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Birman-Schwinger and the number of Andreev states in BCS superconductors

Israel Klich
Department of Physics, University of Virginia, Charlottesville VA 22904

The number of bound states resulting from inhomogeneities in a BCS superconductor is usually
established either by variational means or via exact solutions of particularly simple, symmetric
perturbations. Here, we propose estimating sub-gap states using the Birman-Schwinger principle.
We derive upper bounds on the number of sub-gap states for small normal regions and find a
suitable Cwikel-Lieb-Rozenblum inequality. We also estimate the number of such states for large
normal regions using high dimensional generalizations of the Szego theorem. The method works
equally well for local inhomogeneities of the order parameter and for external potentials.

PACS numbers:

I. INTRODUCTION

It is well known that inhomogeneities in a superconducting system may give rise to Andreev bound states. Such
bound states form in superconductor-normal metal-superconductor (SNS) junctions and can affect the transmission
and noise properties of the junction. The presence of such states in the cores of vortices is of much interest as well.
Vortices in s-wave superconductors may have Caroli-de-Gennes-Matricon (CdGM) states1, bound states in vortices in
p+ip superfluids where studied e. g. in2. Zero modes in the core of half-quantum vortices in p-wave superconductors3,4

are of extensive recent interest. Such modes are described in terms of unpaired Majorana fermions and have non-
abelian braiding statistics5,6. Other inhomogeneities in the system have been of interest as well, for example, stripes
and other structures in the pairing function of a superconductor (See e.g.7,8).

Often, the bound sates are either directly obtained for systems of high symmetry, such as a circular vortex, or
idealized planar SNS junctions or studied using perturbation theory. In addition, multiple scattering and semi-classical
(WKB) methods based on the Andreev approximation have been developed9.

In this paper, we introduce an alternative view on Andreev states, complementing the above-mentioned methods.
Our approach does not assume a particular symmetry, and works even when the Andreev approximation is inadequate
(see e.g.10). We base our approach on a simple adaptation of the Birman-Schwinger counting argument to the super-
conducting scenario. The Birman-Schwinger method has been widely used to study bound states of the Shcrödinger
equation with a potential. The Birman-Schwinger bound has been introduced by Birman11 and Schwinger12 as a
refinement of previous estimates by Bargmann13 on the number of bound states in a potential. For a discussion and
review see14. Recently the Birman-Schwinger approach was used in the context of estimating the critical temperature
of BCS models in15–17.

In this paper we establish the following results:
1. A bound on the number of sub-gap states in a superconductor containing a normal region. The bound on the

number of states below a given sub-gap energy E is expressed in eq. (11), and holds for general values of the chemical
potential µ, the gap ∆0. For example, in the limit of large chemical potential, the inequality is given in the simple
form

NE ≤
√
µ∆4

0vol(A)
π (∆2

0 − E2) 3/2
+

∆2
0

(
∆2

0 − 2E2
)
vol(A)

8πµ3/2
√

∆2
0 − E2

(1)

where vol(A) is the volume of the normal region. Clearly, the inequality is most effective for energies not very close
to the top of the gap.

2. In studying the bound states of Schordinger operators with deep potential wells, often Birman-Schwinger inequal-
ities yield poor upper bounds to the number of bound states. In such cases the Cwikel-Lieb-Rozenblum inequality18–20

may be used to obtain upper bounds with power low behavior in-line with the semi-classical expectations for deep
wells. We establish the Cwikel-Lieb-Rozenblum inequality (20) for the Bogolubov de Gennes equation. This bound
requires more work and has the advantage of retaining a simple form for a spatially varying ∆, however, for normal
regions, and in the typical situation of gap energy being small compared to Fermi energy, it seems to give a worse
upper-bound to the number of states than the simple Birman-Schwinger inequality.

3. Finally, using semiclassical tools and the relation to Szegö theory we supply an asymptotic expression for the
number of states in large regions and a conjecture (28) for the scaling ld−1 log(kF l) of the sub-leading term. T

The paper is organized as follows: In section II, we derive a Birman-Schwinger operator which is suitable for the
treatment of mean field BCS superconductors. In section III we derive the basic bound on the number of states in a



2

normal region of a superconductor. We proceed to present the Cwikel-Lieb-Rozenblum inequality in section IV, the
derivation of which is technical and deferred to the appendices. In section V we consider the boundary correction to
the number of states for asymptotically large normal regions and explain their connection to the theory of Toeplitz
operators and Szego theorems.

