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We investigate the properties of the Heisenberg S = 1 chain with bilinear and biquadratic interactions in
a magnetic field using the Density Matrix Renormalization Group, Bethe ansatz and field theoretical consid-
erations. In a large region of the parameter space, we identify a magnetized ferroquadrupolar Luttinger liquid
consisting of a quasi-condensate of bound magnon pairs. This liquid undergoes a continuous pair unbinding
transition to a more conventional Luttinger liquid region obtained by polarizing the system above the Haldane
gap region. This pair unbinding transition is shown to be in the Ising universality class on top of a Luttinger
liquid, leading to an effective central charge 3/2. We also revisit the nature of the partially polarized Luttinger
liquid around and above the Uimin-Lai-Sutherland point. Our results confirm that this is a two-component liquid
and rule out the formation of a single-component vector chiral phase.

PACS numbers: 75.10.Jm, 75.10.Pq, 75.40.Mg, 75.30.Kz

I. INTRODUCTION

A particularly interesting aspect of quantum many body
systems is their ability to host ordered phases which emerge
from the spontaneous breaking of one or several of the sym-
metries of the system. In the case of spin systems, the main fo-
cus lies on possible long-range-order (LRO) due to the break-
ing of the SU(2) symmetry inherent to these systems. For
S = 1/2 Heisenberg systems, breaking this continuous sym-
metry with a purely local order parameter implies magnetic
ordering. However, when the spin is S > 1/2, there is the
alternative possibility that the SU(2) symmetry is broken by
a local quadrupolar order parameter, leading to spin-nematic
phases.1,2 Recent findings on NiGa2S4, a spin-1 material on a
triangular lattice,3 indicate the possible realization of such a
spin-nematic phase. Theoretical investigations of the bilinear-
biquadratic S = 1 Heisenberg model on this lattice geometry
have shown that it is possible to stabilize spin-nematic LRO
of ferroquadrupolar and antiferroquadrupolar type depending
on the sign of the biquadratic interaction,4,5 and that applying
an external magnetic field leads to a remarkably rich phase
diagram, with in particular a 2/3 magnetization plateau above
the antiferroquadrupolar phase.4

In this paper we investigate the one-dimensional version of
the model defined by the Hamiltonian

H = J
∑
i

[
cos θ Si · Si+1 + sin θ (Si · Si+1)

2
]
−HSztot,

(1)
where J,H > 0. While a variety of materials realizing S = 1
Heisenberg systems are known,6 the biquadratic term seems
to be more difficult to realize in nature.7 However, recent
progress in the realization of effective spin-Hamiltonians in
systems of ultracold atomic gases on optical lattices8–10 opens
up a promising alternative route to investigate such systems in
experiments.

At zero field, the properties of this model are well un-
derstood by now.11–24 For our considerations, it is helpful to

keep in mind the following aspects of its phase diagram. Be-
tween the two integrable points θTB = −π/4 (the Takhtajan-
Babujian point,14,15 TB) and θULS = π/4 (the Uimin-Lai-
Sutherland point,11–13 ULS) the chain possesses a finite Hal-
dane gap.25,26 In this phase, at the so-called AKLT point
(named after Affleck, Kennedy, Lieb, and Tasaki, Ref. 16)
θAKLT = arctan 1/3, the ground state is exactly known
to be a valence bond solid, and for θ > θAKLT the spin
correlation functions become incommensurate.22,27 Between
the ULS point and θ = π/2, the system is gapless and
shows antiferroquadrupolar spin-nematic quasi long range or-
der (QLRO).24 For negative values of θ, between θ = −3/4π
and θ = −π/4 the system is dimerized and has a finite
gap.17–19,23 For the remaining values of θ, the system is in a
ferromagnetic state.

In comparison, the properties in a field have been inves-
tigated less intensively. Most of the attention has been de-
voted to the region of positive and not too large biquadratic
interaction,28–31 and large regions of the phase diagram re-
main unexplored. For instance, the fate of the spin-nematic
phase realized at zero field in the region π/4 < θ < π/224

remains an open issue, and the finite field properties of the
model for negative biquadratic interactions are largely unex-
plored, including the finite field properties of the integrable
TB point.

In this paper, we complete previous studies and consider
the full phase diagram at finite magnetic fields over the whole
range of θ by applying the density matrix renormalization
group method (DMRG),32,33 complemented by a Bethe ansatz
(BA) solution of the TB and ULS points in a magnetic field
and field theoretical considerations. We put special empha-
sis on the possible realization of spin-nematic QLRO in the
presence of a field by explicitly computing the spin-nematic
correlation functions in real space which, for this system, has
not been achieved before.

The scope of this paper is fourfold. First, by considering the
full phase diagram of the system at finite magnetic fields we
want to make precise predictions for ongoing efforts in the re-
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FIG. 1. (Color online) (a) DMRG results for systems with L = 60 lattice sites for the magnetization of the BLBQ S = 1 chain as a
function of (H, θ). The various colors indicate the different phases of the system. (b) Phase diagram obtained from the DMRG results for the
magnetization, the correlation functions defined in Eqs. (3)-(5), (10) and for the central charge c as a function of (H, θ) and (c) as a function
of (M, θ). The black line in the magnetized dimer phase indicates a crossover line at which the exponents of C long

S and CQ,2 are both equal to
one, see Sec. III C 4 (the dashed lines are linear extrapolations to the boundary of the phase and serve as a guide to the eye). The green dashed
line below the kink transition indicates a crossover line between two different two-channel LL phases, one of them being a spin-nematic LL.
Note that, as discussed in Sec. III D 2, this line is not exactly at θ = π/4 but seems to wind around this value.

alization of such models in systems of ultracold atomic gases
on optical lattices and for future quantum magnetic materi-
als which eventually may be described in terms of the BLBQ
chain. Second, we address the possibility to realize unconven-
tional QLRO by explicitly computing the spin-nematic corre-
lation functions in real space. Third, we consider in detail the
phase transitions at finite field and study their critical behav-
ior. Fourth, we address the possibility to realize vector chiral
LRO as identified previously in frustrated S = 1/2 chains in a
magnetic field and has been proposed for the BLBQ chain in a
magnetic field.34 We will demonstrate that the magnetic field
leads to the realization of five different LL phases, and that
these magnetic phases are connected to each other by either
continuous phase transitions or crossovers. Our findings are
summarized in Fig. 1 which show our DMRG results for the
magnetization as a function of (H, θ) and the main result of
this paper which is the complete phase diagram of the BLBQ
chain in a magnetic field.

The paper is organized as follows. In Sec. II we introduce
the observables relevant for the description of the various LL
phases. In Sec. III we present the complete phase diagram
as a function of (H, θ) by discussing our results for the Mag-
netization (Sec. III A), for the central charge (Sec. III B), for
the correlation functions in the single-component LL phases
(Sec. III C), and for the correlation functions in the two-
component LL phases (Sec. III D). Concerning the single-
component LL phases, we demonstrate in Sec. III C 3 that a
ferroquadrupolar LL phase is realized, and we discuss the ex-
tension of the magnetized Haldane phase in Sec. III C 5. In
Sec. III D 1 we demonstrate the absence of vector chiral order
in the two-component LL phases, and in Sec. III D 2 we show
that one of them is a spin-nematic LL. In Sec. IV we discuss
in detail the transition from the magnetized dimer phase to the
magnetized Haldane phase, which we identify to be an Ising
transition with central charge c = 1 + 1/2 = 3/2. This sce-

nario is further corroborated by a field theoretical treatment in
the vicinity of the TB point discussed in Sec. V. We summa-
rize our findings and conclude in Sec. VI. Finally, we provide
in Appendix A and B a more detailed discussion of the BA
solutions of the model at the TB and the ULS point at finite
magnetic fields, respectively.

II. OBSERVABLES AND CORRELATION FUNCTIONS

A. Magnetization

The properties of the model have been identified by calcu-
lating with DMRG a number of characteristic quantities. The
first one is the magnetization defined by

M =
1

L

∑
i

〈Szi 〉, (2)

which has been determined as a function of θ and applied
magnetic field H [Fig. 1(a)].

B. Spin correlation functions

The second source of information comes from the behavior
of correlation functions characterizing magnetic, spin-nematic
and vector-chiral (quasi-)long-range order. We investigate
possible algebraic decay of these correlation functions and
compare the numerical values of the exponents with each
other, the exponent with the smallest absolute value giving
the dominant correlation function. This is of particular inter-
est for the characterization of the gapless LL phases at finite
field.
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The first type of QLRO is identified by the correlation func-
tions of the local spins,

C long
S (i, j) = 〈Szi Szj 〉 − 〈Szi 〉〈Szj 〉 (3)

C trans
S (i, j) = 〈S−i S

+
j 〉. (4)

In 1D, an algebraic decay of C long
S (i, j) indicates mag-

netic QLRO along the field, while a power-law behavior of
C trans
S (i, j) can be interpreted as magnetic QLRO perpendicu-

lar to the field or as a quasi-condensate of magnons.

