transport properties is real, and if it is universal to
the Fe-based superconductors.
There are two main sources for quasiparticle decay: i) electron-electron inelastic processes and ii) impurity scatter-

ing. We will concentrate on the first case and mention impurity scattering only briefly. Experimentally, the apparent
disparity in mobilities for holes and electrons becomes smaller as one dopes away from the magnetically ordered
parent compounds6. This suggests that the spin fluctuations which also decrease upon doping play an important role
in the scattering rate asymmetry. Spin fluctuations due to the nearby spin-density wave (SDW) state have also been
considered as the most probable source of superconducting pairing.20–22

In this paper we study the inelastic quasiparticle scattering in Fe-based superconductors by calculating the scattering
rate on different FS sheets within the generalized spin-fluctuation theory. The self-energy is approximated via the
second-order diagrams with the polarization operator treated in the random phase approximation (RPA). We show
that there are two ingredients which provide strong anisotropy of the scattering rate.
The most important one is that one-particle scattering is strongly affected by the orbital character of the initial

and final states, in analogy to orbital pair scattering effects which have been discussed recently,23,24 leading to a
momentum dependence of the effective interaction. Secondly, the polarization bubble itself is moment dependent.
The combination results in a highly anisotropic scattering rate on the electron Fermi surface sheets, including some
very long lived quasiparticle states. Although our results indicate that on the average τe is of the same order as τh, the
transport properties still may be dominated by small parts of the electron pockets, where the lifetimes are long and the
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Fermi velocities are high. This combination causes a disparity between holes and electrons in the transport properties
(conductivity and Hall coefficient). Furthermore, analysis of the Raman response shows that the quasiparticle lifetime
effects can be clearly observed in both the B1g and B2g polarizations.
A calculation of the lifetime on Fermi surface was previously reported by Onari et al.25, where the scattering due to

spin fluctuations was considered within the fluctuation-exchange approximation (FLEX). Our results reveal a similar
momentum dependence of the lifetimes, but exhibit a much larger anisotropy due to the absence of self-consistency.

II. MODEL

We will use the 5-orbital tight-binding model of Graser et al.22 which is based on the ab initio band structure
calculations26 within the local density approximation (LDA) for the prototypical iron pnictide, LaOFeAs. Our inter-
action Hamiltonian is

H = H0 + U
∑

i,m

nim↑nim↓ + U ′
∑

i,m<n

ninnim

+J
∑

i,m<n

∑

σ,σ′

c†inσc
†
imσ′cinσ′cimσ

+J ′
∑

i,m 6=n

c†in↑c
†
in↓cim↓cim↑, (1)

where nim = nim↑ + nim↓, nimσ = c†imσcimσ, with i, m, and σ denoting site, orbital, and spin indices, respectively.
The on-site intra- and inter-orbital Hubbard repulsions (U and U ′), Hund’s rule coupling (J), and the pair hopping
(J ′) correspond to the notations of Kuroki et al.21 Below we will consider cases which obey spin-rotation invariance
(SRI) through the relations U ′ = U − 2J and J ′ = J and those which do not. The kinetic energy H0 includes the
chemical potential µ and is described by a tight-binding model spanned by five Fe d-orbitals (dxz , dyz , dx2−y2 , dxy ,
d3z2−r2 )22. The dxz , dyz and dxy bands dominate near Fermi level, as seen in Fig. 1 where we show the Fermi surface
(FS) which arises from H0 in the one-Fe Brillouin zone. For the electron- and undoped systems the FS consists of
two small hole pockets α1 and α2 around the Γ = (0, 0) point, and two small electron pockets β1 and β2 around the
X = (π, 0) and Y = (0, π) points, respectively. Upon hole doping a new hole FS pocket, γ, emerges around (π, π)
point, which has been shown to strongly affect the pairing state24,27.

III. METHOD

The leading non-vanishing contribution to the quasiparticle scattering rate 1/τ comes from the imaginary part of
the second-order self-energy diagram (Im Σ) with the polarization bubble (see Fig. 2). To take scattering from spin
fluctuations into account we renormalize the bubble within the random phase approximation (RPA). Note that second
order diagrams with crossing interaction lines are not included in Fig. 2. We have chosen to work in this approximation
to preserve consistency with calculations of the spin fluctuation pairing vertex22. The bubble then represents the RPA
susceptibility which in the multi-orbital system is χvu

wz(q, ωq) with w, z, v, u being the orbital indices, and q and ωq

are the momentum and frequency, respectively. The same susceptibility was calculated in Ref. 22 and was shown to
produce superconductivity with an A1g order parameter symmetry, in accord with several experiments28 and other
spin fluctuation calculations21,24,27,29. Here and below the orbital (band) indices are denoted by Latin (Greek) letters.

