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We analyze the hard-core Bose-Hubbard model with both the three-body and nearest neighbor
repulsions on the triangular lattice. The phase diagram is achieved by means of the semi-classical
approximation and the quantum Monte Carlo simulation. For a system with only the three-body
interactions, both the supersolid phase and one third solid disappear while the two thirds solid stably
exists. As the thermal behavior of the bosons with nearest neighbor repulsion, the solid and the
superfluid undergo the 3-state Potts and the Kosterlitz-Thouless type phase transitions, respectively.
In a system with both the frustrated nearest neighbor two-body and three-body interactions, the
supersolid and one third solid revive. By tuning the strength of the three-body interactions, the
phase diagram is distorted, because the one-third solid and the supersolid are suppressed.

PACS numbers: 05.30.Jp, 03.75.Hh, 03.75.Lm, 75.40.Mg, 75.10.Jm

I. INTRODUCTION

While it is an adjustable quantum simulator for solv-
ing some difficult quantum problems, such as the high-
Tc superconductivity and the fractional quantum Hall
effects, the system of the ultracold molecules trapped in
the optical lattice also provides an ideal toolbox to an-
alyze the general properties of the quantum many-body
systems1–3. In the real materials, comparing with the
dominant role that the two-body interactions play, the
multi-body interactions are usually taken as the high-
order perturbation. On the other hand, the man-made
Hamiltonian with leading multi-body interactions ex-
hibits many distinctive phenomenons, such as the non-
abelian topological phases4 and several novel phases5–7

originated from the ring exchange interactions. Recently,
because of the engineering development of the ultracold
polar molecules confined in the optical lattice, the multi-
body interactions can be experimentally realized, espe-
cially, the three-body interactions can be varied in a wide
range with the nearest neighbor interactions from nega-
tive to positive8. Meanwhile, it also can be realized in
systems of trapped ions9.

While the dominant three-body interactions result in
many exotic phases10–13 on one-dimensional chains and
two-dimensional bipartite lattices, the interplay between
the three-body interactions and the geometry frustra-
tion is still unclear. The frustrated lattices (such as
the triangular and Kagome lattices) manifest themselves
by enhancing the quantum fluctuation and often accom-
panying with the highly degenerate ground state. In
the magnetic materials with the triangular structure,
the spin liquid which breaks no symmetry has been
observed14. Meanwhile, the triangular optical lattice, in
which the existence of the supersolid (SS) has been nu-
merically proved15–22, has been realized by using triple
laser beams23,24.

FIG. 1: (Color online) The hard-core Bose Hubbard Model
on the triangular lattice. The particles can hop on the bond
with amplitude t, and the nearest neighbor repulsion V2 exists
between them. The three-body interactions V3 affect the par-
ticles (red dots) on the triangle marked by red thick lines. In
the 2/3(1/3) solid, the particles(holes) will occupy two sub-
lattices (black thick line) and form the honeycomb backbone.

The simplest model to reflect such an interplay is the
hard-core bosons with nearest neighbor two-body and
three-body repulsions on the triangular lattice. The
Hamiltonian in the grand canonical ensemble is shown
in Fig.1 and given

H = −t
∑

〈ij〉

(b†ibj + b†jbi) + V2

∑

〈ij〉

ninj − µ
∑

i

ni

+V3

∑

〈i,j,k∈△〉

ninjnk, (1)

where b†i (bi) is the creation (annihilation) operator of
bosons; t is the hopping parameter; µ is the chemical
potential; and V2 and V3 are strengthes of the nearest
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neighbor two-body and three-body repulsions, respec-
tively, i.e., 〈i, j〉 represents i and j are nearest neighbor
sites and 〈i, j, k ∈ △〉 means i, j and k connect with each
other two by two and form a regular triangle. After the