C. Quadrupolar correlation functions

For systems with S > 1/2, however, QLRO can also be
identified by considering the on-site spin-nematic correlation
functions

CQ(i, j) = 〈 ~Qi · ~Qj〉 − 〈 ~Qi〉 · 〈 ~Qj〉, (5)

where we have introduced the local quadrupolar order param-
eter

~Qi =



2√
3

[
(Szi )

2 − 1
4

(
S+
i S
−
i + S−i S

+
i

)]
1
2

(
S+
i S

z
i + Szi S

+
i + S−i S

z
i + Szi S

−
i

)
− i

2

(
S+
i S

z
i + Szi S

+
i − S

−
i S

z
i − Szi S

−
i

)
− i

2

[(
S+
i

)2 − (S−i )2]
1
2

[
(S+
i )2 + (S−i )2

]

 . (6)

Note that only the first entry of this vector conserves Sztotal,
while the other ones change this quantum number by ∆Sz =
1 or ∆Sz = 2, respectively. This leads to three components
of the correlation functions (5): the longitudinal component
CQ,0 considering the terms conserving Sztotal, the transverse
component CQ,1 considering the entries of (6) with ∆Sz =
±1, and the pairing component CQ,2 considering the entries

x

y

z

FIG. 2. (Color online) Sketch of a ferroquadrupolar ordered state in
zero magnetic field. Note that the breaking of the spin-SU(2) symme-
try can be described by a director located on each lattice site around
which the spins fluctuate. The parallel alignement of these directors
perpendicular to the z−axis is representative for the ferroquadrupo-
lar state.

with ∆Sz = ±2. In particular, we compute

CQ,0(i, j) = 2

(
1

12

〈(
S−i S

+
i + S+

i S
−
i − 4 (Szi )

2
)

×
(
S−j S

+
j + S+

j S
−
j − 4

(
Szj
)2)〉

−
〈
Q

(1)
i

〉〈
Q

(1)
j

〉)
, (7)

CQ,1(i, j) =
1

2

〈(
S+
i S

z
i + Szi S

+
i

) (
Szj S

−
j + S−j S

z
j

)
+ h.c.

〉
(8)

CQ,2(i, j) =
1

2

〈(
S+
i

)2 (
S−j
)2

+ h.c.
〉

(9)

At zero magnetic field, these three components are identical
due to the SU(2) symmetry of the system. At finite field, how-
ever, the SU(2) symmetry is reduced to U(1) and the differ-
ent components can show different behavior and character-
ize different types of QLRO. In addition, in the presence of
a finite field, the operators entering C long

S and CQ,0 are al-
lowed to mix by symmetry. These correlation functions are
thus expected to decay with the same power law and to test
for the same type of QLRO, namely magnetic QLRO along
the field. Similarly, C trans

S and CQ,1 can mix and test for
magnetic QLRO transverse to the field, or for magnon quasi-
condensation. However, the pairing component CQ,2 has no
magnetic partner and probes possible QLRO of non-magnetic
type. In the following we will refer to a phase at finite mag-
netizations in which this component decays algebraically and
dominates as a quadrupolar or spin-nematic Luttinger liquid.
In analogy to the interpretation of (4), QLRO in CQ,2 can
also be viewed as the quasi-condensation of S = 2 bound
pairs of magnons. If, in addition, the structure factor of this
component of the quadrupolar correlation function is peaked
at a wavevector q = 0, we call the phase a ferroquadrupo-
lar Luttinger liquid which we sketch in Fig. 2: on a single
site, a finite expectation value 〈 ~Qi〉 can be envisaged as fluc-
tuations around an axis called director.4 In a ferroquadrupo-
lar phase, all directors align parallel to each other. Note
that the directors are perpendicular to the field. In previous
work, ferroquadrupolar long-range-order has been identified
for the S = 1 bilinear-biquadratic Heisenberg model on the
square35 and triangular lattice4 at zero magnetic field. In the
1D case, at zero field spin-nematic phases have been identified
numerically.24,36 They are not of ferroquadrupolar type since
the structure factor is peaked at some finite momentum. How-
ever, in Sec. III C 3 we demonstrate that such a phase is real-
ized in 1D in the BLBQ chain in a magnetic field. Note that
beyond the quadrupolar order it is possible to realize multi-
polar (quasi-)long-range order in spin systems by considering
bond products of spin-operators as described in Refs. 37–40.
However, in the following we will restrict ourselves to the in-
vestigation of possible quadrupolar order.

D. Vector chiral correlation functions

In addition to possible QLRO associated to breaking the
SU(2) or U(1) symmetry, true LRO can be obtained by break-
ing the parity of the system. This is tested by the first of the
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following two vector chiral correlation functions,

C long
κ (i, j) = 〈κzi κzj 〉

C trans
κ (i, j) = 〈κxi κxj 〉 = 〈κyi κ

y
j 〉,

where ~κj = Sj × Sj+1, (10)

Such vector chiral order has been, e.g., identified using the
DMRG in frustrated S = 1/2 and S = 1 Heisenberg
chains.40,41 In this paper, we consider a proposal of Kolezhuk
and Vekua34 in which a vector chiral phase at finite magnetiza-
tions for positive values of θ has been suggested. We address
this issue by directly computing the correlation functions (10).

E. Correlation exponents

Whenever one of the above correlation functions decays as
a power law at long distance, the decay will be described by a
positive exponent η according to:

C(i, j) ∝ |i− j|−η. (11)

The exponents will be distinguished by the same indices and
superscripts as the corresponding correlation functions: ηlong

S ,
ηtrans
S , ηQ,0, ηQ,1, ηQ,2. If several Fourier components of the

correlation functions decay algebraically, the exponents will
be distinguished by an additional index.

As pointed out above, in a magnetic field some spin and
quadrupolar correlation functions are coupled, so that ηlong

S =
ηQ,0 and ηtrans

S = ηQ,1. So we end up with three a priori
independent exponents: ηlong

S , ηtrans
S and ηQ,2.

F. Central charge

The analysis of the phase diagram is complemented by
computing the central charge c. For systems amenable to a
description by conformal field theory this quantity character-
izes the phase and the universality class of phase transitions.42

Using the DMRG, it can be obtained easily by computing the
von Neumann entanglement entropy of blocks of consecutive
sites

S` = −Tr%` log %`, (12)

where %` is the reduced density matrix of a subsystem of size
`. In order to circumvent the oscillations which appear in the
case of open boundary conditions (see, Refs. 36 and 44 for the
behavior at the TB and at the ULS points at zero field), we ob-
tain c from systems with periodic boundary conditions (PBC),
for which Calabrese and Cardy43 have derived the general ex-
pression

S` =
c

3
log

(
L

π
sin

(
π`

L

))
+ gPBC. (13)

The numerical value of c is then obtained by computing S` for
finite systems and fitting Eq. (13) to the results.

III. PHASE DIAGRAM OF THE BLBQ CHAIN AT FINITE
MAGNETIC FIELDS

In this section, we map out the phase diagram by succes-
sively looking at the magnetization, the central charge, and
the correlation functions.
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FIG. 3. (Color online) (a) Absolute value of the algebraically de-
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[Eq. (3), red line,�],CQ,0 [Eq. (7), green line,4] andCQ,2 [Eq. (9),
blue line, ©], and C long
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- is shown. (b) Value of the exponents of C trans
S [Eq. (4)], of CQ,2

[Eq. (9)], and of C long
S [Eq. (3)] as a function of θ at M = 1/3. (c)

The same as in (b) but at M = 2/3. The vertical lines in (b) and
(c) indicate the position of the phase transitions and crossovers as
depicted in Fig. 1. Note that in the high field phase at θ = π/4 the
number of down spins is zero, leading to a vanishing CQ,2. In (b)
and (c) the value of ηlong

S close to the phase transition at θ ≈ −0.2π
is not shown since it is strongly affected by finite size effects.
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A. Magnetization

The magnetization is depicted in Fig. 1(a). Three sepa-
rate regions of magnetization can be identified. Starting from
the dimerized phase, the magnetization of the finite systems
grows regularly in steps of ∆M = 2/L, similar to the behav-
ior in certain polarized S = 1/2 magnetic systems.37–40,45–47.
This is rather natural. Indeed, in this parameter range (large
negative biquadratic interactions), the system dimerizes to
form singlet pairs, and the quintuplet crosses the triplet when
the bilinear interaction vanishes. In this region, the first ex-
citation of a pair of spins to cross the singlet upon applying
a magnetic field is a quintuplet with Sz = 2, leading to the
step size of 2/L. In contrast to this, in an intermediate region
around the Heisenberg point θ = 0 the magnetization grows
in steps of ∆M = 1/L. In the region −π/4 ≤ θ . −π/10
the results for finite systems indicate a line of transitions at
which the magnetization steps change from ∆M = 2/L to
∆M = 1/L upon increasing θ and keeping H = const, or
upon increasing H at constant θ, indicating the presence of
a phase transition. This phase transition will be discussed in
detail in Sec. IV. By further increasing θ, we identify a kink
anomaly developing at θ & π/9 and persisting up to θ = π/2.
Its position on the magnetization curve grows quickly up to
the ULS point and then seems to saturate at M ≈ 0.6, in
agreement with previous findings concentrating on the Hal-
dane phase (Refs. 29 and 30) and the vicinity of the ULS
point (Refs. 28 and 31).