II. THE BIRMAN-SCHWINGER PRINCIPLE FOR BCS

To employ this method, we consider a superconductor described by the mean field BCS Hamiltonian:

HBCS =
∑
σ

∫
ψ†σ(x)(u(x)− µ− ~

2m∇
2)ψσ(x)dx+ (2)∫

[∆σσ′(x, x′)ψ†σ(x)ψ†σ′(x
′) + h.c.]dxdx′ ,

where ∆ is the superconducting order parameter, µ is the chemical potential u(x) is a local potential and m the
effective electron mass. ∆ is related to the anomalous Green’s function through a self consistency condition. Here we
will assume that u(x) and ∆ are given, and represent the effective values of these parameters, which are, in principle,
measurable directly.

To diagonalize the BCS Hamiltonian we use the Bogolubov de Gennes (BdG) equation

HBdG

(
ψe
ψh

)
= E

(
ψe
ψh

)
; HBdG =

(
h ∆

∆∗ −h

)
(3)

where ψe, ψh are the electron and hole parts of the quasiparticle wave function, and E is the quasi particle excitation
energy measured relative to the Fermi energy. The solutions of this equation come in +E,−E pairs (unpaired states
may exist at E = 0). We will mostly consider h = −∇2 − µ+ u(x) (Throughout, we take ~2

2m = 1).
For a translationally invariant ∆ and u(x) = 0, the spectrum of the BdG operator is continuous, and consists of the

positive and negative energy bands. In an s-wave superconductor these bands are separated from zero by the gap |∆|.
The method will also work for other gap functions, for example in a p-wave superconductor or superfluid with gap
∆(p) ∼ ∆0(px + ipy) (as in the Anderson-Brinkman-Morel phase of 3He). Andreev states in d-wave superconductors
have also been of much interest, however in in d-wave superconductors the gap function vanishes on the nodal lines
and one needs to differentiate between resonant states and the rest of the spectrum.

To study the introduction of bound states into the system from an inhomogeneous ∆ (and possibly also u), we
write the perturbed HBdG as H0 + W where H0 is translationally invariant. Here W represents the perturbation
(inhomogenous ∆, disorder potential etc.). We choose a decomposition of the perturbation W into a product W1W2,
and define the Birman-Schwinger operator:

KE = W2
1

E −H0
W1 (4)

The key property of KE is that it has an eigenvalue 1
λ for each eigenvalue E of (H0 + λW ). Indeed:

(H0 + λW )φ = Eφ ⇒ 1
λ
φ = −(H0 − E)−1W1W2φ (5)

⇒ 1
λ

(W2φ) = W2(H0 − E)−1W1(W2φ) = KE(W2φ)

Thus, W2φ is an eigenvector of KE with eigenvalue 1
λ . The two major differences between the BCS system and

the Birman-Schwinger kernel KE typically used to study bound states in Schrodinger operators is that HBdG is not
bounded below, and that KE is not Hermitian, but the ideas have been used to estimate the number of states within
a spectral gap (see e.g.21).

We now invoke the Birman-Schwinger argument:
Let NE1,E2(V ) = number of eigenvalues of H0 + V in the interval (E1, E2), where E1, E2 are in the gap, i.e.

|E1|, |E2| < minp(|∆(p)|). Assuming that the energy of eigenvalues of H0 + λV depends continuously on λ as we
increase λ from 0 to 1, we see that each eigenvalue for λ = 1 must have crossed the E1 or E2 line for some value of
λ ∈ (0, 1), as illustrated in Fig. 1. Thus:

N(E) ≤ number of crossings fot λ ∈ (0, 1) =
#eigenvalues of KE larger than 1 (6)
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Note that the inequality sign in (6) is due to the fact that in all cases we consider perturbations that are not strictly
positive or negative. The curves in Fig. 1 may be non monotonous functions of λ and an in-gap eigenvalue at λ = 1
may correspond to several crossings. Moreover, in some situations no bound states will be created even for very large
λ.

It is important to note that for unpaired zero modes of an unperturbed system such as the px + ipy superconductor
(for example in the presence of vortex or boundary), the principle will still work. Such a zero mode is stable as long
as it is far from other vortices, and will not shift when adding impurity potentials.

