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We consider some classical and frustrated lattice spin models with global O(3) spin symmetry. No
general analytical method to find a ground-state exists when the spin dependence of the Hamiltonian
is more than quadratic (i.e. beyond the Heisenberg model) and/or when the lattice has more than one
site per unit cell. To deal with these cases, we introduce a family of variational spin configurations,
dubbed “regular magnetic orders” (RMOs), which respect all the lattice symmetries modulo global
O(3) spin transformations (rotations and/or spin flips). The construction of these states is explicited
through a group theoretical approach and all the RMOs on the square, triangular, honeycomb
and kagome lattices are listed. Their equal time structure factors and powder-averages are shown
for comparison with experiments. Well known Néel states with 1, 2 or 3 sublattices on various
lattices are RMOs, but the RMOs also encompass exotic non-planar states with cubic, tetrahedral
or cuboctahedral geometry of the T' = 0 order parameter. Whatever the details of the Hamiltonian
(with the same symmetry group), a large fraction of these RMOs are energetically stationary with
respect to small deviations of the spins. In fact these RMOs appear as exact ground-states in large
domains of parameter space of simple models that we have considered. As examples, we display the
variational phase diagrams of the Ji-J2-J3 Heisenberg model on all the previous lattices as well as

that of the Ji-J2-K ring-exchange model on square and triangular lattices.

PACS numbers: 75.10.Hk,75.40.Cx

I. INTRODUCTION

Finding the ground-state (GS) of an antiferromagnetic
quantum spin model is a notoriously difficult problem.
Moreover, even classical spin models at zero tempera-
ture can be non-trivial to solve, unless one carries some
extensive numerical investigation. In particular there is
no general method to determine the lowest energy config-
urations for a simple Heisenberg O(3) model of the type

E=Y x-S, )

if the lattice sites {x;} do not form a Bravais lattice. It is
only if there is a single site per unit cell (Bravais lattice)
that one can easily construct some GS' (see Sec. VIB).

Another situation where the classical energy minimiza-
tion is not simple is that of multiple-spin interactions,
where the energy is not quadratic in the spin compo-
nents. Finding the GS in presence of interactions of the
type (S;-S;)(Sk-S;) can be difficult and, in general, has
to be done numerically even on Bravais lattices. Such
terms arise in the classical limit of ring-exchange inter-
actions. For instance, the — apparently simple — classi-
cal model with Heisenberg interactions competing with
four-spin ring-exchange on the triangular lattice is not
completely solved.

In this study, we introduce and construct a family
of spin configurations, dubbed “regular magnetic orders”
(RMO). These configurations are those which respect all
the symmetries of a given lattice modulo global spin trans-

formations (rotations and/or spin flips). This property
is obeyed by most usual Néel states. For instance, the
two- (resp. three-) sublattice Néel state on the square
(resp. triangular) lattice, GS of the antiferromagnetic
first neighbor Hamiltonian, respects the lattice symme-
tries: each symmetry operation can be “compensated” by
the appropriate global spin rotation of angle 0 or 7 (resp.
0, +27/3).

By definition, the set of RMOs only depends on the
symmetries of the model — the lattice symmetries and
the spin symmetries — and therefore does not depend on
the strength of the different interactions (J(|x|) in the
example of Eq. (1)). These states comprise well-known
structures, like the two and three sublattice Néel states
mentioned above, but also some new states, like non-
planar structures on the kagome lattice that will be dis-
cussed in Sec. IV A.

The reason why these states are interesting for the
study of frustrated antiferromagnets is that they are good
“variational candidates* to be the ground-state of many
specific models. In fact, rather surprisingly, we found
that these states (together with spiral states) exhaust
all the GS in a large range of parameters of the frus-
trated spin models we have investigated. For instance,
in the case of an Heisenberg model on the kagome lattice
(studied in Sec. VIC) with competing interactions be-
tween first, second and third neighbors, some non-planar
spin structures (based on cuboctahedron) turn out to be
stable phases. In other words, the set of RMOs and spi-
ral states form a good starting point to determine the
phase diagram of a classical O(3) model, without having



to resort to lengthy numerical minimizations.”” In several
cases, we even observed that one of the RMOs reaches an
exact energy lower bound, therefore proving that it is one
(maybe not unique) GS of the model.

These states may also be used when analyzing exper-
imental data on magnetic compounds where the lattice
structure is known, but where the values (and range) of
the magnetic interactions are not. In such a case, the
(equal time) magnetic correlations — measured by neu-
tron scattering — can directly be compared to those of the
RMOs. If these correlations match those of one RMO,
this may be used, in turn, to get some information about
the couplings. With this application in mind, we provide
the magnetic structure factors of all the RMOs we con-
struct and powder-averages of some of them (see App. B).