Since we focus on the lifetime effects, we consider only Im Σ, neglecting the real part of the self-energy Re Σ.
The renormalization of the band structure due to the real part of the self-energy has been discussed in some detail
in Refs. 30,31 and is not considered in the present study. We note that our calculations are based on the LDA
band structure which already contains important Hartree corrections and agrees fairly well with quantum oscillation
experiments17–19.
There are important consequences of the multi-orbital nature of the system which deserve comment. First, the

single-particle noninteracting Green function is diagonal in band space but not in orbital space. The orbital matrix

elements an,λk , which describe the transformation from one space to another are given by cknσ =
∑

λ

an,λk dkλσ, where

dkλσ is the annihilation operator for a particle with band index λ, momentum k and energy ελk. Secondly, the
interactions in Hamiltonian (1) have a complicated orbital structure; to compactify the expressions we define the local

matrix interaction in orbital space, Uwz
nr c

†
iwσ1

c†irσ2
cizσ3

cinσ4
, which accounts for all the quartic terms.
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FIG. 1: (Color online) Fermi surface for electron doped (doping x = 0.03, left) and hole doped (doping x = −0.08, right)
systems calculated within the 5-orbital model22.

The noninteracting part of the Hamiltonian, H0, is a complex matrix22 which in general has complex eigenvectors

an,λk , although the eigenvalues ελk are real. In order to use a simple form of the spectral representation of the
Green function below, we choose a gauge in which the Hamiltonian is real by performing a unitary transformation

H̃0 = φ̂−1Ĥ0φ̂, where φ̂ is the diagonal matrix φ̂ = diag (i, i, 1, 1, 1). The interaction part of the Hamiltonian (1) must

then also be rotated by φ̂. Having completed the rotation, the eigenvectors and interactions are now real, and after
calculating the diagram in Fig. 2 we arrive at the multi-band extension of the standard zero-temperature expressions
for the self-energy:

Im Σn̄n̄′(k, ω) =
∑

q,λ

∑

w̄,z̄,ū,v̄,r̄,s̄

U w̄z̄
n̄r̄ U

ūv̄
s̄n̄′a

r,λ
k−qa

s,λ
k−q (2)

× Im χv̄ū
w̄z̄(q, ω − ελk−q)

[

Θ
(

ελk−q

)

−Θ
(

ελk−q − ω
)]

.

For simplicity, we have introduced the notation s̄ = (s, σs), where s and σs are the orbital and spin index, respectively.
The initial and final spins σn and σn′ , since we are considering the paramagnetic state, have been kept equal.
The momentum dependence of the orbital matrix elements generates an effective momentum-dependent interaction

from the bare local Coulomb interactions,

V w̄z̄
n̄,λ (k− q) =

∑

r̄

U w̄z̄
n̄r̄ a

r,λ
k−q, (3)

in terms of which (2) may be written

Im Σn̄n̄′(k, ω) =
∑

q,λ

∑

w̄,z̄,ū,v̄

V w̄z̄
n̄,λ (q)V

v̄ū
n̄′,λ (q) (4)

× Im χv̄ū
w̄z̄(k− q, ω − ελq)

[

Θ
(

ελq
)

−Θ
(

ελq − ω
)]

.

The effective interaction enhances the anisotropy of the scattering rate, as will be demonstrated below.
We now discuss briefly the spin structure of the diagram in Fig. 2 which is important for the calculation of Im Σ

using Eq. (2). The susceptibility can be divided into charge and spin channels, and subsequently into singlet and
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FIG. 2: Orbital (a) and spin (b) structure of the second order diagram for the self-energy in the multi-orbital system, Σn̄n̄′(k, ω).