We now find the explicit form of the Birman-Schwinger kernel useful for the study of Andreev bound states in a
normal domain of general shape embedded in the superconductor. First, we decompose: ∆ = ∆0 +δ∆, δ∆ = δ∆1δ∆2,
and note that (

0 δ∆
δ∆∗ 0

)
=
(
δ∆1 0

0 δ∆∗2

)(
0 δ∆2

δ∆∗1 0

)
(7)

To further simplify the system we assume an s wave superconductor. This will be described by ∆ = ∆0 outside
the region and ∆ = 0 inside (Fig. 2). Thus we write δ∆1 = σxχA(x) and δ∆2 = −∆0IχA(x), where I is the identity
matrix, and χA(x) is the characteristic function of the region A, so χA(x) = 1 if x ∈ A and 0 otherwise. The
Birman-Schwinger operator (4) can be written explicitly. Assuming real ∆0 for simplicity, we find:

KA,E(x, x′) =
∆0√

∆0
2−E2

(σxE −∆0)χA(x)Im g+(x− x′)χA(x′)

−i∆0σyχA(x)Re g+(x− x′)χA(x′) (8)

where

g±(x− x′) =
e±ik±|x−x

′|

4π|x− x′|
(9)

where k± =
√
µ± i

√
∆0

2 − E2, and Re k > 0.
Note that from the numerical point of view studying the Birman-Schwinger kernel (8) has an immediate advantage:

the kernel is only supported on the region A. Thus, computation of the spectrum of bound states requires merely
finding the eigenvalues of this operator restricted to the region A. Since the operator in (8) is known analytically, one
can numerically compute eigenvalues by simply discretizing the region A.

Let us proceed and consider limits where the application of these ideas is particularly interesting:

�
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FIG. 1: The Birman-Schwinger principle: continuity of the bound state energy as function of λ implies that each bound state
at λ = 1 with energy in (E,−E) corresponds to at least one crossing of the E or −E line for some λ ∈ (0, 1).
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III. NORMAL REGIONS:

Here we use KA,E to obtain an upper bound to the number of states. The basic inequality is:

NE(V ) ≤
∑
λ|µn(λ)=E1 or E2 for someλ∈(0,1) 1 ≤ (10)∑

λ|µn(λ)=E1 or E2 for someλ∈(0,1)
1
λ2 ≤∑

λ eigenvalue of KE1

1
λ2 +

∑
λ eigenvalue of KE2

1
λ2 ≤

TrK∗E1KE1 + TrK∗E2KE2

The last inequality is due to the fact that KE , is, as opposed to the usual Birman-Schwinger case, not self-adjoint,
therefore we used that for a compact operator

∑
eigenvalues |λ|p ≤

∑
singular values |s|p for p ≥ 1 (Schur-Lalesco-Weyl

theorem).
This allows us to write a simple inequality for the number of sub-gap states. Plugging KE,A from (8) in (10) we

find:

N(E) ≤ 4∆2
0

∫
A×A dxdx′

(
∆2

0+E2

∆0
2−E2 |Im g−(x− x′)|2 +

|Re g+(x− x′)|2
)

(11)

As E → 0 the number of states NV (E) goes to zero, thus, the estimate (11) is effective only when the expression
on the right hand side of (11) is less than 1 in that limit. Let us estimate the size of the region A where this holds,
assuming a typical gap much smaller than kF . Using that for E → 0 , k± ∼

√
µ± i∆0√

µ , we see that

N(E) ≤ ∆2
0

4π2

∫
A×A dxdx′ e

−

s
∆2

0−E
2

µ
|x−x′|

|x−x′|2 ×(
2E2

∆0
2−E2 sin2(

√
µ|x− x′|) + 1

)
(12)

and so the decay is set by coherence length ξ =
√
µ

∆0 . This means that we need the condition 1
π

√
µ∆0V ol(A) < 1 to

make (11) effective at low energies.
Much like for the Schrodinger equation in 3d, we see that for a small enough normal region, the right hand side of

(11) will be less than one, and so no sub-gap states will be present below this energy E.
Numerically, we have checked the utility of this approximation for simple situations on a lattice compared to the

exact result. The agreement is fairly good for E small E < 0.25∆0.
Let us estimate the leading volume dependence of the bound (11). Writing

g±(r) =
e±ik±|r|

4π|r|
=
e−ar±ib|r|

4π|r|
(13)

with:

a = (µ2 + ∆2
0 − E2)1/4 sin[ 1

2 arctan
√

∆2
0−E2

µ ]

b = (µ2 + ∆2
0 − E2)1/4 cos[ 1

2 arctan
√

∆2
0−E2

µ ] (14)

���0

A

���

FIG. 2: A normal region A inside the superconductor.
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By (11) we have: N(E) ≤ N1 where

N1 = 4∆2
0

∫
A×A dxdx′

(
∆2

0+E2

∆0
2−E2 |Im g−(x− x′)|2 +

|Re g+(x− x′)|2
)