B. Central charge

The central charge has been calculated throughout the
phase diagram. It is equal to 2 below the kink, and equal to
1 everywhere else (except along the transition line where the
magnetization steps change from ∆M = 2/L to ∆M = 1/L,
where it is equal to 3/2, see below). Typical results are plotted
in Fig. 4.

When the central charge is equal to 1, the system is a single
component Luttinger liquid, and all correlation exponents are
controlled by a single parameter, leading to specific relation-
ships between the exponents of algebraic correlations.

When the central charge is equal to 2, the system is a 2-
component Luttinger liquid, and the exponents of the alge-
braic correlations can be obtained from the dressed charge
matrix (see appendix B).

So magnetization and central charge reveal the presence
of three main phases: two single-component Luttinger liquid
phases with magnetization steps ∆M = 2/L to ∆M = 1/L
respectively, and a two-component Luttinger liquid phase. We
now turn to a careful investigation of correlations inside these
phases to identify the nature of the dominant correlations.

C. Correlation functions in the single component Luttinger
liquid phases

In this and the following section we base the characteri-
zation of the phases on the values of the exponents of CQ,2,
Ctrans
S and C long

S . It is sufficient to consider only these corre-
lation functions since, as expected due to the mixing at finite
field, we find that transverse or longitudinal correlation func-
tions decay with the same exponent, respectively. An excep-
tion to this is the longitudinal component of the vector chiral
correlation function, which we find to decay with an exponent
of approx. 2 for all values of M and θ.

The behavior of the exponents reveals important aspects of
the phase diagram: As seen in Figs. 3(b) and (c), the trans-
verse correlation functions decay algebraically with an expo-
nent whose absolute value is much smaller than ηQ,2, as soon
as the size of the magnetization steps changes to ∆M = 1/L,
revealing a fundamental change in the physics despite the fact
that the central charge on both sides of the transition is c = 1.
The critical value of θ at which this transition takes place de-
pends on the magnetization. This scenario is reminiscent of
the paired superfluid phase and pair-unbinding transition to
a superfluid of single bosons identified in Ref. 48 for systems
of hard-core bosons with correlated hopping on the square lat-
tice. At the present, it is unclear if in this system the transition
is of first or second order. In the case of the BLBQ chain,
however, we identify the transition to be a continuous one as
we discuss in detail in Sec. IV. In the following, we address
the various aspects concerning the correlation functions and
the physics they reveal in more detail.

1. Exponent of the transverse correlation functions

In the discussion of the phase diagram, we mainly consider
the exponents ηtrans

S and ηQ,2. This is possible since we iden-
tify both, from the numerical data as well as from a field the-
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FIG. 4. (Color online) Block entropy for a system with L = 60
lattice sites and PBC at θ = π/6 below the kink transition (M =
1/3) and above (M = 2/3). The solid lines indicate the fit with
Eq. (13), the labels denote the central charge obtained by this fit.
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ory and Bethe ansatz approach (see Sec. V and Appendix A),
that the exponent ηlong

S in the single channel LL phases is the
inverse of the one of the corresponding transverse correlation
function, i.e., ηlong

S = 1/ηQ,2 in the magnetized dimer phase
and ηlong

S = 1/ηtrans
S in the magnetized Haldane phase. Note,

however, that the longitudinal correlation functions posses an
additional oscillating component which makes it more diffi-
cult to obtain the numerical value of the exponent with a high
precision. In order to obtain accurate results, we fit the expo-
nent ηlong

S to the Friedel oscillations in the local spin density
〈Szi 〉 using expressions obtained by bosonization, as discussed
in Sec. V below. We apply Eq. (35) in the magnetized Hal-
dane phase and Eq. (41) in the magnetized dimer phase by
performing the fit only in the bulk region around the center
of the system. We find that in the magnetized Haldane phase
close to the transition to the ferroquadrupolar LL, finite size
effects become predominant due to the vicinity of the critical
point. However, in contrast to the approach used in Ref. 49,
using these expressions it is possible to obtain accurate results
without introducing additional phenomenological fitting pa-
rameters. Note that in the region where c = 2, there is no
simple relation between the exponents of the various corre-
lation functions, as discussed in more detail in Appendix B.
However, we find this exponent to be larger than ηtrans

S and
ηQ,2, so that we conclude that the longitudinal correlations do
not become dominant in the two channel LL region.

2. Oscillatory component of the longitudinal correlation functions

We find that in the magnetized Haldane phase the oscilla-
tory component of the longitudinal correlations decays faster
at larger magnetizations, and substantially faster than in the
ferroquadrupolar LL phase. The frequency of this oscillation
depends on the value of the magnetization, and changes upon
crossing the phase transition. It is remarkable that the wave
vector of these oscillations in the ferroquadrupolar LL phase
is π(1−M), while at the Heisenberg point it is 2πM .50,51 This
can be understood in terms of the bound pairs of magnons
populating the lattice, leading to an effective filling which is
only half the value of the magnetization. This aspect will be
discussed in more detail in Sec. V in the context of a field
theoretical treatment.

3. Ferroquadrupolar Luttinger liquid phase

We now focus on the region of the phase diagram in which
the magnetization steps are of size ∆M = 2/L at high mag-
netizations (the light green region in Fig. 1). In Fig. 3(a) we
present our DMRG results for the various correlation func-
tions as obtained for systems with L = 60 lattice sites with
open boundary conditions at M = 2/3 and θ = −0.2π, a
case which is representative for this phase. The plot shows
that the pairing component of CQ decays slowest, consistent
with a spin-nematic phase. Since the structure factor asso-
ciated to this correlation function is peaked at a wave vector
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FIG. 5. (Color online) Exponents ∆1,2 of the power law decay of
C long
S and of CQ,2, respectively, at the TB point (θ = −π/4) as

functions of the magnetization per site as obtained by Bethe ansatz (s.
Appendix A). For small magnetizations C long

S characterized by the
exponent ∆1 dominates, while for large magnetization CQ,2 charac-
terized by the exponent ∆2 becomes dominant.

q = 0, and the central charge is found to be c = 1, we con-
clude that the system realizes a single channel ferroquadrupo-
lar LL phase. At the same time, the transverse spin correla-
tion function decays exponentially, showing that the single-
spin excitation spectrum possesses a finite gap and that there
is no quasi-condensation of magnons. This interpretation is
further confirmed by the analysis of the one-magnon and two-
magnon spin gap, which is presented in more detail in Sec. IV
below. In addition, a Bethe ansatz analysis at the integrable
TB point confirms the numerical finding of a power law decay
in CQ,2 at finite field, while the one-magnon sector acquires a
gap (see Appendix A).

4. Crossover from a ferroquadrupolar Luttinger liquid to a
spin-density-wave Luttinger liquid

In Fig. 5 we show the exponents of the correlation functions
C long
S and CQ,2 as a function of the magnetization as obtained

by Bethe ansatz at the TB point θTB = −π/4. We observe
that for magnetizations M . 0.4 the exponent of C long

S is
smaller than one, while for larger magnetizations CQ,2 be-
comes dominant. This is in agreement with numerical results
for these exponents. Furthermore, we identify numerically for
values of θ away from the integrable TB point the existence
of a crossover line in the low field region which we show in
Figs. 1(b) and (c). At this crossover, the dominant correlations
change from spin-nematic ones at large magnetizations to spin
density wave (SDW) correlations. This is similar to a scenario
realized by a frustrated ferromagnetic S = 1/2 Heisenberg
chain in a magnetic field, in which a crossover line divides
spin-multipolar LL phases into a nematic and a SDW type of
LL, as discussed in Refs. 37, 39, and 40.
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5. Magnetized Haldane phase

We find that the magnetized Haldane phase extends all over
the region depicted in light blue in Fig. 1, i.e., up to values
of θ = π/2 in the high field region above the kink transition.
For the transverse spin correlations, the exponent can be ob-
tained with reliable accuracy and at the Heisenberg point the
obtained numerical value compares well with previously pub-
lished results.49,50,52,53 In the whole phase, the numerical data
indicate ηlong

S = 1/ηtrans
S . Interestingly, ηQ,2 ≈ 4ηtrans

S , as
can be seen in Figs. 3(b) and (c). Both findings are in agree-
ment with predictions from field theory presented in Sec. V.
The exponent of CQ at low magnetizations behaves rather
smoothly at the transition. However, at larger magnetizations
its magnitude increases quickly when crossing the phase tran-
sition, leading CQ,2 to decay very fast in the high field region
of the magnetized Haldane phase. This can be related to the
small number of down spins in that region. The same effect is
responsible for the complete suppression of these correlations
at the ULS point due to the absence of down spins at this point
which is discussed in Ref. 31 and in Appendix A.