Interaction lines contain four orbital indices, Û = Uwz
nr . Shaded bubble denote the RPA susceptibility, χ̂(q) = χvu

wz(q, ωq).
Incoming and outgoing indices n̄ and n̄′ carry the same spin σ. χ̂1, χ̂2, and χ̂3 are the different susceptibility channels, see
Eq. (5), σ̄ = −σ.

triplet parts:

χūv̄
w̄z̄ =

1

2
(χc)uvwzδσwσz

δσuσv
+

1

6
(χs)uvwz~τσwσz

· ~τσuσv

=

{

χ̂1,2 ≡ 1
2
(χc)uvwz ±

1
6
(χs)uvwz triplet

χ̂3 ≡ 1
3
(χs)uvwz singlet

(5)

where χc and χs are the charge and spin parts of the susceptibility, respectively, and ~τσσ′ are Pauli spin matrices.
For the purpose of the self-energy calculation, the interactions can be grouped into three channels. If we denote

the incoming spins as σ1 and σ3, and the outgoing as σ2 and σ4, the channels are: (1) σ1 = σ2 = σ3 = σ4, (2)

σ1 = σ2 6= σ3 = σ4, (3) σ1 6= σ2 = σ3 6= σ4. Then the orbital part of interactions in each channel, Û1, Û2, and Û3, are:

(U1)
aa
aa = 0 (U2)

aa
aa = U (U3)

aa
aa = −U

(U1)
bb
aa = U ′ − J (U2)

bb
aa = U ′ (U3)

bb
aa = −J

(U1)
ab
ab = 0 (U2)

ab
ab = J ′ (U3)

ab
ab = −J ′

(U1)
ba
ab = J − U ′ (U2)

ba
ab = J (U3)

ba
ab = −U ′

where orbital indices a 6= b.
To combine the interactions with the susceptibility, we first note that due to the spin structure of the diagram,

the interaction channels (1)-(3) decouple. Second, we see by inspection that channels (1) and (2) couple to χ̂1,2, and
channel (3) couples to χ̂3. Thus, the self-energy will contain the following matrix structure

Û χ̂Û ∝ Û1χ̂1Û1 + Û2χ̂1Û2 + Û1χ̂2Û2 + Û2χ̂2Û1 + Û3χ̂3Û3. (6)

This expression by construction resolves the spin summation and only sums over orbital indices remain. Combining
it with the calculation of χvu

wz(q, ωq) for a given doping we use Eq. 2 to obtain Im Σnn′ straightforwardly. Then we

convert it to a band representation, Im Σλλ′ (k, ω) =
∑

n,n′

an,λk Im Σnn′(k, ω)an
′,λ′

k . For the energy range where there

are no band crossings, there is a unique band λ corresponding to the momentum k. The self-energy describes the
scattering of the particle with k back to the same momentum k, and thus back to the same band, λ′ = λ. For
the small energies around the Fermi level considered, there are no band crossings, so the major contribution to the
scattering rate in the full Green function in band space, Ĝ = (Ĝ−1

0 − Σ̂)−1, comes from diagonal, λ = λ′, matrix
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FIG. 3: (Color online) Imaginary part of the self-energy Σ at ω = 20meV along the Fermi surface for various dopings (x = −0.14,
0.04, and 0.13 from left to right) and for three sets of interaction parameters (in eV). All reported values are in meV. Note
that the color scale is different for each plot.

elements of Im Σ̂. We denote them as Σ′′
λ(k, ω) ≡ Im Σλλ(k, ω). The momentum sums in Eq. 4 were performed on a

256x256 grid with an artificial broadening in all susceptibilities of 5 meV. The undoped material has completely filled
d6 orbitals, which corresponds to ne = 6. To present our results as a function of doping, we define it as x = ne − 6.

IV. SELF-ENERGY

Because inter-band transitions are negligible in the range of energies considered here, the calculated scattering rate
follows the Fermi liquid relation Σ′′(k, ω) ∝ ω2 + π2T 2; thus, some finite frequency or temperature is needed for non-
vanishing results. Here, and below, the quantities we report will be calculated at ω = 20meV which is equivalent to
T ≈ 74K at zero frequency. We have verified numerically that our results scale as ω2, and that interband transitions
indeed do not contribute at low energies. The results below are qualitatively independent of the exact frequency
chosen, since we are below the range of frequencies where inter-band scattering plays a large role.
For several dopings and few sets of interaction parameters, the calculated scattering rate along the Fermi surface is

shown in Fig. 3. Here, U and J are in eV and were chosen to be close to the SDW-instability in the spin susceptibility.
We observe that the average scattering rate increases monotonically with doping. Fig. 4 shows the average lifetime

for holes and electrons on the Fermi surface, as well as a measure of the anisotropy, which we have defined as the
normalized standard deviation of the lifetime, ∆τ/〈τ〉, where τk = −1/2Σ′′(k, ω), scaled by the average. We see a clear
increase in the quasiparticle lifetime on all Fermi surface sheets as the system is electron doped. On the electron-doped
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FIG. 4: (Color online) Average scattering rate for holes (α1,α2,γ) and electrons (β1,β2) at ω = 20 meV and U = 1.0 eV and
J = 0.25 eV. Inset: Lifetime anisotropy ∆τ/〈τ 〉, where ∆τ (〈τ 〉) is the standard deviation (average) over the appropriate Fermi
surface.