The organization of the paper is as follows: in Sec. II
we present the definition of a RMO, a state that weakly
breaks the lattice symmetries and all the notations
needed for the group theoretical approach. In Sec. TIT A,
we explain the algebraic structure of the group of joint
space- and spin-transformations that leave a regular spin
configuration invariant (algebraic symmetry group) and
describe it for the triangular lattice (detailed calculations
are given in App. A). We then explain how to construct
RMOs in Sec. IIIB. This approach is algebraically very
similar to Wen’s construction of symmetric spin liquids,
but there are also strong differences in the invariance re-
quirements: whereas the symmetric spin liquids do not
break lattice symmetries (they are “liquids”), our RMOs
indeed break lattice symmetries but in a “weak” way (see
App. C). These sub-sections are self-contained, but can
be skipped by readers interested essentially in the results.
In Sec. ITI C, we construct all the RMOs on the triangular
lattice. In sections Sec. IV A and IV B we list the RMOs
on the kagome and honeycomb lattices (which have the
same algebraic symmetry group as the triangular lattice),
and with a minimum of algebra we present the RMOs on
the square lattice (Sec. IV C). We then show that spi-
ral states can be seen in this picture as RMOs with a
lattice symmetry group reduced to the translation group
(Sec. IVD). In Sec. V we discuss geometrical properties
of RMOs and the relationship between RMOs and rep-
resentations of the lattice symmetry group. This section
can be skipped by readers more interested in physics than
in geometry. In Sec. VI we study the energetics of these
RMOs and therefore their interest for the variational de-
scription of the T' = 0 phase diagrams of frustrated spin
models. We first show in Sec. VI A that all RMOs which
do not belong to a continuous family are energetically
stationary with respect to small spin deviations and thus
good GS candidates for a large family of Hamiltonians.
After having given a lower bound on the energy of Heisen-
berg models (Sec. VIB), we then show that over a large
range of coupling constants the RMOs are indeed exact
GSs of the J;-J5-J3 model on the honeycomb and kagome
lattices (Sec. VIC). We then display in Sec. VID a vari-
ational phase diagram of the Ji-Jo-K model on square
and triangular lattices. In Sec. VIE we discuss finite

temperature phase transitions: the non planar states are
chiral and should give rise to a T' # 0 phase transition.
Sec. VII is our conclusion.

The calculation of the algebraic symmetry groups on
the triangular lattice is detailed in App. A. Powder-
averages of the structure factors of the RMOs on tri-
angular and kagome lattices are displayed in App. B.
Analogies and differences between the present analysis
and Wen’s analysis of quantum spin models are explained
in App. C.

II. NOTATIONS AND DEFINITIONS

We will mostly concentrate on Heisenberg-spin mod-
els where on each lattice site 4, the spin S; is a three
component unit vector. But the concept of RMO can
be easily extended to the general situation where S; be-
longs to an other manifold A (as for example for nematic
or quadrupolar order parameters as encountered in some
quantum systems).

We note by Sg the group of the “global spin symme-
tries” of the Hamiltonian. In the general framework, an
element of Sg is a mapping of A onto itself which does
not change the energy of the spin configurations. For an
Heisenberg model without applied magnetic field, Sg is
simply (isomorphic to) the orthogonal group O(3). In a
similar way, we note by Sy, the lattice symmetry group of
the Hamiltonian. An element of S, acts on spin config-
urations by mapping the lattice L onto itself and is the
identity in the spin space A.

In this paper, we will restrict ourselves to the (rather
common) situation where the full symmetry group Sy of
the model is the direct product Sg x Sp.

Let G be the set of all the applications from the lattice
symmetry group S, to the spin symmetry group Sg. An
element G of G associates a spin symmetry Gx to each
lattice symmetry X:

G:SLHSS

We now concentrate on a fixed spin configuration c. We
note H. its stabilizer, that is the subgroup of Sy which
elements do not modify c. Its spin symmetry group H? is
the group of unbroken spin symmetries: H = Sg N H..

Definitions:

e A mapping G € G is said to be compatible with
a spin configuration c if the composition of an ele-
ment of Sy, with its image by G leaves ¢ unchanged:

VX e SL, GxX e H,. (3)

e A configuration c is said to be regular if any lat-
tice symmetry X € Sp can be “compensated” by an
appropriate spin symmetry Gx € Sg, which means
GxX|c) = |¢) (thatis Gx X € H.). In other words,
c is a RMO if there exists a mapping G € G such
that G and ¢ are compatible.
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FIG. 1: (Color online) A lattice symmetry X € S acts on a
spin configuration c to give a new configuration ¢’ = Xec. If ¢
is regular, there is a spin symmetry Gx € Sg such that one
gets back the initial state: Gxc' = c.

In a RMO, the observables which are invariant under
Sg are therefore invariant under all lattice symmetries.
These definitions are summarized in Fig. 1.