(15)

now, we change to variables x, x′ → x, r = (x′ − x). Taking the r integral over all space we get that N1 ≤ N ′1 with:

N ′1 =

16π∆2
0vol(A)

∫∞
0
r2dr

(
∆2

0+E2

∆0
2−E2 |Im g−(r)|2 + |Re g+(r)|2

)
= ∆2

0vol(A)
∫∞

0
dr e

−2ar

π

(
∆2

0+E2

∆0
2−E2 sin2(br) + cos2(br)

)
This last integral can be carried out analytically yielding:

N ′1 = ∆2
0

4πavol(A)( 1
2 +

2E2

∆02−E2√
µ2+∆2

0−E2
b2) (16)

Finally, we can write N ′1 as:

N ′1 =
vol(A)∆2

0

“
(2∆2

0−E
2)
√
µ2+∆2

0−E2+µE2
”

4π(∆2
0−E2)(µ2+∆2

0−E2)
3
4 sin

 
1
2 tan−1

√
∆2

0−E
2

µ

! (17)

The upper estimate N ′1 in (16) is in fact a good apprximation to N1 whenever the size of A is larger than 1/a the
decay scale for the Green’s function.

The most physically common situation for BCS is µ >> ∆0. In this limit we have:

N ′1 ∼
√
µ∆4

0vol(A)

π(∆2
0−E2)3/2 +

∆2
0(∆2

0−2E2)vol(A)

8πµ3/2
√

∆2
0−E2

(18)

Taking µ fixed and ∆0 large, while keeping α = ∆0/E fixed, we get

N ′1 ∼
(2−α2)∆

3/2
0

2
√

2π(1−α2)5/4 + (α2+2)µ
√

∆0

4
√

2π(1−α2)7/4 (19)

IV. CWIKEL-LIEB-ROZENBLUM INEUQALITY

Often, the estimate (10) may be quite poor because of large contributions from small eigenvalues of KE,A. This
behavior may sometimes be remedied by considering other inequalities, such as the celebrated Cwikel-Lieb-Rozenblum
inequality18–20.

To do so we consider the BdG equation with a gap function ∆0 + ∆1(x). Using the ideas in18,22 and adapting to
the superconducting scenario we find that the inequality

N(0, E) ≤ C µ1/2|∆0|2

(|∆0|2 − E2)2 ∫
|∆1(x)|≥ |∆0|2−E2

4|∆0|

dx
[
∆3/2

0 |∆1(x)|3/2 + |∆1(x)|3
]
. (20)

is valid for µ >
√

∆2
0−E2

18
√

2
, with C a constant of order one. The details of this calculation are given in the appendices.

For the case µ <
√

∆2
0−E2

18
√

2
, the inequality is changed to

N(0, E) ≤ 2−3/4C

3(∆2
0 − E2)3/4 ∫

|∆1(x)|≥ |∆0|2−E2

4|∆0|

dx
[
∆3/2

0 |∆1(x)|3/2 + |∆1(x)|3
]
. (21)
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The bounds (20) and (21) are closely related to the bound of22 on the number of bound states of perturbed Dirac
operators. The main technical difference with22 is the presence of a chemical potential and thus a presence of a non
vanishing Fermi surface35.

Note that the denominator (|∆0|2−E2)2 in (20) shows that this bound is only useful for E < |∆0|. However, most
of our interest here is actually with states that are not too close to the top of the gap itself. The reason for this is that
in practice, if the BCS self consistency is taken into account, the first states that are affected are those with energy
very close to the gap. Such states will often be washed out from the spectrum, since the gap function may decrease
slightly in the vicinity of the normal region.

In the case of a system defined by a normal region we ∆1(x) = −∆0χA(x), we have N(E) ≤ NCLR with :

NCLR = C
2µ1/2|∆0|5

(|∆0|2 − E2)2
vol(A) (22)

Let us compare the simple estimates CLR and BS estimates. Consider the large µ limit (22) vs (18). We have:

N ′1/NC ∼
√

∆2
0 − E2

∆0
< 1 (23)

We conclude that for the typical BCS situation, the simple Birman-Schiwnger bound (18) is more effective in dealing
with normal regions.