Holstein-Primakoff transformation b†i → S†
i , bi → Si and

ni → SZ
i + 1/2, the bosonic Hamiltonian (1) is mapped

into spin-1/2 XXZ model

H = −t
∑

〈ij〉

(S†
i Sj + S†

jSi) + (V2 + V3)
∑

〈ij〉

SZ
i S

Z
j

−B
∑

i

SZ
i + V3

∑

〈i,j,k∈△〉

SZ
i S

Z
j S

Z
k , (2)

where B = µ−3V2−3V3/2, and the last term breaks the
particle-hole symmetry.
In this work, we used both the semi-classical

approximation15 and quantum Monte Carlo
simulation26–28 to study the model described by
the Hamiltonian Eq. (2). We first assume V2 = 0 and
merely consider the three-body interactions. We depict
the phase diagram and find the coexistence of both
the charge-density wave order and the bond-ordered
wave10. Furthermore, at the finite temperature, the
Kosterlitz-Thouless and the 3-state Potts type phase
transitions are found in the superfluid phase and the
solid phase, respectively. After the antiferromagnetic
nearest neighbor interaction is switched on, the phase
diagram is derived in the whole parameter space. For the
large three-body interactions, we observe the separation
of the minima of the superfluid density and the structure
factor.

II. THREE-BODY INTERACTIONS

In Refs. [15,16], the authors showed that the frustrated
nearest neighbor interaction leads to the charge density
wave (CDW) order. In this section, we show that the
three-body interactions play the same role as the nearest
neighbor interaction does.
When the hopping is forbidden, i.e., t = 0, the ground

state at the absolute zero temperature is exactly known.
All the sites are empty (Mott-0 Insulator) when µ is less

then 0. As the chemical potential increases, a
√
3 ×

√
3

solid phase appears in order to maximizes the chemical
potential part without costing energy on the three-body
repulsions. When µ > 6V3, the system is fully occupied
(Mott-1 Insulator), because the energy paid in the three-
body interactions is less than its gain from the chemical
potential. For a finite t there may be a superfluid phase.
Then, the phase diagram is extended to the finite t and
shown in Fig.2.

A. Semi-classical approximation

By approximating the quantum spin in Eq. (2) as a
classical unit vector with the magnitude 1/2, the system
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FIG. 2: (Color online) The phase diagram with V2 = 0. The
red line comes from the semi-classical approximation (SCA)
and the dot blue line from quantum Monte Carlo with a
stochastic series expansion (SSE) arithmetic.

is taken the semi-classical approximation. The ground
state is determined by minimizing the energy per site.
Because of the 3-fold rotational and the transitional sym-
metries, the lattice can be divided into three sublattices,
and the spins are equivalent in each one.
Superfluid is classically identified by checking that all

spins point in the same direction except z direction, be-
cause the same Sz and non-zero Sx indicate no charge
density wave order and finite long range off-diagonal or-
der, respectively15. By using the semi-classical approx-
imation, we find that the second order Mott-0(Mott-
1) insulator-superfluid phase transition at h = −2∆ (
h = 2(2 + ∆) ), where ∆ = 2t/V3 and h = 2µ/3V3.
Meanwhile, the phase transition between solid and su-
perfluid state is the first order, and the critical lines can
be analytically expressed with

h =
16− 3∆2

12
+

c1/3 cos((θ − 2π)/3)

6
(3)

and

h =
16− 3∆2

12
+

c1/3 cos(θ/3)

6
, (4)

where

a = 4096− 2304∆2 − 5760∆3 − 2160∆4

−216∆5 − 27∆6

b =
√

c2 − a2 = 48
√

6∆3(8− 9∆)(8 + 4∆+∆2)

c = (256− 96∆2 + 48∆3 + 9∆4)3/2

θ = arccos(a/c).

And the summit of the lobe is at ∆ = 8/9 and h = 64/27,
which is given by equalizing Eq. (3) and Eq. (4) at θ = π.
The peak and the shape of the lobe in the Fig.2 also re-
flect the breaking of the particle-hole symmetry. No-
tice that the semi-classical approximation is exact in
the large-S limit and the result from this approxima-
tion is only qualitatively correct25. To depict the pre-



3

cise phase diagram, we use a stochastic series expansion
(SSE) arithmetic in quantum Monte Carlo simulation.
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FIG. 3: (Color online)The structure factor and the superfluid
density (Inset: The density per site) at µ/V3 = 3.5 and T =
0.01V3 vs t/V3. L is the linear size of the lattice.