Note that ηtrans
S jumps at the transition from the magnetized

Haldane phase to the ferroquadrupolar LL phase. This is due
to the nature of the phase transition and can be explained in
terms of a field theory treatment of the transition, presented in
Sec. V B 3.

With this we conclude the discussion of the single compo-
nent LL phases and turn now to the behavior of the correlation
functions below the kink transition.

D. Correlation functions in the two-component Luttinger
liquid phases

In this section, we turn to the phases realized below the kink
transition and characterize them by identifying the dominant
correlation functions.

k = 0 k1 k2
longitudinal correlations:
CSlong 1.91 1.75 1.77
CQ,0 1.75 1.58 1.71
Bethe ansatz 2 1.60 1.63
transverse correlations:
CStrans – 1.37 1.51
CQ,1 – 1.38 1.51
Bethe ansatz – 1.18 1.28
spin-nematic correlations:
CQ,2 1.61 1.38 –
Bethe ansatz 1.68 1.20 –

TABLE I. Comparison of the values for the exponents of the various
correlation functions at the ULS point θULS = π/4 at M = 1/3 as
obtained by DMRG and Bethe ansatz. We display the exponents of
the non-oscillatory part, k = 0, and the two smallest values at finite
wave vectors k1 and k2.
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FIG. 6. (Color online) Bethe ansatz results for the exponents of the
dominant component of the correlations at the ULS point θULS =
π/4 in the 2 LL region below the kink. The results shown are ob-
tained by the Bethe ansatz calculation presented in Appendix B and
show the smallest values of Ctrans

S and CQ,2 as a function of the
magnetization per site. We observe a crossover between a regime
where transverse spin correlations and quadrupolar correlations are
dominant at M ≈ 0.258. Note that the exponents of the other com-
ponents of the correlations are larger and are discussed in more detail
in Appendix B.
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FIG. 7. (Color online) Vector chiral correlation functions below and
above the kink transition at the same values of θ and M as in (a).

1. Absence of vector chiral order

The search for a parity broken phase is motivated by find-
ings for frustrated S = 1/2 chains, in which a kink transition
separates two single channel LLs, one of them exhibiting vec-
tor chiral order.41 By analogy, it has been suggested that the
same scenario might occur in the present bilinear-biquadratic
S = 1 chain.34 However, as discussed in Sec. III B, in the
whole region below the kink the central charge is c = 2, sup-
porting a scenario in which two-component LL physics with-
out vector chiral order is realized. This is confirmed by our re-
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sults for the vector chiral correlation functions shown in Fig. 7
which do not indicate the presence of parity breaking. We
therefore conclude that vector chiral order is not realized and
that below the kink transition in the whole region two channel
LLs are realized which we will further characterize in the next
section.

2. Crossover from a SDW to a spin-nematic two channel Luttinger
liquid

As shown in Fig. 3(b), in the region π/9 . θ . π/4
the transverse spin correlations are more dominant than the
quadrupolar ones, while in the region π/4 < θ < π/2 the
quadrupolar correlations tend to be dominant. The presence
of such a crossover line is confirmed by a Bethe ansatz anal-
ysis at the ULS point θULS = π/4 presented in more detail
in Appendix B. Note that the presence of the two massless
modes leads to oscillating components at various momenta,
which makes it difficult to obtain the numerical values of the
exponents of the correlation functions. However, at the ULS
point we can compare to the Bethe ansatz results, see Tab. I.
The numerical values are obtained for M = 1/3, and a good
agreement between the DMRG and the Bethe ansatz results is
obtained.

As shown in Fig. 6, the Bethe ansatz results demonstrate
that for M . 0.258 the spin-nematic correlations are domi-
nant, while at larger fields the transverse spin correlations are.
A further numerical analysis of the exponents around θ = π/4
indicates that the crossover line is, indeed, bent. It seems to
exist at values θ < π/4 for M < 0.25, while for M > 0.25
it seems to exist at θ > π/4, but bending back towards π/4
upon further increasing M . However, since the values of the
exponents are so close, it is very difficult to identify the ex-
act position of this crossover line numerically and therefore
we leave this aspect for future investigations. Due to this
crossover line, the system seems to reflect to some extent the
behavior at zero field, where the system is in the gapped Hal-
dane phase for θ < π/4, but realizes an antiferroquadrupolar
c = 2 critical state for θ > π/424. Note that this spin-nematic
LL is not a ferroquadrupolar LL since the structure factor of
the quadrupolar correlations is not peaked at a wave vector
q = 0, but at wave vectors which depend both on the value of
θ and on the strength of the magnetic field H as discussed in
Ref. 31 and in Appendix B.

Summarizing all these findings, we obtain the magnetic
phase diagram of the BLBQ S = 1 Heisenberg chain pre-
sented in Figs. 1(b) and (c). In the next section, we will
discuss in detail the nature of the transition from the ferro-
quadrupolar LL to the magnetized Haldane phase at finite
magnetizations.

IV. PAIR-UNBINDING TRANSITION

In this section, we focus on the nature of the phase tran-
sition between the ferroquadrupolar LL and the magnetized
Haldane phase. By considering systems with up to L = 480

 0

 0.2

 0.4

 0.6

 0.8

 1
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Haldane
 gap
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FIG. 8. (Color online) Line of phase transitions between the ferro-
quadrupolar LL and the magnetized Haldane phase (a) as a function
of (H, θ) and (b) as a function of (M, θ). The data points indicate
the position at which the step size of the magnetization changes from
∆M = 2/L to ∆M = 1/L for systems with L = 120 lattice sites.

lattice sites, we do not find any indication for the formation of
a jump in the magnetization curve, showing that a continuous
rather than a first order transition (metamagnetic transition)
is taking place. Our findings for the magnetization curves
indicate that an infinitesimal magnetic field at the TB point
leads immediately to the binding of two magnons, while for
θ > θTB closing of the Haldane gap leads to the condensation
of single magnons. On the other hand, for the fully polarized
state, decreasing the field will lead to such bound states in the
region θ ≤ arctan(−1/3),54 while for larger values of θ the
excitations of the fully polarized state are described by single
magnons. We therefore conclude that the line of transitions
is located between the TB point at zero field and −θAKLT at
the saturation field, as shown in more detail in Fig. 8. In the
following we provide further support that this transition is a
continuous one. We consider the gaps

∆1 =
1

2
[E0(Sz + 1) + E0(Sz − 1)− 2E0(Sz)] (14)

∆2 =
1

2
[E0(Sz + 2) + E0(Sz − 2)− 2E0(Sz)] (15)
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which have been applied in Ref. 37 for characterizing frus-
trated ferromagnetic S = 1/2 chains at finite magnetizations.
∆1 is a measure for the energy of single-spin excitations,
while ∆2 correspondingly characterizes two-spin excitations.
If ∆2 < ∆1, then the lowest lying excitations are charac-
terized as pairs of spins. We find that, after extrapolating to
the thermodynamic limit, ∆2 is always zero for all values of
the magnetization in this parameter region. This is confirmed
by the observed algebraic decay of the quadrupolar correla-
tion functions all over the parameter range. However, ∆1 is
finite in the upper part of the magnetization curves, but be-
comes zero at the point where the step size of the magnetiza-
tion curves changes, and remains zero in the magnetized Hal-
dane phase. In Fig. 9 we show results for ∆1(θ) after extrap-
olating to the thermodynamic limit at three different values of
the magnetization M = 0.3, M = 0.6 and M = 0.8. In all
three cases, to a good approximation the gap in the vicinity of
the transition point closes linearly and remains zero after the
transition. This supports the scenario of a line of continuous
phase transitions.