The simplest RMOs are those which are already invari-
ant under lattice symmetries (i.e. S C H.), without the
need to perform any spin symmetry. This is the case of
a ferromagnetic (F) configuration, with all spins oriented
in the same way. But less trivial possibilities exist, as the
classical GS of the antiferromagnetic (AF) first neighbor
Heisenberg interaction on the square lattice. This GS
possesses two sublattices with opposite spin orientations.
Each lattice symmetry X either conserves the spin orien-
tations, or reverses them, so we can choose as G x either
the identity or the spin inversion S; — —S;.

If the subgroup H? = Sg N H. of unbroken spin sym-
metries contains more than the identity, there are several
elements of G compatible with ¢. For each X, they are
as many Gx as elements in H, f . In the previous exam-
ple of the GS of the AF square lattice, H? is the set of
spin transformations that preserve the two opposite spins
orientations: this group is isomorph to O(2). Beginning
with a compatible G, each G x can be composed with an
element of HY to give an other compatible element of G.

To summarize, RMOs are not restricted to states
strictly respecting the lattice symmetries, but to states
that in some way weakly respect them. We will now ex-
plain how to construct all the regular spin configurations
on a given lattice.

III. CONSTRUCTION OF RMOS

To construct the RMOs, we proceed in two steps. In
the first step, we fiz a given unbroken spin symmetry
group H? | and consider the algebraic constraints that the
lattice symmetry group S, imposes on a mapping G € G,
assuming that some (so far unknown) spin configuration
¢ is compatible with G. These constraints lead to a se-
lection of a subset G4 of G, composed of the mappings
G which are compatible with the lattice symmetries. For
an element G of G4, the group

¢ ={GxX,X €S} x H, (4)

is dubbed the algebraic symmetry group associated to G.

When H? = {I}, the algebraic symmetry groups are
an extension of the magnetic space groups ° which are
themselves an extension of the crystallographic space
groups. To go from crystallographic to magnetic space
groups, the time reversal transformation or the identity is
combined to each of the lattice transformations. Points of
the lattice wear black or white points. To go from crys-
tallographic to algebraic symmetry groups, it is a spin
transformation which is combined to each of the lattice
transformations. Now points of the lattice wear elements
of Ss.

In 3D, there are 230 crystallographic space groups. In
2D, they reduce to the 17 wallpaper groups. In the follow-
ing sections, we are going to derive all the algebraic sym-
metry groups derived from two of the wallpaper groups,
denoted p6m (triangular Bravais lattice of Fig. 2) and
pdm (square Bravais lattice of Fig. 2) in the Hermann-
Mauguin notations. These are the simplest cases in 2D
because the most constrained, thus with the least num-
ber of groups. But we could derive the algebraic symme-
try group of any of the 2D or 3D crystallographic space
groups by the same procedure as in these examples.

In the second step of the RMO construction, one de-
termines the configurations (if any) which are compatible
with a given algebraic symmetry group.

A. Algebraic symmetry groups

We fix the spin symmetry group HS (to be exhaus-
tive, we will consecutively consider each possible H7).
Let X, Y and Z, three elements of Sy, such that XY =
Z. We will see that this algebraic relation imposes
some constraints on the mappings G which are com-
patible with a spin configuration. Indeed, we assume
that there exists a configuration ¢ compatible with G.
Then, GzZ and Gx XGyY are in H.. This implies that
GXXGyYZ_ng1 is also in H,.. Elements of Sy, and Sg
commute, so we have GXXGyYZ_ng1 = GXGngl,
which is a pure spin transformation. We deduce that

VX,YESL, GXayG(XY EHE. (5)

If the constraint above is not satisfied, G must be ex-
cluded from the set G4 of the algebraically compatible
mappings.

Now we illustrate these general considerations using
the following example: L is an infinite triangular lattice
and the spin space A is the two-dimensional sphere S,
(Heisenberg spins). Sy, is generated by two translations
Ty and T3 along vectors Ty and Ty, a reflexion ¢ and a
rotation Rg of angle 7/3, described in Fig. 2 and defined
in the (T1,T2) basis as:

Ty : (ri,me) — (r1+1,1r9) (6a)
Ty : (r1,me) — (r1,me + 1) (6b)

o (ri,rma)— (re,71) (6¢)
Re @ (r1,72) = (11— 12,71). (6d)



FIG. 2: (Colour online) Generators of the lattice symmetries
group St for the triangular, kagome, honeycomb and square
lattices. For the first three lattices : the two translations 7T}
and T» (along the two basis vectors T and T3), the reflexion
o an the rotation Re of angle /3. For the square lattice,
generators of Sy are Th, T2, o an the rotation R4 of angle
/2.

The spin symmetry group Sg is chosen to be O(3) (as
for an Heisenberg model). In such a system, the unbro-
ken symmetry group H? is either isomorph to {I}, Z,
or O(2), depending on the orientations of the spins (non-
coplanar, coplanar or colinear respectively). The non-
planar case, H? = {I}, is the most interesting case and
we choose it for this example. The two other cases can
be treated by reducing A to the circle S; or S = {1, -1}
(XY or Ising spins) and Ss to O(2) or O(1) in order to
have H? = {I}, which considerably simplifies the calcu-
lations.