B. Quantum Monte Carlo

The cluster SSE26–28 is taken because of its high ac-
curacy and efficiency on simulating the system with
the multi-body interactions. The sufficiently low tem-
perature and large system size ensure the thermody-
namic limit to be achieved , and the number of the
quantum Monte Carlo steps are up to one million. A
solid phase may be described by a charge density wave
(CDW) order parameter, the structure factor S(Q) =

〈|∑N
k=1 nke

iQ·rk |2〉/N2 where N is the number of sites
and Q = (4/3π, 0). Meanwhile, the long range off-
diagonal order is reflected by the finite superfluid density
ρs = 〈W 2/4βt〉29, where W is the winding number. In
the 2/3 filling CDW state, the bosons fully occupy two
sublattices, so that the particle and hole on same bond
can partly form a singlet state due to the second order
hopping process. Thus, the bond order wave appears. It
is described by the non-zero bond order structure factor

Sb(Q) = 〈|∑Nb

l=1 Kle
iQ·rl |2〉/N2, where Nb is the num-

ber of bonds, Kl = b†i bj + b†jbi and i, j are two ends of
the bond l.
In the inset of the Fig.3, the density plateau indicates

the incompressible state. And in the Fig.3, the finite
values of the S(Q) and zero superfluid density in the left
part (small t/V3) support the existence of the solid state
(ρ = 2/3) in this region. Meanwhile, the finite jump of
the superfluid density and zero S(Q) in the right part
indicate the first order superfluid-solid phase transition
at the critical point t/V = 0.36(1). The Sb(Q) also drops
down at the same critical point, as shown in the Fig.4.
However, the dependence on the lattice size requires the
finite size scaling analysis, which is shown in Fig.5. We
see that the system has a finite bond order wave order
in the solid phase and not in the superfluid. Thus, we

0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8x 10
−3

t/V
3

S b(Q
)

 

 

L=24
L=48

FIG. 4: (Color online)The Sb(Q) at µ/V3 = 3.5 and T =
0.01V3 vs t/V3. Inset: the distribution of Ki for L = 12 in
the solid phase. The thick line is 0.24 and the thin line is
0.07.

confirmed that the bond order wave and CDW coexist
in the solid and do not separate. However, it is not a
novel phase because it can be easily understood by the
local vibrations of the particles or holes. The inset of the
Fig.4 gives a picture of such an order, in which the local
kinetic energy in unit of t is much higher on the half filled
bonds than the fully filled ones.
The phase diagrams (Fig.2), derived from both

the semi-classical approximation and SSE calculations,
matching well, proves the validity of the semi-classical ap-
proximation for such a model. However, unlike a model
with the nearest neighbor repulsive bosons, neither the
1/3 filling solid nor the supersolid is found. The super-
solid is in fact the superfluid of the hole (particle) exci-
tations on the backbone constructed by particles (holes).
Because the bosons are of the hard core, the excited par-
ticle can not hop to the nearest site to have the long
range off-diagonal order. Meanwhile, due to the domain
wall formation16, the solid order can be destructed by
the infinitesimal density but infinite number of hole ex-
citations, and the phase transition from the solid to the
superfluid is allowed.
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FIG. 5: (Color online)The finite size scaling of Sb(Q). (a) In
the solid phase at µ/V3 = 3.5 and t/V3 = 0.36. (b) In the
superfluid phase at µ/V3 = 3.5 and t/V3 = 1.
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FIG. 6: (Color online)The structure factor vs temperature for
different sizes at t/V3 = 0.1 and µ/V3 = 3. Inset: the critical
behavior of the 3-states Potts Model universality class and
δ = (T − Tc)/t with Tc = 0.65.