Next we address the universality class of the transition by
computing the central charge c on the line of phase transitions
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FIG. 9. (Color online) (a) ∆1(θ) at M = 0.3, M = 0.6 and M =
0.8 after extrapolation to the thermodynamic limit. (b) Example of
the finite size scaling of the gap as a function of 1/L at M = 0.3.
The solid lines are fits with second order polynomials and are shown
as a guide to the eye.

and in the adjacent phases. In Fig. 10 we show our results
for the block entropy for systems with PBC and L = 60 or
L = 120 lattice sites keeping up to m = 2000 density matrix
eigenstates. The value of the central charge is obtained by ap-
plying Eq. (13) for different values of θ at fixed magnetization
M = 0.6. At the critical point, we obtain a value close to
c = 3/2, which is reproduced everywhere on the critical line,
while we find the expected c = 1 in both the ferroquadrupolar
LL phase and the magnetized Haldane phase.

It is remarkable that the measured effective central charge
at the transition in finite field is the same as the one at zero
field at the TB point. In this case the transition belongs to the
SU(2)k=2 Wess-Zumino-Witten-Novikov (WZWN) class,55

with a unique set of scaling dimensions (and therefore expo-
nents of the correlation functions).

The nature of the transition in a finite field is discussed in
some detail using field theory methods in section V. In partic-
ular it is shown there that the value c = 3/2 for the central
charge arises from an Ising degree of freedom that becomes
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FIG. 10. (Color online) (a) Block entropy as obtained for systems
with L = 120 lattice sites with PBC around θ = −0.15π at
M = 0.6. The value of the central charge as obtained by fitting
with Eq. (13) is shown. (b) Central charge as a function of θ for sys-
tems with L = 60 and L = 120 sites with PBC. The data points
are connected by a spline-interpolation as a guide to the eye. In the
thermodynamic limit the maximum will be a sharp peak located at
the critical point.
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FIG. 11. (Color online) (a) Ratio R(|i− j|) [Eq. (16)] as a function
of θ atM = 0.6. (b) Value ofR(30) (thick lines, filled symbols) and
R(50) (thin lines, empty symbols) as a function of θ at M = 0.3,
M = 0.6 and M = 0.8 obtained for systems with L = 120 lattice
sites and PBC. The black lines are linear fits in the vicinity of the
critical points.

critical on top of an already present critical Luttinger liquid,
i.e. 3/2 = 1 + 1/2. This is analogous to what has been
found in Ref. 56 for a transition between two superfluids in a
two-component bosonic Feshbach problem, and in Refs. 57–
61 for the case of a fermionic S = 3/2 Hubbard model. In the
attractive S = 3/2 Hubbard model the Ising transition sep-
arates a quasi-condensate of pairs and a quasi-condensate of
quartets of fermions. This is reminiscent of our findings for
the BLBQ chain in which the phase transition is connecting
a quasi-condensate of magnons in the magnetized Haldane
phase with the quasi-condensate of pairs of magnons in the
ferroquadrupolar LL phase, relating a single magnon in the
BLBQ chain to pairs of fermions in the S = 3/2 Hubbard
model.

It would be interesting to identify the Z2 symmetry of the
Hamiltonian which gets broken at such pair-unbinding transi-
tions. In higher dimensions, the U(1) symmetry of the system
can be broken down partially to Z2, and this remaining dis-
crete symmetry can further spontaneously break at the phase
transition (see, e.g., Ref. 62). However, in one dimension, the
continuous U(1) symmetry cannot be broken, and identifying

the Z2 symmetry is a more difficult task. This goes beyond
the scope of the present paper in which we focus on present-
ing evidence in favor of such a scenario in the BLBQ chain
at finite fields, and we leave a further characterization of this
aspect open for future research.

The Ising transition encountered in the models mentioned
above can be characterized by considering particular ratios of
correlation functions.57 It is shown in section V that

R(|i− j|) =
〈S−i S

+
j 〉4

CQ,2(i, j)
(16)

can be used as a diagnostic of the Ising transition. More pre-
cisely, the ratio R(|i− j|) is related to a two-point function of
an Ising disorder field µ(x) by

R(|i− j|) ∝= 〈µ(x)µ(0)〉4. (17)

The magnetized Haldane phase corresponds to the disordered
phase of the Ising model, so that 〈µ(x)〉 6= 0 and hence R
is expected to tend to a finite value. On the other hand, the
ferroquadrupolar LL phase corresponds to the ordered Ising
phase and hence R will decay exponentially. At the transition
itself the field theory predicts R(|i− j|) ∼ 1/|i− j|.

In Fig. 11(a), we show our results forR at fixed value of the
magnetization when changing θ. In the ferroquadrupolar LL
phase, this quantity decays exponentially, while in the magne-
tized Haldane phase it indeed tends to a finite value. At crit-
icality, it decays ∼ 1/|i − j|. Note that in this case the value
of one or both exponents of the correlation functions needs to
jump at the transition. As we will see in Sec. V, it is the expo-
nent of Ctrans

S which behaves discontinuously, in agreement
with the results shown in Figs. 3(b) and (c). In Fig. 11(b), we
show the value of R(|i − j| = 30) and R(|i − j| = 50) as
a function of θ at various values of the magnetization. Even
though we are not considering the limit of infinite separation
between i and j, the behavior at the critical point is linear to a
good approximation.

Finally, we may consider the scaling of the Ising order pa-
rameter 〈µ(0)〉 as a function of the deviation θ − θc from the
critical point. As is shown in the next section, this is related
to R by

lim
|i−j|→∞

R(|i− j|, θ) ∝ 〈µ(0)〉8 ∝ |θ − θc|. (18)

Hence, the linear behavior shown in Fig. 11(b) is also in agree-
ment with an Ising transition. Additional support for this sce-
nario is given by comparing the values of the critical points
obtained by a linear extrapolation of R(30) and by a linear
fit to ∆1(θ). From both sets of data, at M = 0.3 we ob-
tain θc ≈ −0.2, at M = 0.6 we obtain θc ≈ −0.15, and
at M = 0.8 we find θc ≈ −0.125. Hence we conclude that
starting from the TB point at zero field, on the emerging line of
phase transitions the value of c = 3/2 is kept, but the univer-
sality class changes from SU(2)k=2 WZWN to Luttinger liq-
uid plus Ising. This agrees with the picture emerging from the
field theoretical treatment of this transition which we present
in the next section.
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V. FIELD THEORY IN THE VICINITY OF THE ISING
TRANSITION

Following Tsvelik63 we can construct a field theory descrip-
tion of the model in the vicinity of the Takhtajan-Babujian
point θTB = −π4 , H = 0. This results in a Hamiltonian of
the form

H =
iv

2

3∑
a=1

La∂xLa −Ra∂xRa − im
3∑
a=1

RaLa

+iH[L1L2 +R1R2] + g

3∑
a=1

JaJa , (19)

whereLa andRa are left and right moving Majorana fermions
and

Ja = − i
2
εabc[LbLc +RbRc]. (20)

The mass m in (19) is proportional to the deviation θ − θTB
from the Takhtajan-Babujian point. The lattice spin operators
are expressed in terms of continuum fields as

Saj ∼Ma(x) + (−1)jna(x) , (21)

where x = ja0 (a0 is the lattice spacing). HereMa are related
to the currents Ma(x) ∝ Ja(x), while na(x) are expressed in
terms of the Ising order and disorder operators as

nx(x) ∝ σ1(x)µ2(x)µ3(x) ,

ny(x) ∝ µ1(x)σ2(x)µ3(x) ,

nz(x) ∝ µ1(x)µ2(x)σ3(x) . (22)

We may bosonize the Majoranas 1 and 2 using

i[R1L1 +R2L2] ∼ 1

πα
cos
√

4π(ϕR + ϕL) ,

i[L1L2 +R1R2] ∼ 1√
π
∂x(ϕR + ϕL) ,

L1 + iL2 ∼
1√
πα

e−i
√

4πϕL ,

R1 + iR2 ∼
1√
πα

ei
√

4πϕR . (23)

Here α is a short-distance cutoff. Rewriting the Hamiltonian
(19) in terms of the canonical Bose field Φ = ϕL + ϕR and
the dual field Θ = ϕL − ϕR results in

H = H3 +HB +Hint ,

H3 =
iv

2
[L3∂xL3 −R3∂xR3]− im R3L3 ,

HB =
v′

2

[
1

K
(∂xΦ)2 +K(∂xΘ)2

]
− m

πα
cos
√

4πΦ

+
H√
π
∂xΦ ,

Hint =
2ig

πα
cos
√

4πΦ L3R3. (24)

Here K is a function of the applied magnetic field H as
well as the parameter θ. In order to deduce the structure of

the ground state phase diagram of (24) we may neglect the
marginal term Hint. This leaves us with a decoupled theory
of an off-critical Ising model H3 and a sine-Gordon model
with a chemical potential equal to the applied magnetic field
H . The latter is exactly solvable64,65 and exhibits two distict
phases. If H is less than the critical value Hc,1 the model re-
mains gapped, while it becomes critical forH > Hc,1. On the
basis of these observations we expect altogether four different
phases. The interaction termHint affects the value of the criti-
cal field Hc,1 and renormalizes the parameters inH3 andHB .
In addition to the terms written in (24) further (marginal or ir-
relevant) interactions will be generated by integrating out high
energy degrees of freedom in the underlying lattice model. In
particular, the marginal interaction Hmarginal = ∂xΦR3L3

appears to be compatible with all symmetries and therefore
ought to be generated. While this term is unimportant as long
as the Ising model described by H3 remains off-critical, it
could modify the Ising transition itself. The effects of this
interaction term have recently been analyzed in the context
of a band-filling transition in a two-subband quantum wire by
Sitte et al.66 Based on a 1-loop renormalization group calcu-
lation it was suggested that Hmarginal alters the nature of the
quantum phase transition and leads to a scaling behavior that
differs from that of H3 + HB for very large length scales.
Due to the non-scalar nature of Hmarginal these length scales
are expected to be much larger than the system sizes used in
our DMRG computations. In the following we therefore will
neglectHmarginal.