side, the average scattering rates are essentially controlled by the degree of nesting. As more electrons are doped
into the system, the hole pockets shrink and the nesting between the α and β sheets deteriorates. The hole-doped
systems have a smaller lifetime due to the presence of the γ pocket; in addition to (π, 0) scattering between α and β
sheets, new phase space for scattering opens up and the average rate increases. Thus, one expects the resistivity due
to spin-fluctuations to increase with hole doping.
Aside from the overall change in scale, Fig. 4 shows that the ratio of electron to hole scattering rate changes as one

goes from hole to electron doping; electrons have a higher average scattering rate on the hole-doped side, and vice
versa. Although there is already an anisotropy between the hole and electron pockets in terms of lifetimes, it is not
enough to cause the experimentally observed anisotropy, as will be discussed below. With electron doping, electron
sheets β1 and β2 increase in size as well as dxy portions. Thus the number of states with long lifetime and 〈τ〉 for
electrons increases monotonically. On the other hand, hole pockets decrease in size and the phase space for scattering
decreases, while for small pockets the intraband scattering starts to dominate. The competition of these two effects
lead to saturation and then to decrease of lifetime for holes, indicating that the intraband scattering wins.
Next, we observe a clear anisotropy in the scattering rate going around the Fermi surfaces as shown in Fig. 3 and

the inset of Fig. 4. Focusing first on the undoped and electron-doped systems, the β1 sheet exhibits strong anisotropy
between the Γ − X and X − M directions. From Fig. 1, we observe that this is where the Fermi surface orbital
composition changes from dxy to dyz character. There is a strong minimum in the scattering rate in the dxy portions
of the β sheets; this is due to the above-mentioned anisotropy of the effective interaction, Eq. (3). The orbital matrix
elements tend to restrict scattering to be maximal for intra-orbital processes. For the dxy electrons, there is very little
phase space to scatter compared to other orbitals, see Fig. 1, because the spin fluctuation scattering intensity χ(q)
is peaked at q = (π, 0). Thus, they behave more like free electrons. When the system is sufficiently hole doped to
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create the (dxy ) γ hole pocket, (π,0) spin fluctuations couple them strongly to other dxy states, causing the scattering
rate there to increase. Throughout the doping range, dxz and dyz states on the α pockets scatter strongly with their
counterparts on the β pockets, and vice versa.
Finally, we discuss the interaction dependence in Fig. 3. The top row of panels shows a case where J = 0, and the

middle has finite J = 0.25. As the Hund’s rule coupling J is turned on, we observe two effects. First, the overall
scattering rate decreases (note that the color scale on each plot is different). This is due to the spin-rotation invariance
(SRI) relation U ′ = U − 2J , so that U ′ is decreased in the middle row of panels. Although new scattering channels
open up through J itself, this is more than compensated by the decrease in the inter-orbital scattering U ′. This is
confirmed by the third row in the figure, where J is finite but the system is non-SRI because U ′ = U , as in the first
row. Here, the scattering rate increases for all dopings, indicating that it is indeed the decrease in U ′ that is the cause
of the Σ′′ decrease in the 2nd row.
Secondly, we consider the effect of J on the β sheet anisotropy for the hole-doped system. When J = 0, the

minimum scattering rate occurs near the dxy sections of the Fermi surfaces for all dopings. Once J is turned on, the
anisotropy reverses, and instead a maximum scattering rate is found on the same sections. This reversal of anisotropy
can be explained by the same argument as above. When J = 0, the intra-orbital and inter-orbital scattering (U and
U ′) are the same. Thus, there is a strong scattering from both the dxz /dyz portions as well as the dxy portions of the
β sheets to the γ pocket (of dxy character). Since the dxz /dyz portions additionally scatter to the α sheets, a stronger
scattering rate occurs there. When J is finite, the effective inter-orbital scattering rate U ′ decreases through the SRI
relation. Thus, the scattering on the dxz /dyz portions is decreased while that on the dxy sections remains the same.
With sufficiently large J , the anisotropy on the β sheets is reversed. Note, however, that this argument depends on
the existence of the γ pocket. When the pocket is not present, such as in the undoped and electron doped cases, no
such reversal occurs, and thus the dxy states have the longest lifetimes for the configurations investigated.