C. Finite Temperature

In the following, we study the finite temperature be-
haviors in the solid and superfluid phases. In Fig.6, we
show the thermal melting process of the CDW order. As
the hard-core bosons with only nearest neighbor inter-
actions on the triangular lattice17, the phase transition
is expected to be in the universality class of the 3-state
Potts model with the critical exponents ν = 5/6 and
β = 1/9. The critical behavior of the structure factor is
S(Q) = f(δL1/ν) × L−2β , where δ = (T − Tc)/t and Tc

is the fitting critical temperature. The Fig.6 shows the
phase transition happens in the critical point Tc = 0.65
and also confirms our expectation by the same function
f for different lattice sizes.
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FIG. 7: (Color online)The superfluid density vs temperature
for different sizes at t/V3 = 0.4 and µ/V3 = 3.5. Inset: The
solution of the Eq.(5) and the dash line is κ = 1.

The superfluid to the normal liquid undergoes the
Kosterlitz-Thouless transition. The critical temperature
can be determined by the renormalization flow and the
universal jump of the superfluid density at Tc (Fig. 7).

The critical point is given by finding κ = 1, where κ(T )
is the integral function

4 ln(L2/L1) =

∫ R1

R2

dt

t2(ln(t)− κ) + t
(5)

and R = 3πρs/2tT . We set data of L = 24 as R1 and the
other sizes as R2, and then plot the κ in the inset of the
Fig.7. From the Fig.7, we observe that the critical point
is around Tc ≈ 0.4. And the inset shows the Kosterlitz-
Thouless transition happens at Tc = 0.3342.

FIG. 8: (Color online)The phase diagram by SCA with V2 +
V3 = 1. The solid phases are under the color surface, the
supersolid (SS) exists between the black net and the color
surface, and the rest part is the superfluid. The black lines
are the tricritical lines.

III. INFLUENCE ON THE SYSTEM WITH

NEAREST NEIGHBOR INTERACTION

In the system with only the nearest neighbor interac-
tion, the 1/3 filling solid and supersolid phase15–17 can
stably exist. It is intuitively thought that the additional
three-body interactions should have more influences on
the 2/3 CDW order than 1/3. By using the semi-classical
approximation and setting V2+V3 = 1, we plot the phase
diagrams for different ratios of V2 and V3 in Fig.8. We
find that the three-body repulsion strongly enhances the
2/3 CDW order, and the 1/3 CDW order will disappear
when V2 is 0 which indicates that the 1/3 CDW order is
associated with the nearest neighbor interaction.
The strong-coupling expansion is powerful on solving

the compressible-incompressible second order phase tran-
sition. Therefore, we apply it to the supersolid-solid and
Mott-superfluid phase transitions. The critical line for
Mott-1(Mott-0) insulator-superfluid phase transition is
µ = 6(V2 + V3) + 6t (µ = −6t), and the 1/3 and 2/3
supersolid-solid phase transition boundaries are given by

µ1/3 = 3V2 − 3t− 12t2

2V2 + V3

− 15t2

2V2

− 3t2

3V2 + 2V3

− 60t3

V2(2V2 + V3)
− 9t3

V2(3V2 + 2V3)
+

9t3

(3V2 + 2V3)2
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FIG. 9: (Color online)The phase diagrams at V2 = 0.6 and
V3 = 0.4 by using the QMC (red dot), SCA (blue line) and
strong-coupling expansion(SCE) (black dash line).