We assume that a mapping G belongs to G4 (alge-
braically compatible). As HY = {I}, Eq. (5) allows to
construct the full mapping G simply from the images of
the generators of the lattice symmetry group Sp. As
several combinations of generators can produce the same
element of Sp, the images by G of the S; generators
must satisfy some algebraic relations. These relations
where needed in a similar algebraic study in Ref. 4 and
consist in all the relations necessary to put each product
of generators in the form angTflTQt?, where s = 0,1,
r=20,1,...,5 and t;, to € Z. These relations are:

Ty =TT, (7a)
T\ ReTy = R (7b)
Re¢T\ Ty = To R (7c)

Tyo=0Ts (7d)
RS=1 (7e)
o?=1 (7f)

RGO'RG =0. (7g)

From these equations and from Eq. (5) we get:

Gr,Gr, =Gr,Gr,
G1,GRrGT, =GR,
GrsG1,G1, = G1,G Ry

G1,Gs =G,Gr,
Gh, =1
Gy2=1

Gy GoGry = Go.

0 0 00 ®© oo ®© oo
| w O A6 T o
S N N N N N N

The details of the calculations are given in App. A.
The solutions can be divided in three families:

Gr, =Gr, =1, (9a)
6T1 = eTZ =7 and nm, 1 nr,, (gb)
GT1 = GT2 # I’ (9C)

where each element Gx is characterised by its deter-
minant ex = +1 (not appearing here) and by a rota-
tion Rp,g, of axis nx and of angle x € [0,7] such
that Gx = exRnyo5. Up to a global similarity relation
(Gx - MGxM~t, M € SO(3)), we obtain 28 solutions
of the system of Egs. (8) in the case of Eq. (9a), 4 for
Eq. (9b) and 8 for Eq. (9¢). The 40 solutions are listed
below :

Gr, =Gr,=1,G, =¢,1,GRr, =erl, )
Gr, =G, =1,G, =¢,1,Gry = epRyr, )
Gr, =Grp, =1,Gy =€,Rpr, Gy = €rl, (10c)

Gr, =G, =1,Gy =5 Ryr,Gry = €rRyr,  (10d)
Gr, =Gr, =1,Gy = €,Ryn, Gry = €RRxr,  (10€)
Gr, =Gr, =1,Gy = €,Ryr,Gry = erRRxg,  (10f)
GTl = Rxﬂ, GT2 = Ryﬂ,

010 010

Gy = —e, [100),Gr, =cn [001], (102)
001 100

GT1 = GT2 = RzzTﬂ'7Gg- = 5017GR6 = ERRxﬂ-, (10h)

GT1 = GT2 = RZ%WGU = Engﬂ,GRG = ERR,W. (10i)

where x | z, €,, eg = *£1 and 0 € {%, %’r} Each
line corresponds to 4 solutions, except Eq. (10f) with 8
solutions. We stress that the algebraic symmetry groups
depend on Sg, HS and on the algebraic properties of St
but not directly on the lattice L. In particular, different
lattices can have the same algebraic symmetry groups.
The results Egs. 10 are exactly the same on a honeycomb
or a kagome lattice with symmetries of Fig. 2 because the

algebraic equations Eqgs. 7 stay the same.

B. Compatible states

The second step consists in taking each element of g4
and finding all the compatible states. This last step is
fully lattice dependent.



To construct a RMO compatible with some mapping
G € G*, one first chooses the direction of the spin on
a site i. Then, by applying all the transformations of
Sr, we deduce the spin directions on the other sites. A
constraint appears when two different transformations X
and Y lead to the same site X (i) = Y'(). The image spins
have to be the same: Gx(S;) = Gy (S;). It can either
give a constraint on the direction of S;, either indicate
that no G—compatible state exists.

To find these constraints, we divide the lattice sites in
orbits under the action of Sy, (if all the sites are equiv-
alent, there is a single orbit). In each orbit, we choose
a site . Each non trivial transformation X that does
not displace i gives a constraint: Gx(S;) = S;. For each
G € G4, the associated RMOs are obtained by choos-
ing a site in each orbit, a spin direction respecting the
site constraints and then propagating the spin directions
through the lattice using the symmetries in Sp.

C. Example of RMO construction: the triangular
lattice

Let us apply this method to the example of the trian-
gular lattice. There is a single orbit, and the transforma-
tions that leave invariant the site of coordinates (0,0) in
the (T, T2) basis (see Fig. 2) are generated by o and Reg,
giving the two constraints G,(S(0,0)) = Gr,(S(0,0)) =
S(0,0).