V. ASYMPTOTIC REGIME, SZEGÖ THEOREM

Here we are interested in the large l behavior of the eigenvalues of KE,lA, where lA is the region A rescaled by a
factor l (i.e. lA = {x : l−1x ∈ A}). In this limit semi-classical methods are often useful. To study the eigenvalues
of KE,lA, it is convenient to characterize the behavior of Trf(KE,lA) for various functions f . We immediately see,
since in our situation [H0(p),∆] is supported only on the boundary of the system, that in the volume term we may
commute the χA terms in the perturbations Wi and the free propagator. This gives the asymptotic leading term for
the number of sub-gap states as the number of eigenvalues of KE,la larger than one. The semiclassical approximation
expresses it as an integral over the classical phase space:

N(E, 0) ∼ ldvol(A)
∫

Θ[(H0(p)− E)−1σx)− 1]ddp (24)

where Θ is the Heaviside step function.
We may view the operator KE,A as a higher dimensional block of a Toeplitz operator: the kernel depends only on

x − x′, however the x, x′ indices are restricted to be in A. This is equivalent to chopping a “block” from a regular
matrix. The theory describing the asymptotic properties of blocks of Toeplitz matrices is based on various Szegö
theorems, and appears in numerous problems in physics. Most famously, the strong (two-term) Szegö limit theorem
was initially used in the celebrated computation of the spontaneous magnetization for the 2D Ising model by Onsager
(see e.g.23). The Szegö limit theorem also plays a special role in entanglement entropy studies, see in particular24,25.

To try and describe the next term, we turn to a higher dimensional generalization of the Szegö limit theorem, which
has been extensively studied by Widom26. Denote GE(p) = (H0(p) − E)−1σx. Given a unit vector direction nx, we
can define an operator acting on functions of a single variable, with kernel :

GE,nx,p⊥(s− t) =
∫
eip||(s−t)GE(p⊥ + nxp||)dp||. (25)

Using26 we see that

Trf(KE,lA) ∼ ldvol(A)
(2π)d

∫
f [GE(p)]ddp+

ld−1

(2π)d−1

∫
∂A

dx
∫
p⊥·nx=0

dd−1p⊥tr
[
f(χ+GE,nx,p⊥χ+)

−χ+f(GE,nx,p⊥)χ+

]
+ o(ld−1) (26)
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where nx is the normal to ∂A at x. For the case of an s-wave superconductor the operator GE,nx,p⊥ can be computed
explicitly:

GE,nx,p⊥(s− t) =

−
√

π∆2
0

2(∆2
0−E2)

Im( e
−|s−t|k+(p⊥)

k+(p⊥) )(∆0 + zσx)

+i
√

π
2 ∆0Re( e

−|s−t|k+(p⊥)

k+(p⊥) )σy (27)

where where k±(p⊥) =
√
p2
⊥ − µ± i

√
∆0

2 − E2, and Re k± > 0 (here iσy = (0, 1,−1, 0)).
In our case, we are interested in the number of eigenvalues above 1. Thus we need to solve this problem for

f(λ) = Θ(λ− 1). However, for this function the arguments leading to (26) are no longer applicable, but rather, due
to the discontinuous nature of f , the area term as written in (26) is divergent. We conjecture that in such a case, the
boundary term should be modified to:

ld−1

(2π)d−1

∫
∂A

dx
∫
p⊥·nx=0

dd−1p⊥tr
[
f(χl+GE,nx,p⊥χl+)

−χl+f(GE,nx,p⊥)χl+
]

+ o(ld−1), (28)

where χl+(s) = θ(0 < s < l). In analogy to the appearance of logarithmic corrections when considering similar
expressions for the entanglement entropy of fermions in d-dimensions, we expect this term to scale as O(ld−1 log l),
which also seems to be consistent with a preliminary numerical investigation.

In this case, (as well as for any isotropic superconductor), this integral is independent of the direction nx, and so
we have that the boundary term is given by:

ld−1 log l
(2π)d−1

vol(∂A)mf (E) (29)

for some function mf (E). The transformation f → mf is independent of the shape, and we believe can be studied
using Wienner Hopf methods for specific cases.

Finally, we remark that it has been argued that there is a mini-gap present in the local density of states if the
shape of the normal region corresponds to a chaotic “Andreev billiard”27–30. The mini-gap is of order ∆0 log(kF l),
and it’s nature depends on τE/τD, where τD is dwell time in the normal region and τE is the Ehrenfest time. This
question has recently been revisited in31. To arrive at this result, the strategy is to consider the BdG equation within
the Andreev approximation and analyzing possible classical trajectories. It would be of interest to see whether such
a result may come out of a Birman-Schwinger like analysis.

VI. CONCLUSIONS AND OUTLOOK

To summarize, in this paper, we studied the bound states in superconductors using a Birman-Schwinger approach.
The advantage of the method is its validity for general perturbations, and beyond Andreev approximation. Our
main results are stated in following equations: The bound on sub-gap states (11), the Cwikel-Lieb-Rozenblum type
inequality for BdG (20) and the asymptotic expression for the number of states in large regions with the conjecture
(28) for the scaling ld−1 log(kF l) of the sub-leading term. For most physical situations the Birman-Schiwnger bound
(11) seems a better bound than the CLR bound (20), since it gives a lower upper bound for large fermi energy µ.