V. COMPARISON WITH EXPERIMENT

A. Conductivity

We next consider the effect of the calculated scattering rates on the electric conductivity. The total conductivity is
the sum of the band conductivities, σ(ω) =

∑

λ

σxλ(ω),

σxλ(ω) =
e2

πh

∫

k∈kFλ

dkNkv
2
kx
τk(ω), (7)

where τk = −1/2Σ′′
λ(k, ω), kFλ is the Fermi momentum for a particular band index λ, we integrate over k‖ which

is the component of momentum along the FS, vk is the velocity, and NkFλ
= 1/|vkFλ

| is the momentum- and band-
dependent density of states (DOS) at the Fermi level. Note that we have approximated the transport lifetime with
the one-electron lifetime τk, neglecting forward scattering corrections, as well as the distinction between normal and
Umklapp processes. Such an approximation can only give the crude qualitative effect of the scattering from spin
fluctuations on the conductivity.
To analyze the doping-dependence of the conductivity, we now keep the interactions constant at values which

do not produce an RPA instability over the range of dopings considered. We evaluate the DC conductivities at
finite temperature by replacing 1/τk(ω) in Eq. (7) by 1/τk(πT ). It is important to ask which aspects of the doping
dependence of transport arise from purely kinematic effects such as carrier density and Fermi velocity, which evolve
with doping, and which arise from interactions. To illustrate this, we first plot in the top panel of Fig. 5 the separate
contributions to the total conductivity from the electron and hole sheets, with an assumed constant relaxation time.
Here the conductivities evolve more or less as expected with electron doping as the volumes of hole sheets shrink and
electron sheets grow. On the other hand, it is important that the “perfectly compensated” situation of equal kinetic
conductivity of electrons and holes does not occur for the undoped case, but rather for x ≃ −0.05 hole doping. We
have indicated in the figure the range of doping over which the 122 systems display long range magnetic order, which
is not included in the current theory, and thus where the results are not directly applicable.
By contrast, the bottom panel of Fig. 5 shows the separate conductivities on the hole and electron FS as a function

of doping. We immediately notice that conductivity for electrons grows quite strongly upon electron doping. Quite
unlike the purely kinetic case in the top panel, the hole conductivity varies only weakly compared to that of the
electrons. It is this asymmetry, due to a combination of the kinetic effects illustrated in the top panel of Fig. 5
and lifetime effects calculated here, which lead to the rapid domination of the conductivity by electrons; this has led
transport experiments for Co-doped Ba-122 being interpreted in terms of a 1-band model with electrons only5,6 with
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FIG. 5: (Color online) Top: Conductivity for holes and electrons as a function of doping x = ne − 6 for constant relaxation
rate 1/τ = 1 eV. Bottom: conductivity for holes and electrons as a function of doping x for the two sets of parameters (in eV):
U = 1.0, J = 0 and U = 1.0, J = 0.25, at effective temperature T = 74K. The shaded region marks the rough experimental
SDW region in 122 systems. Solid lines are guides to the eye.

some validity. The feature that greatly affects the doping dependence is the fact that the maximum of the Fermi
velocity is precisely where the lifetime is largest on the electron FS sheets, namely the dxy sections of the β sheets.
We also calculated conductivity and Hall coefficient for a case where SRI is violated (U = 1.0, J = 0.25, U ′ = U , not
shown in the figure). The result are qualitatively similar to the case where U = 1.0, J = 0.
The conductivities obtained show a large disparity between the hole- and electron-doped sides. It is important to

note that what we calculate here is the spin-fluctuation contribution to the scattering rate, which is only inelastic
scattering. Resistivity experiments on K-doped and Co-doped Ba122 show that the elastic scattering is much larger in
the Co-doped (e-doped) samples, presumably due to the fact that the Co dopants sit in the FeAs plane. This elastic
scattering will correspondingly reduce the e-doped side of Fig.5, and thus bring the overall scattering rate more in
line with the experimentally observed trends. We have not attempted to fit experiments directly due to the current
uncertainty in the details of the dopant scattering potential.
The calculated conductivity shown in the lower panel of Fig. 5 was obtained for interaction parameters chosen

sufficiently small to show the effect of doping while avoiding the RPA instability. For these parameters, the absolute
scale of σ is much larger than in experiments on 1111 or 122 samples we have examined. Clearly increasing the
overall scale of the interactions will increase the scattering rates and decrease the conductivity. However to obtain the
observed values of the conductivity requires approaching the RPA instability extremely closely. We have not attempted
to fine tune the interaction strengths, but merely to illustrate the possible qualitative behavior. It seems more likely
that a more complete theory will require a renormalization of the susceptibility akin to that seen in Quantum Monte
Carlo (QMC) studies of the Hubbard model, which indicated that the RPA form of the dynamical magnetic response
was qualitatively correct, but that the “U” driving the instability (through the RPA denominator) needed to be taken
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independent of the U2 prefactor in the effective interaction32. A similar effect should occur in multi-orbital Hubbard
models, such that the overall scales of scattering rates, and degree of proximity to the instability, should not be taken
overly seriously.