The mapping of Eq. (10a) has compatible states only
for eg = &, = 1. They are ferromagnetic (F) states, as
shown in Fig. 3(a). Since Gr,_, = I for the Egs. (10b)-
(10f), no new RMOs can be compatible with any of them.

The mapping of Eq. (10g) has compatible states
only for eg = 1 and ¢, = —1. Then S(0,0) =
+(1,1,1)/v/3 and the state is the tetrahedral state de-
picted in Fig. 3(b), where the spins of four sublattices
point toward the corners of a tetrahedron. The sign of
S(0,0) determines the chirality of the configuration.

The next RMO is the coplanar state of Fig. 3(c),
which is compatible with Eq. (10i) for eg = &, = 1 and
S(0,0) = £(1,0,0). The three sublattices are coplanar
with relative angles of 120°. This state is not chiral be-
cause the configurations obtained with the two possible
S(0,0) are related by a global spin rotation in SO(3).

A continuum of umbrella states are compatible with
Eq. (10i) with e, = 1 and eg = —1. They are depicted
in Fig. 3(d), where the sublattices are the same than for
the coplanar states but the relative angles between the
spin orientations are all identical and < 120°. This family
interpolates between the F and the coplanar states.

We started by choosing H? = {I}, but states with
H? = Zj (for the coplanar state) or O(2) (for the F
state) have been obtained anyway. One can check that
choosing another H? would not give any new RMO. All
the RMOs are thus those gathered in Fig. 3.

The Bragg peaks of these states are displayed in the
hexagonal Brillouin zone in the right column of Fig. 3

(b) Tetrahedral state. E = —2J; — 2J2 + 6J3 — 34K/3.

YN
\ "/

U212
(c) Coplanar state. E = —3J; 4+ 6J2 — 3J3 — 3K.

F umbrella states.

FIG. 3: (Color online) Regular magnetic orders on the trian-
gular lattice. The sublattice arrangements (labelled by colors)
and the spin directions on each sublattice are displayed in the
left and center columns. A spin unit cell is surrounded with
green lines. The positions and weights of the Bragg peaks
in the hexagonal Brillouin zone of the lattice are in the right
column. The energy per site of each structure is given as a
function of the parameters of the models described in Sec VI.

and their powder-averaged structure factors in App. B
together with the formulas for these quantities.

IV. REGULAR MAGNETIC ORDERS FOR
HEISENBERG SPINS ON SEVERAL SIMPLE
LATTICES

In the following we enumerate the RMOs on the
kagome and honeycomb lattices, two lattices which have
a symmetry group S isomorphic to that of the triangu-
lar lattice. To be complete, we also present the RMOs on
the square lattice and discuss the spiral states that may
be seen as RMOs when Sy reduces to the translation

group.



A. Kagome lattice

The symmetry group Sy, of the kagome lattice is iso-
morphic to that of the triangular lattice, thus the alge-
braic solutions Egs. (10) remain valid. Carrying out the
approach of Sec. III B for this new lattice, one obtains
all the RMOs on the kagome lattice. They are displayed
in Fig. 4 together with the positions and weights of the
Bragg peaks and are listed below. The equal time struc-
ture factor is depicted in the Extended Brillouin Zone
(EBZ), drawn with thin lines in Fig. 4: the kagome lat-
tice has 3 sites per unit cell of the underlying triangular
lattice and the EBZ has a surface four times larger than
the BZ of the underlying triangular Bravais lattice, drawn
with dark lines. Powder-averaged structure factors of the
RMOs are given in App. B.

One RMO is colinear (HS = O(2)):

e the ferromagnetic (F) state of Fig. 4(a).

Two states with a zero total magnetization are copla-
nar (HS = 7Z,):

e the q = 0 state of Fig. 4(b) has 3 sublattices of
spins at 120° and a 3 sites unit cell,

e the /3 x /3 state of Fig. 4(c) has 3 sublattices of
spins at 120° and a 9 sites unit cell.

Three states with a zero total magnetization com-
pletely break O(3) (HS = {I}):

o the octahedral state of Fig. 4(d) has 6 sublattices of
spins oriented toward the corners of an octahedra
and a 12 sites unit cell,

e the cubocl state of Fig. 4(e) has 12 sublattices of
spins oriented toward the corners of a cuboctahe-
dron and a 12 sites unit cell,

e the cuboc2 state of Fig. 4(f) has 12 sublattices of
spins oriented toward the corners of an cuboctahe-
dron and a 12 sites unit cell. Note that the first
neighbor spins have relative angles of 60°, in con-
trast to 120° for the cubocl state.

Two continua of states with a non-zero total magneti-
zation completely break O(3) (HS = {I}):

e the g = 0 umbrella states of Fig. 4(g), left,
e the v/3 x /3 umbrella states of Fig. 4(g), right.

These continua interpolate between the ferromagnetic
state and the coplanar states Fig. 4(b) and Fig. 4(c).