A. Weak magnetic fields H < Hc,1(θ)

For weak magnetic fields H < Hc,1(θ) the model (24) is
fully gapped. The system remains unmagnetized. There are
two phases, which are distinguished by the sign of the mass
term in H3.63,67 For θ − θTB > 0 we have m > 0 and the
Ising model described by H3 is in its disordered phase. This
corresponds to the Haldane phase. For θ − θTB < 0 we have
m < 0 and the Ising model described by H3 is in its ordered
phase. This corresponds to the dimerized phase.

B. High fields H > Hc,1(θ)

When the magnetic field exceeds the critical value Hc,1(θ)
the bosonic degrees of freedom described byHB enter a gap-
less Luttinger liquid phase. For H > Hc,1(θ) we end up with
an effective Hamiltonian of the form

H =
iṽ

2
[L3∂xL3 −R3∂xR3]− im̃ R3L3

+
ṽ′

2

[
(∂xΦ̃)2 + (∂xΘ̃)2

]
, (25)

where the parameters ṽ, ṽ′ and m̃ depend on the magnetic
field H and θ. This can be seen as follows. We may re-
move the magnetic field term in (24) by the field redefinitions
Φ′ = Φ + K

v′
√
π
Hx, Θ′ = Θ. In terms of the new fields the

cosine term inHB is oscillating in x and for sufficiently large
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H (compared to m) drops out of the Hamiltonian
∫
dx H at

low energies. Carrying out a unitary rescaling of Φ′ and Θ′

then leads to (25) (where we have also taken into account the
renormalization of the various parameters in a strong field).
The lattice spin operators are expressed in terms of the new
fields as

S±j ∼ (−1)j exp
(
±iπ
β

Θ̃
)
µ3 + . . . ,

Sz ∼ cos(βΦ̃ + π(1−M)x) σ3 + . . . ,

(S±j )2 ∼ exp
(
±i2π

β
Θ̃
)

+ . . . , (26)

where β > β(Hc,1) =
√
π depends on the applied magnetic

field H26,50 in a way that cannot be easily calculated from
within the field theory framework. In (26) we have only writ-
ten the contributions with the smallest scaling dimensions at
the TB point.

The form of (25) shows that there are two phases separated
by an Ising phase transition, which occurs when m̃ is tuned to
zero. We are now in a position to describe the behaviour of
correlation functions in these phases.

1. Haldane Phase in a field

The case m̃ > 0 corresponds to the Haldane phase in a
(strong) magnetic field. We note that the closely related case
θ = 0, i.e. the spin-1 Heisenberg model in a field, has been
discussed previously by several authors, see e.g. Refs [50, 51,
63, and 68]. The Ising model described by L3, R3 is in its
disordered phase so that

〈σ3〉 = 0 , 〈µ3〉 6= 0 . (27)

More precisely, the expectation value of the Ising disorder op-
erator scales as

〈µ3〉 ∝ |m̃| 18 . (28)

If we consider the Ising mass as a function of the parameter θ
for fixed magnetic field H , we have very close to the critical
point θc(H)

m̃ ∝ |θ − θc|. (29)

Using the expression given in (26) gives an exponentially de-
caying contribution to the zz spin correlations. The leading
long-distance behaviour is therefore due to the terms ∂xΦ̃ and
sin(2βΦ̃ + 2πMx)50,51, which gives

C long
S (i, j) ∼ A

(i− j)2
+
B cos

(
2πM(i− j)

)
(i− j)2β2/π

. (30)

Here the oscillatory contribution is always subleading as β >√
π. The dominant correlations are the transverse spin corre-

lations

Ctrans
S (i, j) ∼ (−1)i−j〈exp

(
i
π

β
Θ̃(x)

)
exp

(
− iπ

β
Θ̃(0)

)
〉

∼ (−1)i−j (i− j)−π/(2β
2). (31)

Hence we expect a correlation exponent for transverse spin
correlations

π

2β2
<

1

2
. (32)

The high-field phase is an attractive Luttinger liquid with
dominant transverse spin correlations, in agreement with
Ref. 50. The long-distance asymptotics of the quadrupolar
correlations is

CQ,2(i, j) ∼ 〈exp
(
i
2π

β
Θ̃(x)

)
exp

(
− i2π

β
Θ̃(0)

)
〉

∼ (i− j)−2π/β2

. (33)

Hence we have

lim
|i−j|→∞

|Ctrans
S (i, j)|4

CQ,2(i, j)
= const ∝ |θ − θc|, (34)

in agreement with the numerical results shown in Fig. 11(a).
In order to make contact with DMRG calculations it is use-

ful to consider Friedel oscillations in Szj for a system with
boundaries. At the Heisenberg point θ = 0 we may derive
the Luttinger liquid description of the magnetized phase of
the open chain using a strong coupling analysis as in Refs 50
and 51. This results in an effective spin-1/2 Heisenberg XXZ
chain with equal boundary magnetic fields on both ends. Stan-
dard bosonization methods then give

〈Szj 〉 ∼M +A
sin
(

2πM̃j + πϕ
)

∣∣∣N+1
π sin

(
πj
N+1

)∣∣∣β2/π
, (35)

where N is the length of the chain and

M̃ = M +
1
2 −M − ϕ
N + 1

. (36)

We expect the form of (35) to hold also away from θ = 0.

2. Dimerized Phase in a field

Here we have m̃ < 0 and the Ising model described by L3,
R3 is in its ordered phase. Hence we have

〈σ3〉 6= 0 , 〈µ3〉 = 0 . (37)

As a result the contribution to the transverse spin correlations
due to the “leading” operator identified in (26) decay expo-
nentially, as do other contributions we have considered. The
asymptotics of the zz spin correlator is

C long
S (i, j) ∼ (i− j)−β

2/(2π) cos
(
π(1−M)(i− j)

)
≡ (i− j)−∆1 cos

(
π(1−M)(i− j)

)
. (38)

On the other hand, the quadrupolar correlations behave as

CQ,2(i, j) ∼ (i− j)−2π/β2

≡ (i− j)−∆2 . (39)



13

Just above Hc,1 we have β ≈
√
π, which implies that

∆2 ≈ 2 , ∆1 ≈
1

2
. (40)

These agree with the weak-field limit of the Bethe-ansatz anal-
ysis above. We furthermore know from the Bethe-ansatz anal-
ysis that with increasing field the parameter β grows, which
implies that ∆2 decreases and ∆1 increases. For sufficiently
strong fields the quadrupolar correlations become dominant.

For an open chain we expect Friedel oscillations of the form

〈Szj 〉 ∼M + C
sin
(
π(1− M̃)j + πϕ′

)
∣∣∣N+1

π sin
(
πj
N+1

)∣∣∣β2/4π
, (41)

where for M = m/N with even m,N we find

M̃ = M +
2ϕ′ −M
N + 1

. (42)

3. Ising Transition

At the transition we have m̃ = 0 and the Ising model is crit-
ical. As a result the spin correlators acquire additional power-
law factors and become

Ctrans
s (i, j) ∼ (−1)i−j (i− j)− 1

4−π/(2β
2) , (43)

C long
s (i, j) ∼ (i− j)− 1

4−β
2/(2π) cos

(
π(1−M)(i− j)

)
,

CQ,2(i, j) ∼ (i− j)−2π/β2

.

Note that this implies that R(x) [Eq. 16] decays ∼ 1/x,
while comparing expressions (31) and (43) shows that the ex-
ponent of the transverse spin correlations jumps upon entering
the magnetized Haldane phase by a value of 1/4 independent
of the value of the magnetization. In contrast, the exponent of
CQ,2 changes continuously across the transition. These find-
ings are all in agreement with the numerical results presented
in Figs. 3(b), (c) and 11.

In conclusion, our combined numerical and field theoretical
analysis supports the picture that the Ising transition identified
in the fermionic S = 3/2 attractive Hubbard model finds a
corresponding counterpart in the pair-unbinding transition of
the S = 1 BLBQ chain at finite magnetic fields.