In the same way it is possible to study the effect of adding disorder potentials, as well as spatially varying or
momentum dependent ∆. Because of the wide interest in the properties of vortices in such systems it is also of
great interest to understand if the Birman-Schwinger methods can be useful in the study of bound states in vortices.
Indeed, it is not immediately clear how this should be done: The presence of core states in vortices seems to be
mainly due to the phase winding around the vortex core (see, e.g.32), and arguably less sensitive to the supression
of order parameter in the core. Since the phase winding is of a topological nature (i.e. it is discrete) it cannot be
considered as a perturbation which is turned on in a continuous way from zero, as in the case we have considered.
The present approach may be utilized to understand the interplay between the topological and non-topological state
binding. To do so, one should take as the unperturbed vortex an idealized radially symmetric vortex, and then add
phase gradients and order parameter suppression as perturbations, and study the additional bound states introduced
in this manner.



8

Acknowledgments: I would like to thank A. Auerbach and A. Elgart for useful discussions, and the hospi-
tality of the Aspen Center for Physics where this research was initiated. I acknowledge financial support from NSF
grant No. DMR-0956053.

Appendix: Cwikel-Lieb-Rozenblum for BdG

A. Estimates on singular values

To control the spectrum of the Birman Schwinger operators, we will use the following inequality (p > 2), (Thm
XI.22 in33):

sn(âb) ≤ n−1/pCp,d||a||p||b||p,w, (30)

where sn is the n-th singular value of the operator âb = a(x)b(i∇), i.e. the nth largest eignvalue of the operator√
(âb)†âb. Here Cp,d is a constant, ||a||p = (

∫
dx|a(x)|p)1/p is the Lp norm, and the value ||b||p,w is defined as follows

(pg. 30 in34). Defining:

Mb(t) = vol(x||b(x)| > t) (31)

||b||p,w is given by:

||b||p,w = inf
C
{C : Mb(t) <

Cp

tp
∀t} (32)

Note ||b||p,w is not strictly speaking a norm, since it does not satisfy a triangle inequality. It is called weak since
Lp ⊂ Lwp .

To familiarize ourselves with computing ||b||p,w consider first the following example:
Example: Let us compute ||b||3,w for b(x) = (x2 + c)−1/2 assuming c > 0. We have:

Mb(t) = vol(x|(x2 + c)−1/2 > t) =
vol(x2 < 1

t2 − c)θ(
1
t2 − c > 0) (33)

In 3d this gives:

Mb(t) =
4π
3
| 1
t2
− c|3/2θ( 1

t2
− c > 0) ≤ 4π

3
1
t3

(34)

since the above inequality approaches equality for t → 0, the infimum in (32), is given by : ||b||3,w = ( 4π
3 )1/3. Note

that ||b||3,w does not depend on c.
In the derivation of the Cwikel-Lieb-Rozenblum inequality we will need the ||b||3,w estimate for

b(i∇) = ((−∇2 −m)2 + c)−1/2, (35)

with m, c > 0. Here we show that

||b||3,w ≤ c−
1
4 (v3)1/3max

[
1,
(324m2

c

)1/12
]

(36)

As in the example above, we define

Mb(t) = vol(x|((x2 −m)2 + c)−1/2 > t)
= vol((x2 −m)2 < 1

t2 − c)θ(
1
t2 − c > 0) (37)

Let vd = πd/2

Γ(d/2+1) be the volume of a d dimensional sphere. Then:

Mb(t) = 
vd(m+

√
1
t2 − c)

d/2 if 0 < t < (m2 + c)−1/2

vd

[
(m+

√
1
t2 − c)

d/2 − (m−
√

1
t2 − c)

d/2
]

if

(m2 + c)−1/2 < t < 1√
c

0 if t > 1√
c

(38)
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From the small t behavior, we see that to bound Mb uniformly as in the definition (32) the power has to be at least
1/td/2, i.e. (p ≥ d/2). In the first sector we see also that the constant has to be at least vd. However vd may be not
good enough since the bound in the region 2 may be different. Let us estimate it:

For (m2 + c)−1/2 < t < 1√
c
,

vd

[
(m+

√
1
t2 − c)

d/2 − (m−
√

1
t2 − c)

d/2
]

=

vd
∫ 1

−1
ds∂s(m+ s

√
1
t2 − c)

d/2 =

dvd
2

√
1
t2 − c

∫ 1

−1
ds(m+ s

√
1
t2 − c)

d/2−1 ≤ dvd
t (2m)d/2−1

where we used that in this region m ≥
√

1
t2 − c.