B. Honeycomb lattice

All the RMOs on the honeycomb lattice are depicted
in Fig. 5 and listed below. The EBZ is drawn with thin
lines (its surface is three times larger than that of the
BZ).

Two RMOs are colinear (HS = O(2)):

(a) Ferromagnetic (F) state.
E=4J1 +4J2 +2J} 4+ 4J3.

q = 0 state. £ =—-2J1 —2J2 + 2J’ +4J3.

W

) V3 x V3 state. B =—2J1 +4J3 — J§ — 2J3.

(d) Octahedral state. E = 2J} — 4J3.

g #0

(e) Cubocl state. E = —2J1 + 2J2 — 2J3.

%40

(f) Cuboc2 state. E =2J; —2Jp — 2J}.

)

0 (left) and v/3 x v/3 (right) umbrella states.

(g) a=

FIG. 4: (Color online) Regular magnetic orders on the kagome
lattice and their equal time structure factors in the EBZ (see
text). The energies (per site) of these states are given for the
J1-Ja-J3-J4 model described in Sec VI.



(b) Antiferromagnetic (AF) state. E = —3J1 + 6J2 — 3.J3.

e M,
. A
L2 V’E,‘

(¢) Cubic state. E = Jy — 2J2 — 3J3.

Y Vi

(d) Tetrahedral state. £ = —J; — 2Js + 3J3.

)

(e) V states.

FIG. 5: (Color online) Regular magnetic orders on the hon-
eycomb lattice and their equal time structure factors in the
EBZ (see text). The energies (per site) are given for a Ji-Jo-
J3 Heisenberg model.

e the ferromagnetic state of Fig. 5(a),

e the antiferromagnetic state of Fig. 5(b) has 2 sub-
lattices of spins oriented in opposite directions and
a 2 sites unit cell.

Two states with a zero total magnetization completely
break O(3) (HS = {I}):

e the cubic state of Fig. 5(c) has 8 sublattices of spins
oriented toward the corners of a cube and a 8 sites
unit cell,

e the tetrahedral state of Fig. 5(d) has 4 sublattices of
spins oriented toward the corners of a tetrahedron
and a 4 sites unit cell.

A continuum of states with a non-zero total magneti-
zation partially breaks O(3) (HS = Zs):

e the V states of Fig. 5(e), which interpolate between
the F and AF states.

C. Square lattice

The symmetry group S, of the square lattice is distinct
from that of the triangular lattice (see Fig. 2) and one
has to determine its algebraic symmetry groups from a
system of equations similar to Eqgs. 7. The 168 solutions
are listed below:

GT1 = GT2 = 511; GO’ = EO'RZTH GR4 = ERRZTH
GT1 = GT2 = €1Rz7r51,Gg = €ng7T, GR4 = ERRZ%,
Gr, = G, = €1Rzns,, Go = €6 Rans, s GRy = €ERRznsps
Gr, = G1, = €1Rsr, G5 = €5 Ryns,, Gr, = ErPxr,
G’T1 = GT2 = Eleﬂ—, GU = 60Rxﬂ—, GR4 = 5RRz7'r6R;
GT1 = GT2 = 51Rz7r7 Ga = E(,—Rxﬂ—, GR4 = f:'R}%xﬂ—7
GT1 = GT2 = Elem Ga’ = EURXW, GR4 = ERRyﬂ,

GT1 = ElRXTH GTQ = glRy‘/n

01 0 0e 0
Gy=(10 0 |,Gr,=[e200],
00—¢, 00 es

where x, y, z are orthonormal vectors, e, es, €3, €1, €4,
er =1 and Jg, d,, 61 =0 or 1.

Then, the construction of the compatible states leads
to the RMOs depicted in Fig. 6 and listed below.

Two RMOs are colinear (HS = O(2)):

e the ferromagnetic state of Fig. 6(a),

o the (m,7) Néel (AF) state of Fig. 6(b) has 2 sub-
lattices of spins oriented in opposite directions and
a 2 sites unit cell.

One state with a zero total magnetization is coplanar
(HY = Zs):

e the orthogonal coplanar state of Fig. 6(c) has 4 sub-
lattices of spins with angles of 90° and a 4 sites unit
cell.

Then we have three continua of states with different spin
symmetry group H f :

e the V states of Fig. 6(d) have a non-zero total mag-
netization and partially break O(3) (H? = Zy).
They interpolate between the F and the (7, 7) Néel
states,



e the tetrahedral umbrella states of Fig. 6(e) have
a zero total magnetization and completely break
O(3) (H? = {I}). They interpolate between the
(m,m) Néel and the orthogonal coplanar state,

e the 4-sublattice umbrella states of Fig. 6(f) have a
non-zero total magnetization and completely break
O(3) (H? = {I}). They interpolate between the F
and the orthogonal coplanar state.