VI. SUMMARY AND CONCLUSION

To summarize, by combining extensive DMRG calcula-
tions, Bethe ansatz and field theoretical arguments we have
determined the complete phase diagram of the S = 1 BLBQ
Heisenberg chain in a magnetic field. At finite magnetizations,
it consists of five phases, three single component LL phases
and two two-component LL phases. Two of the single com-
ponent LL phases appear when polarizing the system starting
from the dimerized phase at negative biquadratic interactions.

At large enough fields, the LL realized in this parameter re-
gion is a ferroquadrupolar LL, which is connected to a SDW-
type of LL at lower fields via a crossover line. In the whole
region, the gap to single magnon excitations is finite, and both
LL phases are characterized by a quasi-condensate of bound
pairs of magnons. These two single-channel LLs of pairs of
magnons are connected by a continuous transition to the more
standard single component LL phase of single magnons that
appears when polarizing the Haldane phase. We determined
the transition to belong to the Ising universality class with a
central charge of 3/2 due to the contribution of the adjacent
LL phases. This transition emerges at the TB point at zero
field, showing that the magnetic field moves the universal-
ity class from SU(2)2 WZWN at zero field to Luttinger liq-
uid plus Ising at finite fields. The two-component LL phases
show up for large positive biquadratic interaction (and positive
bilinear interaction). They are separated by a magnetization
kink from the magnetized Haldane phase and are character-
ized by dominant incommensurate correlations of transverse
magnetic resp. quadrupolar type. It is remarkable that they
reflect to a certain extend the behavior at zero field. In partic-
ular, the spin-nematic character of the LL phase identified at
zero field in the region π/4 ≤ θ ≤ π/2 survives when apply-
ing a magnetic field. It is our hope that this rich phase diagram
will further motivate the search for experimental realizations
of this model both, in quantum magnetic materials as well as
in systems of ultracold atomic gases on optical lattices.
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Appendix A: Bethe Ansatz Analysis at the Takhtajan-Babujian
Point with a Magnetic Field

In this Appendix we describe in more detail the Bethe
ansatz analysis of the S = 1 BLBQ Heisenberg chain in a
magnetic field at the TB point θTB = −π4 . At this point the
Hamiltonian takes the form

H =
J√
2

L∑
j=1

Sj · Sj+1 − (Sj · Sj+1)
2 −HSz, (A1)

and is known to be solvable by Bethe ansatz14,69,70 for arbi-
trary values of the magnetic field H . The ground state is de-
scribed in terms of the integral equation

ρ2(λ) = a1(λ) + a3(λ)

−
∫ A

−A
dµ [2a2(λ− µ) + a4(λ− µ)] ρ2(µ), (A2)
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where

an(λ) =
1

2π

2n

n2 + λ2
. (A3)

The integration boundary A is fixed by the condition

ε2(A) = 0 , (A4)

where the dressed energy ε2(λ) is a solution of the integral
equation

ε2(λ) = ε
(0)
2 (λ)−

∫ A

−A
dµ [2a2(λ− µ) + a4(λ− µ)] ε2(µ).

(A5)
Here the “bare energy” is given by

ε
(0)
2 (λ) = −8πJ√

2
[a1(λ) + a3(λ)] + 2H. (A6)

Ground state energy and magnetization per site are

M = 1− 2

∫ A

−A
dλ ρ2(λ) ,

e =

∫ A

−A
dλ ε

(0)
2 (λ) ρ2(λ) . (A7)

For zero field the determination of the finite-size spectrum of
low-lying excitations is difficult because the ground state is
made from complex solutions of the Bethe ansatz equations
(“2-strings”).71–74 In a finite field matters are simpler and fol-
lowing the standard analysis75 we can establish that the finite-
size spectrum of low-lying excited states is given by

∆E =
2πv

L

[
(∆N)2

4Z2
+ (Zd)2 +N+ +N−

]
, (A8)

∆P = 2kF d+
2π

L

[
N+ −N− + d∆N

]
. (A9)

Here ∆N and d are integers and the dressed charge Z = ξ(A)
is calculated from the integral equation

ξ(λ) = 1−
∫ A

−A
dµ [2a2(λ− µ) + a4(λ− µ)] ξ(µ). (A10)

The result is shown in Fig. 12, which depicts the dressed
charge Z as a function of the magnetization M . The integer
∆N is related to the z-component of the spin by

δSz = −2∆N. (A11)

The “Fermi momentum” kF is related to the magnetization
per site by

kF =
π(1−M)

2
. (A12)

The spectrum (A9) describes a Gaussian model, which im-
plies that the asymptotic behaviour of correlation functions
takes the form75

〈O(t, x)O†(0, 0)〉 =
∑

d,∆N,N±

C(d,∆N,N±) e−2ixkF d

×(x− ivt)−2∆+

(x+ ivt)−2∆−, (A13)

where

2∆± = 2N± +

(
∆N

2Z
± Zd

)2

. (A14)

Which of the amplitudes C(d,∆N,N±) are non-zero de-
pends on the operator under consideration. The smallest cor-
relation exponents for scalar operators are obtained by the
choices

∆N = 0, d = 1 −→ ∆1 = 2Z2 ,

d = 0, ∆N = 1 −→ ∆2 =
1

2Z2
. (A15)

The z-component of the spin Szj is sensitive only to states with
∆N = 0, while (S−j )2 changes the total spin by 2 and hence
couples to states with ∆N = 1. This analysis then suggests
that the leading long-distance behaviour of correlation func-
tions is of the form

C long
S (i, j) ∼ (i− j)−∆1 cos

(
π(1−M)(i− j)

)
,

CQ,2(i, j) ∼ (i− j)−∆2 , (A16)

The exponents ∆1,2 are shown as functions of the applied
magnetic field in Fig. 5. We see that for weak fields the longi-
tudinal spin correlations dominate, while for strong fields the
quadrupolar correlations decay more slowly. The crossover
occurs at a magnetization per site of Mc ≈ 0.37.

Appendix B: Bethe Ansatz solution for θ = θULS = π
4

Here we describe in more detail the Bethe Ansatz analysis
of the SU(3) Uimin-Lai-Sutherland model11–13 in a magnetic
field, which corresponds to the point θULS = π

4 . For this
value of θ the Hamiltonian takes the form

H =
J√
2

L∑
j=1

Sj · Sj+1 + (Sj · Sj+1)
2 − hSz, (B1)
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FIG. 12. (Color online) Dressed chargeZ as a function of the magne-
tization per siteM as obtained by Bethe ansatz. Inset: magnetization
per site M as a function of the applied magnetic field (in units of the
saturation field Hc) as obtained by Bethe ansatz (blue straight line)
and the DMRG (red steps).
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and is known to be solvable by Bethe ansatz for arbitrary val-
ues of the magnetic field H . The critical properties of the
model have been previously analyzed in Ref. [31] and we be-
gin by summarizing the results obtained there.

1. Ground State Properties

The ground state is described in terms of the coupled inte-
gral equations

ρa(λ) = ρ(0)
a (λ) +

2∑
b=1

∫ Ab

−Ab

dµKab(λ− µ)ρb(µ) , (B2)

where

K12(λ) = K21(λ) = a1(λ) , (B3)
K11(λ) = K22(λ) = −a2(λ) , (B4)

ρ(0)
a (λ) = −2πδa1a1(λ), (B5)

with an(λ) defined in Eq. (A3). By virtue of the enhanced
SU(3) symmetry of the model (B1) in zero field the numbers
Mσ of σ spins (σ = 1, 0,−1) are good quantum numbers.
The z-component of total spin is one of the Cartan generators
of SU(3) and hence Mσ remain good quantum numbers even
in the presence of a magnetic field. By definition we have
L = M1 +M0 +M−1 and in the ground state we have

n1 =
N1

L
=
M0 +M−1

L
=

∫ A1

−A1

dλρ1(λ) , (B6)

n2 =
N2

L
=
M−1

L
=

∫ A2

−A2

dλρ2(λ) . (B7)

The conditions (B7) fix the integration boundaries A1,2 as
functions of the densities n1,2. The magnetization per site
is

M =
N1 −N−1

L
= 1−

2∑
b=1

∫ Ab

−Ab

dλ ρb(λ)

= 1− n1 − n2. (B8)

The integration boundariesA1,2 are determined by the applied
magnetic field through the conditions

εb(Ab) = 0 , (B9)

where the dressed energies εb(λ) are solutions of the coupled
integral equations

εa(λ) = ε(0)
a (λ) +

2∑
b=1

∫ Ab

−Ab

dµKab(λ− µ)εb(µ) .(B10)

Here the “bare energies” are given by

ε
(0)
1 (λ) = −2πa1(λ) + h , (B11)

ε
(0)
2 (λ) = h . (B12)

As a function of magnetic field there are four distinct regimes:

1. h = 0: as a result of the enhanced symmetry the
low-energy physics is described by the SU1(3) WZNW
model. The central charge is c = 2.