Now we have to write this as bounded by a 1/td/2 expression. If d/2 < 1 we are done, but if not, d/2− 1 > 0, like
d = 3 case, using 1

t
√
c
> 1 we have:

dvd
t (2m)d/2−1 ≤ dvd

t (2m)d/2−1 1
td/2−1(

√
c)d/2−1 =

dvd(2m)d/2−1

(
√
c)d/2−1td/2 (39)

Combining all these results we see that (for d > 2)

Mb(t) ≤ max(1,
d(2m)d/2−1

(
√
c)d/2−1

)
vd
t3/2

And thus we see that in this case we are in the weak L3/2
w space. i.e.: ||b||3/2,w ≤ (vdmax(1, 3(2m)1/2

c1/4 ))2/3.
The Cwikel estimates require p > 2. To find the expression for ||b||3,w. Since t−3/2 < t−3, say, for t < 1, we need

to deal with the large t behavior of Mb. Let us use the following:
Lemma: If Mb < Ct−α, and Mb = 0 for t > t0, then we have, for any α1 > α that:

||b||α1,w ≤ (tα1−α
0 C)1/p. (40)

Proof: for t < t0 we have

Mb(t) ≤ Ct−α < Ct−α(t0/t)α1−α < Ct−α1tα1−α
0 ,

and Mb = 0 for t > t0 therefore Mb < Ctα−α1
0 t−α1 for all t > 0. �

In our case Mb drops to zero when t = c−1/2. Therefore, for b(x) = ((x2 −m)2 + c)−1/2 we have, for p > 3/2:

||b||p,w ≤ c−1/2c
3
4p (vdmax(1,

3(2m)1/2

c1/4
))1/p (41)

and in particular:

||b||3,w ≤ c−
1
4 (v3)1/3max

[
1,
(324m2

c

)1/12
]

(42)

B. Derivation of the main inequality

Here we repeat almost exactly the analysis of Cancelier, Levy-Bruhl and Nourrigat, “remarks on the spectrum of
dirac operators”22. The main difference between our work and theirs is the presence of the chemical potential, which
appears in the estimates such as (60).

Assume ||V − Vλ|| ≤ |∆0|λ/4, then

||(H0 + V )u|| ≤ ∆0

√
1− λ||u|| ⇒

||(H0 + Vλ)u|| ≤ ∆0

√
1− λ/2||u|| (43)
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To check this note that:

||(H0 + Vλ)u||2 ≤
||(H0 + V )u||2 + 2||(H0 + V )u||||(Vλ − V )u||+

||(V − Vλ)u||2 ≤
(|∆0|2(1− λ) + |∆0|2 λ2

√
1− λ+ |∆0|2 λ

2

16 )||u||2

≤ |∆0|2(1− λ+ λ
2

√
1− λ+ λ2

16 )||u||2 ≤
|∆0|2[1− λ

2 ]||u||2 (44)

The last inequality can be checked by differentiation. Thus we have:

||(H0 + Vλ)u||2 − |∆0|2[1− λ
2 ]||u||2 ≤ 0⇒

〈u|(H2
0 − |∆0|2) + [H0, Vλ]+ + V 2

λ + |∆0|2 λ2 )|u〉 ≤ 0

Noting that for BdG H2
0 = (−∇2 − µ)21 + |∆0|21, we get for such us:

〈u|(−∇2 − µ)2 + |∆0|2 λ2 + Sλ|u〉 ≤ 0 (45)

where Sλ = [H0, Vλ]+ + V 2
λ . Therefore we are interested in the number of bound states of (−∇2− µ)2 + |∆0|2 λ2 +Sλ.