D. Regular magnetic orders with only translations

When the lattice symmetry group is commutative, the
construction of RMOs is particularly simple. This oc-
curs if only translations are considered. In that case, one
may chose some arbitrary directions for the spins of the
reference unit cell. Then, one has to chose an O(3) el-
ement G, associated to each unit lattice translation T;
in direction ¢ (with as many generators as space dimen-
sions). Assuming that H, CS = I, and using the fact that
the translations commute with each other, we find that
the G, also commute. A first family of solutions con-
sists in choosing a set of rotations with the same axis n,
and unconstrained angles. This gives the conventional
spiral states. Thanks to the arbitrary choice of the spin
directions in the reference unit cell, such states are not
necessarily planar.

All these solutions may be generalized by combining
one or more G, with a spin inversion —I. These gener-
alized spiral states will be noted SSs in the following.

Finally, an other family of solutions can be obtained
by choosing the G, among the set of m-rotations with
respect to some orthogonal spin directions, therefore in-
suring the commutativity, combined or not with —1.

V. GEOMETRICAL REMARKS

In this section, we discuss some geometrical properties
of RMOs.

A. Groups and polyhedra

From a RMO ¢, one can consider the set ¥ C A of all
the different orientations taken by the spins. We assume
that ¢ has a finite number of sublattices/spin directions,
so that 3 is finite. For a three-component spin system, 3
is just a set of points on the unit sphere Ss, as displayed in
central columns of Figs. 3, 4, 5 and 6. ¥ may be a single
site, the ends of a segment, the corners of a polygon or
of a polyhedra.

The four lattices studied here share some special prop-
erties: all the sites and all first-neighbors bonds are
equivalent (linked by a Sy, transformation). Due to this
equivalence, ¥ also form a segment /polygon/polyhedron
with equivalent vertices and bonds.”” A polyhedron with

[

(a) Ferromagnetic (F) state.
E=4J1+4J2 +4J3 + 14K.

K
/ r M

(b) (m,7) Néel (AF) state.
E=—-4J1+4J2 +4J3 — 2K.

(¢) Orthogonal coplanar state.
E=—-4J> +4J3 — 6K.

i

(d) V states.

(e) Tetrahedral umbrella
states (AF umbrellas).

(f) Umbrella states
(F umbrellas).

FIG. 6: (Color online) Regular magnetic orders on the square
lattice and their equal time structure factors in the square BZ.
The energy per site of each structure is given as a function of
the parameters of the models described in Sec VI.

this property is said to be quasi-regular. If the elemen-
tary plaquettes of the lattices are also equivalent (as in
the triangular, square and hexagonal lattices, but not in
the kagome lattice where both triangular and hexagonal



elementary plaquettes are present) and if ¥ is a polyhe-
dron, its faces should also be equivalent. ¥ must then
be one of the five regular convex polyhedra (Platonic
solids):'" tetrahedron, cube, octahedron, dodecahedron
or icosahedron.

We now only consider the case where HY = {I} (this
condition can always be verified by reducing A to its el-
ements invariant by H? and by consequently modifying
Sg). Clearly, the lattice symmetries constraint the possi-
bilities for the set ¥, since each lattice symmetry X per-
mutes the sites in ¥ but leaves it globally unchanged.
But since the state c is regular, these permutations can
also be achieved by a spin symmetry in Sg, and the sym-
metry group Sy of ¥ should be viewed as a finite sub-
group of Sg.

For Sg = O(3), the classification of these subgroups —
called point groups — is a classical result in geometry,
it contains seven groups (related to the three symmetry
groups of the five regular polyhedra) and seven infinite
series (conventionally noted Cy,, Chyy Crpny Dy Dpp Dia
and S,, with n € N. They are related to the cyclic and
dihedral groups). Of course, the non planar RMOs we
have discussed so far (Sec. IIIC and IV) fall into this
classification. For instance, the three- and four- sublat-
tice umbrella states of Fig. 3(d), 6(e) and 6(f) correspond
to Csy, Dag and Cy, (with respectively 6, 8 and 8 ele-
ments). The cubic, octahedral and cuboctahedronl states
correspond to the symmetry group of the cube (48 ele-
ments), and the tetrahedral state corresponds (of course)
to its own symmetry group.

B. Regular magnetic orders and representation of
the lattice symmetry group

We again focus on three-component spin systems with
a spin symmetry group Ss = O(3). In a RMO ¢ each
lattice symmetry X can be associated to a matrix Gx in
O(3). Now, as in Sec. IIT A, we can compare the actions
of two lattice symmetries X and Y. G XGyG)_(%/ belongs
to HCS . By chosing Gx invariant in all directions per-
pendicular to all spins, we obtain GxGy = Gxy, which
implies that G is a representation of the lattice symme-
try group Sy. After removing the trivial representations
associated to directions perpendicular to spins, its dimen-
sion is 1 for a colinear state, 2 for planar states, and 3
for the others. Is this representation reducible 7 If yes,
it must contain at least one representation of dimension
1 (because the maximal dimension considered here is 3),
thus there exist at least one spin direction which is sta-
ble under all the spin symmetry operations spanned by
Gx with X € Sp. Except in the trivial colinear case,
one can easily check that it is the case only for the states
belonging to a continuum. For the V-states, G is the di-
rect sum of a trivial and a non trivial 1d representation
of S. For the umbrella states, G is the direct sum of a
trivial 1d and a 2d irreducible representation (IR). For
the tetrahedral state of Fig. 6(e), G is the direct sum of a

non-trivial 1d and a 2d IR representation. For the other
cases, the associated representation is irreducible.