B. Hall coefficient.

Any disparity between the scattering rates of electrons and holes manifests itself in the Hall coefficient

RH = −σH(ω)/σ2(ω), (8)

where σH(ω) is the Hall conductivity33,34. For a multi-band system, σH(ω) =
∑

λ

σHλ(ω) and the expression for the

band Hall conductivity has the form

σHλ(ω) =
e3

πh

∫

k∈kFλ

dkNkvk ·
[

Tr(M−1
k )−M−1

k

]

· vkτ
2
k(ω), (9)

where
(

M−1
k

)

αβ
= h̄−1∂vkα

/∂kβ is the inverse mass tensor.

Fig. 6 shows calculated RH as a function of doping for ω = 20meV (the corresponding effective temperature is
74K). One can qualitatively understand the doping dependence of RH by analyzing the approximate equation for the
band Hall conductivity,

σHλ(ω) ≈ Rλσ
2
λ(ω). (10)

where 1/Rλ = ±enλ is the Hall coefficient for an electron (hole) band λ, and nλ is the occupation of that band. For
the simple case of two bands (hole and electron) we have

R2band
H =

1

e

σ2
h/nh − σ2

e/ne

(σh + σe)
2

. (11)

Since conductivity for the hole band σh ∝ nhτh/mh and for the electron band σe ∝ neτe/me with τh,e and mh,e

being the corresponding lifetimes and band masses, R2band
H is a decreasing function of electron doping if τe ∼ τh and

me ∼ mh. This is what we see in Fig. 6 for the U = 1.0, J = 0 case. On the other hand, experimental data for
1111 and 122 compounds indicate that Rexpt

H is an increasing function of electron doping (i.e., the magnitude |Rexpt
H |

decreases with increasing x) away from the SDW state. According to the simple analysis of Eq. (11), this may be due
to (i) τe ≫ τh and/or (ii) mh ≫ me. Note that use of Eq. (9) gives a different result from Eq. (10) due to the mass
anisotropy across the FS which contributes to factor (ii). Factor (i) starts to play a role when we consider finite J .
For the case of U = 1.0 and J = 0.25, RH(x) becomes slightly increasing function of x for x > 0 (Fig. 6). However,
it is not in quantitative agreement with experimental data. To see whether the present approach can provide the
correct slope of RH(x), we artificially increased scattering rate on all orbitals except dxy twice, so that the anisotropy
between hole and electron sheets becomes more pronounced. The resulting doping dependence of the Hall coefficient
is shown in Fig. 7. Now the slope of RH(x) is in good agreement with experimental data.
The fact that we underestimate the disparity between holes and electrons by a factor of two is not very discouraging.

There are several factors not included in the present theory. In the interest of studying the doping dependence, we have
kept the interactions fairly low to avoid the instability which occurs for relatively small interaction strengths on the
hole-doped side. Furthermore, we have neglected impurity scattering. In multi-band impurity models35,36, the ratio of
intra- to inter-band scattering is taken as a parameter, and the scattering rate asymmetry between electrons and holes
is weak. One might expect that an “orbital impurity” model, where an impurity introduces a local Coulomb potential

for electrons in all d-orbitals, might produce a scattering rate anisotropy in k-space due to the matrix elements an,λk ,
just as in the inelastic scattering case. By investigating simple models similar to those considered in Ref. 37, we
have similarly concluded that both average elastic scattering rate asymmetry, and elastic scattering rate anisotropy
on any given Fermi surface sheet are small. To address the effect of isotropic impurities on the Hall coefficient, we
introduced a constant impurity scattering with a strength comparable to the calculated spin-fluctuation scattering
rate 1/τk. Since concurring scattering processes add to the self-energy, the scattering rate is 1/τ totalk = 1/τimp+1/τk.
Substituting τ totalk in Eqs. (7) and (9), we find RH(x) shown in Fig. 7 for 1/τimp = 1meV. Clearly, increasing disorder
leads to a monotonically decreasing Hall coefficient with doping similar to Eq. 11 with τe ≃ τh. Thus dirtier samples
will show a decrease of RH(x) with increasing electron doping.
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FIG. 6: (Color online) Doping dependence of the Hall coefficient. The theoretical calculations are for two sets of parameters
(in eV): U = 1.0, J = 0 and U = 1.0, J = 0.25. For the first set we also show result of the multi-band approximation for
RH from Eq. (10). Experimental data points are from (i) Ref. 6 for Ba(Fe1−xCox)2As2 at 100K, (ii) Ref. 9 and (iii) Ref. 8 for
SmFeAsO1−xFx at 125K, and (iv) Ref. 7 for BaFe2(As1−xPx)2 at 150K. The shaded region tentatively marks the experimental
SDW region. Solid lines are guides for the eye.