These are given by a Briman-Schwinger method. Observing the Birman Schwinger kernel:

KBdG =
1

[(−∇2−µ)2+|∆0|2 λ2 ]1/2Sλ
1

[(−∇2−µ)2+|∆0|2 λ2 ]1/2 (46)

We now note that the Sλ contains several terms, of the following forms (there are also matrix indices, but let us ignore
these, since we are going to add the estimate for each element). We also assume ∆0 real for simplicity, also, here the
perturbation is actually of the form −∆1(x)σx, so we appropriately define ∆λ as we defined Vλ

Next we use the Cwikel inequalities (30) for p = 3 and the standard inequalities for singular numbers:
Fan’s Inequality:

µn+m+1(A+B) ≤ µn+1(A) + µm+1(B) (47)

and

µn(AB) ≤ ||B||µn(A)
µn+m+1(AB) ≤ µn+1(A)µm+1(B) (48)

to deal with the different terms in KBdG.
We get estimates for the n th singular number of three different forms (here b is as above in (35)):

1)

A1 = ∆0
1

[(−∇2−µ)2+|∆0|2 λ2 ]1/2

√
∆λ(x)×√

∆λ(x) 1
[(−∇2−µ)2+|∆0|2 λ2 ]1/2 (49)

sn(A1) ≤ ∆0

(
||
√

∆λ||3C3,d||b||3,w
1

(n/2)1/3

)2

(50)

Here we used standard inequalities for the singular values of sums and products of operators like (48), to have
sn(AB) ≤ s[n/2](A)s[n/2](B).
2)

A2 = ∆0
1

[(−∇2−µ)2+|∆0|2 λ2 ]1/2 ∆λ(x)×

∆λ(x) 1
[(−∇2−µ)2+|∆0|2 λ2 ]1/2 (51)
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Gives in the same way:

sn(A2) ≤
(
||∆λ||3C3,d||b||3,w

1
(n/2)1/3

)2

(52)

3)

A3 = 1
[(−∇2−µ)2+|∆0|2 λ2 ]1/2

(−∇2 − µ)×

∆λ(x) 1
[(−∇2−µ)2+|∆0|2 λ2 ]1/2 (53)

since || 1
[(−∇2−µ)2+|∆0|2 λ2 ]1/2

(−∇2 − µ)|| < 1, we have:

sn(A3) ≤ ||∆λ||3C3,d||b||3,w
1

(n)1/3
(54)

Combining these estimates and adding them, (and noting that ||
√

∆λ||23 = ||∆λ||3/2) we conclude the inequality:

sn(KBdG) ≤ C ′
[
∆0||∆λ||3/2||b||23,w

1
n2/3

+

||∆λ||23||b||23,w
1

n2/3
+ ||∆λ||3||b||3,w

1
n1/3

]
(55)

Now we can get the inequality as follows: we are looking for the largest N for which sN ≥ 1. Thus we multiply by
N2/3 the above inequality:

N2/3 ≤ C ′
[
∆0||∆λ||3/2||b||23,w + ||∆λ||23||b||23,w + (56)

||∆λ||3||b||3,wN1/3
]

(57)

Thus if Nm satisfies:

N
2/3
m = C ′

[
∆0||∆λ||3/2||b||23,w +

||∆λ||23||b||23,w + ||∆λ||3||b||3,wN1/3
m

]
(58)

Number of bound states must have N ≤ Nm. Let us bound Nm from above. Writing N2/3
m = A+BN

1/3
m ⇒ N

1/3
m =

B+
√
B2+4A
2 . Since

√
B2 + 4A ≤ B + 2

√
A, we have: N

1/3
m ≤ B +

√
A. Furthermore, using the generalized mean

inequality (|a|+ |b|+ |c|)k ≤ 3k−1(|a|k + |b|k + |c|k) we have:

Nm ≤ C ′
[
(∆0||∆λ||3/2||b||23,w)3/2 +

(||∆λ||23||b||23,w)3/2 + (||∆λ||3||b||3,w)3
]
≤

C ′′||b||33,w
[
∆3/2

0 ||∆λ||3/23/2 + ||∆λ||33
]

(59)

In the BdG context we have m = µ and c = λ
2 |∆0|2 in (35). There are two cases:

1) µ >
√

∆2
0−E2

18
√

2
: We have we have

||b||3,w ≤ 2(v3)1/3
( 9µ

2λ4|∆0|4
)1/6 (60)

Using (60) we have:

||b||33,w ≤ 8v3

( 9µ
2λ4|∆0|4

)1/2 (61)
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So finally:

Nm ≤ C µ1/2

λ2|∆0|2

[
∆3/2

0 ||∆λ||3/23/2 + ||∆λ||33
]

(62)

for some C.
We can now write this explicitly as an integral:

Nm ≤ C
µ1/2

λ2|∆0|2

∫
|δ∆(x)|≥ |∆0|λ

4

dx
[
∆3/2

0 (δ∆x)3/2 + (δ∆x)3
]

The optimal constants in (30) are not known in general, but the various upper-bounds for them are all of order one.
Finally, relating λ and E we get (20).

2) Similarly, for µ <
√

∆2
0−E2

18
√

2
and using (42) we get (21)
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