2. 0 < h < hc,1: the model remains in a quantum crit-
ical phase. Universal properties are described by a
two-component Luttinger liquid. The central charge is
c = 2, but the symmetry is reduced as compared to
h = 0. When h approaches hc,1 the cutoff of one of the
Luttinger liquids goes to zero.

3. hc,1 < h < hc,2: the low energy physics is described
by a c = 1 one-component Luttinger liquid.

4. hc,2 < h: the ground state is fully polarized and all
excitations have a gap.

In the following we concentrate on the two-component Lut-
tinger liquid regime 0 < h < hc,1. In Fig.13 we plot the
magnetization per site as a function of the applied magnetic
field and the densities n1,2 as functions of the magnetization.
We see that at hc,1 the density of Sz = −1 spins becomes
zero.
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FIG. 13. (Color online) Magnetization per site as a function of the
applied magnetic field as obtained by Bethe ansatz (black straight
line) and DMRG (red steps), as well as the densities n1,2 as functions
of the magnetization per site.

2. Low-lying excitations for 0 < h < hc,1

As we are dealing with a quantum critical theory there are
gapless excitations. In a finite volume L the spectrum of low-
lying excited states scales as L−1 and is related to the operator
content of the underlying conformal field theory76. The finite-
size energies and momenta of low-lying excitations can be de-
termined by standard methods77–79 from the Bethe Ansatz so-



16

lution with the result31

E(∆N,d)− E0 =
2π

L

2∑
a=1

va(∆+
a + ∆−a ) + o(

1

L
) ,

P (∆N,d)− P0 =
2π

L

2∑
a=1

∆+
a −∆−a

+ 2π(n1d1 + n2d2) + π∆N1,
(B13)

where the conformal dimensions ∆±1,2 are expressed as

∆±1 (∆N,d, N±1 ) =
1

2

(
Z11d1 + Z21d2 ±

Z22∆N1 − Z12∆N2

2 detZ

)2

+N±1 ,

∆±2 (∆N,d, N±2 ) =
1

2

(
Z12d1 + Z22d2 ±

Z11∆N2 − Z21∆N1

2 detZ

)2

+N±2 .

(B14)

Here N±a and ∆N1,2 are integer numbers,

d1 =
∆N2

2
mod 1, d2 =

∆N1

2
mod 1, (B15)

and v1,2 are Fermi velocities of the two types of elementary
excitations. They are given in terms of the integral equations
(B10), (B2) by

va =
ε′a(Aa)

2πρa(Aa)
, (B16)

where ε′a(λ) are the derivatives of the dressed energies. Fi-
nally, Zab are the elements of the dressed charge matrix

Z =

(
ξ11(A1) ξ12(A2)
ξ21(A1) ξ22(A2)

)
, (B17)

where ξab fulfil the set of coupled integral equations

ξab(λ) = δab +

2∑
c=1

∫ Ac

−Ac

dµ ξac(µ) Kcb(µ− λ) . (B18)

In Fig.14 we plot the elements of the dressed charge matrix
Z as functions of the magnetization.

3. Long-distance asymptotics of correlation functions

As the critical behaviour is described by a two-component
Luttinger liquid the asymptotic behaviour of correlation func-
tions can be extracted from the finite-size spectrum following
the analysis of Frahm and Korepin for the Hubbard model79,80.
The asymptotic behaviour of the two-point function of a local
operator O is given by

〈O(x)O†(0)〉 =
∑

d,∆N,N±

C(d,∆N,N±) x−∆

× e−2πi(n1d1+n2d2+ 1
2 ∆N1), (B19)

0 0.1 0.2 0.3 0.4 0.5

M

0

0.2

0.4

0.6

0.8

1

Z
a

b

Z
11

Z
12

Z
21

Z
22

FIG. 14. (Color online) Elements of the dressed charge matrix Z
as functions of the magnetization per site M as obtained by Bethe
Ansatz.

where the exponents ∆ are related to the finite size energies
by

∆(d,∆N,N+,N−) = 2∆+
1 + 2∆−1 + 2∆+

2 + 2∆−2 .(B20)

For a given operator O certain amplitudes C(d,∆N,N±)
will be zero due to continuous or discrete symmetries, which
sometimes are not entirely obvious81.

For later use we define a number of momenta characterizing
the oscillatory behavior of correlation functions

P1 = 2π(n1 − n2) ,

P2 = π(1− n2) ,

P3 = π(1 + n1 − n2). (B21)
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4. Longitudinal Spin Correlations

As Szj does not change the total z-component of spin only
intermediate states for which Sz = L−N1 −N2 is the same
as in the ground state will contribute to the correlation func-
tion. Hence the longitudinal correlations are characterized by
quantum numbers subject to the selection rule

∆N1 + ∆N2 = 0. (B22)

The smallest exponents are then obtained by the choices (1)
∆N1,2 = 0, d1 = ±1, d2 = 0, N± = 0,
(2) ∆N1,2 = 0, d1 = 0, d2 = ±1, N± = 0,
(3) ∆N1,2 = 0, d1 = −d2 = ±1, N± = 0,
(4) ∆N1,2 = 0, d1 = d2 = 0, N− = 0, N+ = 1,
(5) ∆N1,2 = 0, d1 = d2 = 0, N− = 1, N+ = 0.

This leads to the following form for C long
S (i, j)

C long
S (i, j) ∼ C1(i− j)−∆long

1 cos
(
2πn1(i− j)

)
+ C2(i− j)−∆long

2 cos
(
2πn2(i− j)

)
+ C3(i− j)−∆long

3 cos
(
P1(i− j)

)
+ C4(i− j)−2 + . . . , (B23)

where

∆long
1 = 2(Z2

11 + Z2
12) ,

∆long
2 = 2(Z2

21 + Z2
22) ,

∆long
3 = 2(Z11 − Z21)2 + 2(Z12 − Z22)2. (B24)

The magnetization dependence of ∆long
1,2,3 is shown in Fig. 15.

5. Transverse Spin Correlations

In the transverse spin correlator only intermediate states
with

∆N1 + ∆N2 = ±1 (B25)

contribute. The smallest exponents are then obtained by the
choices
(1) ∆N1 = ±1, d2 = ± 1

2 , ∆N2 = d1 = N± = 0.
(2) ∆N2 = ±1, d1 = ± 1

2 , ∆N1 = d2 = N± = 0.
This leads to the following form for Ctrans

S (i, j)

Ctrans
S (i, j) ∼ D1(i− j)−∆trans

1 cos
(
P2(i− j)

)
+ D2(i− j)−∆trans

2 cos(πn1(i− j)
+ . . . , (B26)

where the exponents are given by

∆trans
1 = [Z2

21 + Z2
22]

1 + det2 Z

2 det2 Z
,

∆trans
2 = [Z2

12 + Z2
11]

1 + det2 Z

2 det2 Z
. (B27)

The magnetization dependence of ∆trans
1,2 is shown in Fig. 15.

We see that the two exponents are comparable in magnitude
but ∆trans

2 < ∆trans
1 .

6. Quadrupolar Correlations

Here the operator O in (B19) changes the z-component of
total spin by ±2, so that we need to consider intermediate
states with ∆N1 + ∆N2 = ±2. The smallest exponents are
then obtained by the choices
(1) ∆N1 = ∆N2 = ±1, d1 = −d2 = ± 1

2 , N± = 0,
(2) ∆N2 = 2, ∆N1 = d1,2 = N± = 0,

This leads to the following form for CQ(i, j)

CQ,2(i, j) ∼ E1(i− j)−∆
(1)
Q,2 cos

(
P3(i− j)

)
+ E2(i− j)−∆

(2)
Q,2

+ . . . , (B28)

where the exponents are given by

∆Q,2
1 = [(Z11 − Z21)2 + (Z12 − Z22)2]

1 + det2 Z

2 det2 Z
,

∆Q,2
2 = 2

Z2
11 + Z2

21

det2 Z
. (B29)

The magnetization dependence of ∆Q,2
1,2 is shown in Fig. 15.
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FIG. 15. (Color online) Exponents characterizing the power-law de-
cays of the various correlators as functions of the magnetization per
site.

a. Dominant Power Law Correlations

We are now in a position to identify the dominant power-
law correlations. In Fig. 6 we plot the magnetization depen-
dence of the smallest exponents. We see that at low magneti-
zations the quadrupolar correlation dominate, while for larger
magnetizations the transverse spin correlations are seen to de-
cay slowest. The cross-over between these two regimes occurs
at M ≈ 0.258.
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