The temperature dependence of RH deserves additional discussion. Recent phenomenological calculations of the
self-energy in a two-band model for the pnictides suggest that to reproduce experimentally observed RH(T ) one needs
to assume the non-Fermi liquid behavior of the spin susceptibility38. In particular, for large electron dopings, RH(T ) is
almost constant but for small x it become an increasing function of temperature6,39. Here we argue that the observed
temperature dependence can be qualitatively reproduced within our Fermi liquid approach. The resulting RH(T )
from our calculations is shown in Fig. 8. Note that the band which forms the γ FS pocket for x < 0 is slightly below
the Fermi level for small positive x. Thus at finite energy or temperature the scattering to that band contributes to
the self-energy and consequently to the transport properties. That is the main reason why RH(T ) for x = 0.03 is a
rapidly changing function of T in Fig. 8.

C. Raman response

A momentum-sensitive probe of the scattering rate is provided by Raman spectroscopy. In particular, one can
extract a scattering rate Γ from Raman measurements by considering the slope of the Raman response in the limit
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as the energy loss Ω → 0.40 This quantity can be calculated as

1

Γγ

= lim
Ω→0

∂χ′′
γγ

∂Ω

= lim
Ω→0

N−1
F

∫

k∈kF

dk
Nkγ

2
k

Σ′′(k,Ω)
(12)

where γk denotes the Raman vertex related to the incident and scattering polarizations (see e.g. Ref. 41), and NF

is the density of states at the Fermi level. Here, we have taken the simplest form for the Raman vertices allowed
by symmetry, namely cos(kx) − cos(ky) and sin(kx) sin(ky) for the B1g and B2g channels, respectively (note that we
are using the 1 Fe unit cell conventions). We do not calculate the A1g response due to the difficulties involved in
calculating the backflow effects.42 In general, the backflow correction to the A1g channel involves the full susceptibility,
not just the imaginary part. Although this can in principle be obtained, it is computationally expensive.
Fig. 9 shows the lifetimes obtained from Raman scattering according to the expression above. As discussed in

Muschler et al.11,43, the B1g measurements probe the regions of the Brillouin zone containing the electron sheets. The
B2g measurements probe the region around (π/2, π/2), where there nominally are no Fermi surfaces. This causes a
decrease in the overall magnitude of the B2g Raman signal compared to B1g , as reflected in Fig. 9. However, the
tails of the B2g Raman vertex extend out to the zone edges, and thus some information can nevertheless be gleaned.
On the hole doped side, the hole pockets are large, and the B2g vertex probes the edges of the pockets. Similarly,
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when the system is electron doped, the electron pockets grow and the B2g vertex is thus larger there. The numerator
of Eq. 12 would give a symmetric doping dependence; therefore, the strong asymmetry is due to the lifetime effects.
We observe that the presence of the γ pocket has a large effect in the Raman response, for the same reasons as in

the conductivity above. In particular the B1g signal shows a large increase around zero doping. In the B2g channel
the effect is not as strong, since there sections of both hole and electron sheets are probed.

VI. CONCLUSIONS

We have shown that the quasiparticle scattering due to spin-fluctuations in a multi-orbital model with local inter-
actions can be significantly anisotropic. Two factors which produce this effect are the orbital matrix elements, which
make interactions effectively momentum-dependent, and the momentum dependence of the dynamic susceptibility.
In the particular case of our model for LaOFeAs, the dxy portions of the electron FS experience little scattering due
to the small scattering phase space in undoped and electron-doped cases, since there are no dxy states on the hole
sheets available for scattering. This anisotropy on the electron sheets appears to have profound consequences for
transport in at least some Fe-pnictide systems. We have noted that there are several factors which together provide
experimentally observed disparity between holes and electrons. The first is of the longer lifetime of the dxy states on
the electron FS sheets. Another one is the fact that the maximum of the Fermi velocity is precisely where the lifetime
for electrons is largest.
Our calculations suggest that we underestimate slightly the asymmetry between dxy and dxz /dyz states seen in

the analysis of the Hall coefficient doping-dependence. We have discussed and critically analyzed factors which can
provide additional anisotropy. Finally, we discussed aspects of the the electronic Raman scattering rate, and showed
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that the lifetime effects should be visible in both the B1g and B2g channels in varying amounts.
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3 S. Lebègue, Phys. Rev. B 75, 035110 (2007).
4 D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).