+
36t3

(2V2 + V3)2
+

15t3

4V 2
2

(6)

and

µ2/3 = 3V2 + 3t+
12t2

2V2 + 3V3

+
15t2

2V2 + 4V3

+
3t2

3V2 + 4V3

+
60t3

(V2 + 2V3)(2V2 + 3V3)
+

9t3

(V2 + 2V3)(3V2 + 4V3)

− 9t3

(3V2 + 4V3)2
− 36t3

(2V2 + 3V3)2
− 15t3

4(V2 + 2V3)2
. (7)

When V3 goes to the infinity, the Mott-1 insulator will
disappear and the first order phase transition line given
by µ2/3 disappears. In contrary, the µ1/3 is partly af-
fected in this limit and the Mott-0 insulator-superfluid
critical line is not changed. Furthermore, these critical
lines are compared with results from the quantum Monte
Carlo and semi-classical approximation at V2 = 0.6 and
V3 = 0.4 in Fig.9. We see again that the semi-classical ap-
proximation gives a qualitative matched phase diagram
to that comes from the quantum Monte Carlo. In the
region that the strong-coupling expansion is valid, the
results fitting with the data from quantum Monte Carlo
are better than those from the semi-classical approxima-
tion.
In order to detect the three-body interactions’ impacts

on the different orders, we use quantum Monte Carlo to
simulate several variables. In terms of the Fig.10, we can
find, comparing to the 1/3 solid phase which hardly af-
fected by the three-body repulsion, the 2/3 filling CDW
order are strongly enhanced due to decreasing of the lo-
cal vibrations. In the supersolid phase, the CDW order
is also enhanced, but the superfluid order becomes weak
at the same time. The influence on the 2/3 supersolid
is stronger than that on the 1/3 supersolid, because the
repulsive effect is larger in former case on the superfluid
flux. It is also interesting that the minima of the super-
fluid density and the structure factor are separated in the
large V3. In the Fig.11, we can observe it in the small
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FIG. 10: (Color online)The superfluid density and the struc-
ture factor at T = 0.02, L = 24, V2 = 1 and t = 0.1 for
different V3 varying as µ. Inset: The density per site

region. Two possible reasons may be used to interpret
it. (i) The minimum of the S(Q) determines the 1/3-
2/3 supersolid phase transition, because the competition
between both orders in the critical line may minimize
the S(Q). (ii) Because the second order hopping pro-
cess in the 2/3 supersolid are partly prohibited by the
three-body interactions, the holes moving on the honey-
comb backbone constructed by the particles can be ap-
proximately treated as, the quasi-particles forming the
superfluid flux on the honeycomb lattice. For the same
reason mentioned in the Ref.30,31, such dip indicates the
geometric hindrance in the superfluid flow.
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FIG. 11: (Color online)The superfluid density (blue) and the
structure factor (red) in small region at T = 0.01, L = 24,
V2 = 1 and t = 0.1 for V3 = 10 by varying the µ.

IV. CONCLUSION

We studied the hard-core Bose-Hubbard Model with
nearest neighbor and three-body repulsions on the tri-
angular lattice by using the semi-classical approximation
and the Quantum Monte Carlo simulation. In the only
three-body repulsions case, we got the complete phase
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diagram and find no 1/3 solid and supersolid phase ex-
ist. By comparing with the CDW and BOW order,
we demonstrate they coexist in the solid phase and the
BOW order trivial results from the local vibrations, so
it enlighten us it needs to be more careful to judge the
BOW+CDW order. At the finite temperature, the su-
perfluid phase changes into the normal liquid phase after
a Kosterlitz-Thouless transition. Meanwhile, the 3-state
Potts Model universality class phase transition emerges
when heating up the solid state. And these thermal prop-
erties are same as the solid phase in the system with only
nearest neighbor interaction17.
After adding the nearest neighbor repulsion, the su-

persolid and 1/3 solid phase revive. The three-body re-
pulsions can enhance the 2/3 CDW order and suppress
the high order hopping, so they affect the phase with
2/3 CDW order harder than 1/3 CDW order. However,
even up to infinity, it still can not destroy the 2/3 super-
solid, because the excited holes in the honeycomb back-
bone constructed by the particles in two sublattices still
can form the superfluid flow without feeling the three-
body repulsions. For the large V3, the minima of the
superfluid and CDW order are separated. The dip of the
CDW order may indicate the first order 1/3-2/3 SS phase
transition17, and the dip of superfluid density may re-
sult from the geometry hindrance. Recently, we become
aware of a similar work which considers more long-range
interactions32.
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