14

5 F. Rullier-Albenque, D. Colson, A. Forget, and H. Alloul, Phys. Rev. Lett. 103, 057001 (2009).
6 L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, et al., Phys. Rev. B 80, 140508
(2009).

7 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata,
et al., Phys. Rev. B 81, 184519 (2010).

8 R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, et al., Phys. Rev. Lett.
101, 087001 (2008).

9 S. C. Riggs, R. D. McDonald, J. B. Kemper, Z. Stegen, G. S. Boebinger, F. F. Balakirev, Y. Kohama, A. Migliori, H. Chen,
R. H. Liu, et al., Journal of Physics: Condensed Matter 21, 412201 (2009).

10 C. Hess, A. Kondrat, A. Narduzzo, J. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, and B. Buchner, Europhys. Lett.
87, 17005 (2009).

11 B. Muschler, W. Prestel, R. Hackl, T. P. Devereaux, J. G. Analytis, J.-H. Chu, and I. R. Fisher, Phys. Rev. B 80, 180510(R)
(2009).

12 E. Maksimov, A. Karakozov, B. Gorshunov, V. Nozdrin, A. Voronkov, E. Zhukova, S. Zhukov, D. Wu, M. Dressel, S. Haindl,
et al., preprint (2010), arXiv:1008.3473.

13 N. Barisic, D. Wu, M. Dressel, L. J. Li, G. H. Cao, and Z. A. Xu, Phys. Rev. B 82, 054518 (2010).
14 J. J. Tu, J. Li, W. Liu, A. Punnoose, Y. Gong, Y. H. Ren, L. J. Li, G. H. Cao, Z. A. Xu, and C. C. Homes, Phys. Rev. B

82, 174509 (2010).
15 E. van Heumen, Y. Huang, S. de Jong, A. B. Kuzmenko, M. S. Golden, and D. van der Marel, Europhysics Letters 90,

37005 (2010).
16 A. Golubov, O. Dolgov, A. Boris, A. Charnukha, D. Sun, C. Lin, and A. Shevchun, preprint (2010), arXiv:1011.1900.
17 J. G. Analytis, J.-H. Chu, R. D. McDonald, S. C. Riggs, and I. R. Fisher, Phys. Rev. Lett. 105, 207004 (2010).
18 A. I. Coldea, J. D. Fletcher, A. Carrington, J. G. Analytis, A. F. Bangura, J.-H. Chu, A. S. Erickson, I. R. Fisher, N. E.

Hussey, and R. D. McDonald, Phys. Rev. Lett. 101, 216402 (2008).
19 J. G. Analytis, C. M. J. Andrew, A. I. Coldea, A. McCollam, J.-H. Chu, R. D. McDonald, I. R. Fisher, and A. Carrington,

Phys. Rev. Lett. 103, 076401 (2009).
20 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
21 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).
22 S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New. J. Phys. 11, 025016 (2009).
23 T. A. Maier, S. Graser, D. J. Scalapino, and P. J. Hirschfeld, Phys. Rev. B 79, 224510 (2009).
24 A. F. Kemper, T. A. Maier, S. Graser, H. Cheng, P. J. Hirschfeld, and D. J. Scalapino, New Journal of Physics 12, 073030

(2010).
25 S. Onari and H. Kontani (2010), arXiv:1009.3882.
26 C. Cao, P. J. Hirschfeld, and H.-P. Cheng, Phys. Rev. B 77, 220506(R) (2008).
27 K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev. B 79, 224511 (2009).
28 J. Paglione and R. L. Greene, Nature Physics 6, 645 (2010).
29 S. Graser, A. F. Kemper, T. A. Maier, H.-P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B 81, 214503 (2010).
30 L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero, Phys. Rev. Lett. 103, 046404 (2009).
31 H. Ikeda, R. Arita, and J. Kuneš, Phys. Rev. B 81, 054502 (2010).
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