There is another context where antiferromagnetic Néel
states are known to be related to irreducible representa-
tions. If a quantum antiferromagnet has a GS with long-
range Néel order, its spectrum displays a special struc-
ture, called “tower of states”.””” It reflects the fact that
a symmetry breaking Néel state is a linear combination
of specific eigenstates with different quantum numbers
describing the spatial symmetry breaking, and with dif-
ferent values of the total spin S, describing the SU(2)
symmetry breaking. If such a quantum system has a
GS with a regular Néel order, its tower of state should
have an S = 1 state with the same quantum numbers
as those of the irreducible representation X — Gx dis-
cussed above. The reason why this representation shows
up in the S = 1 sector of the tower of state is because
S = 1 corresponds to the action of the lattice symmetries
onto a three-dimensional vector, as the classical spin di-
rections.

VI. ENERGETICS

As discussed in the introduction, there is no simple way
to find the GS of a classical spin model if the lattice is not
a Bravais lattice, and/or if spin-spin interactions are not
simply quadratic in the spin components. So far, we have
discussed RMOs from pure symmetry considerations, but
in Sec. VIA we show that, under some rather general
conditions, a RMO is a stationary point for the energy,
whatever the Hamiltonian (provided it commutes with
the lattice symmetries).

In addition, we argue that RMOs are good candidates
to be global energy minima. To justify this, we first
discuss a rigorous energy lower bound (Sec. VIB) for
Heisenberg like Hamiltonians and investigate in Sec. VI C
several Heisenberg models with further neighbor interac-
tions (Ji1, Ja, Js, etc.) on non-Bravais lattices such as
the hexagonal and kagome lattices. In large regions of
the phase diagrams, one RMO energy reaches the lower
bound and is one (may be not unique) exact GS.

A. A condition for a RMO to be ‘“stationary” with
respect to small spin deviations

To address the question of energetic stability of RMOs,
we give some conditions under which an infinitesimal
variation of the spin directions would not change the en-
ergy (necessary condition to have a GS). To simplify the
notations we consider an Heisenberg model with some
competing interactions (such as in Eq.( 1)), but the ar-
guments easily generalize to multi-spin interactions of the
form (S; - S;)(Sk - S;) ... (respecting the lattice symme-
tries).

We assume that there is a non trivial lattice symmetry
X which leaves one site ¢ unchanged: X (i) = i (existence



of a non-trivial point group). In addition, we assume
that a spin rotation R, of axis n and angle 6§ # 0 can
be associated to X in order to have R;Xc = ¢. These
conditions insure that the invariant direction of R, is
n = 1S;. Excepted states belonging to a continuum,
all RMOs verify these conditions on the lattices we have
studied .

With these conditions, the derivatives of the energy
with respect to the spin directions vanish. The proof is
as follows. One considers the local field h; = gTE which
is experienced by the spin . h; is a linear combination

of the S; where j runs over the sites which interact with

the site i:
z*ZJd Z S]a (12)

JEN(i)

where Ny(7) is the set of the neighbors of i at distance
d on the lattice. Since the configuration ¢ is invariant
under R, X, one may also compute h; as

hi =Y Ja > R(S)). (13)
d

JEX(Na(i))
X reshuffles the neighbors of ¢ (at any fixed distance)

but since X (i) = i, N4(i) is globally stable: Ny(i) =
X (N4(3)). So, from Eq. (13), we have
h; = Rs(h;). (14)

We therefore conclude that h; is colinear with n and thus
colinear with S;. This shows that the energy derivative
% vanishes for spin variations orthogonal to S; (longi-
tudinal spin variations are not allowed as (S;)? must be
kept fixed).

All RMOs studied in the previous examples that do not
belong to a continuum are thus energetically stationnary
with respect to small spin deviations. They are thus in-
teresting candidates for global energy minima.

B. Lower bound on the energy of Heisenberg
models

The Fourier transform Sq; of the local spin on a peri-
odic lattice of N unit cells is defined by

Sqi = \/% Z Sxie—iqx.

where each site is labeled by an index ¢ = 1...m (m is
the number of sites per unit cell), x is the position of
its unit cell, and q is a wave vector in the first Brillouin
zone. For an Hamiltonian in the form of Eq. (1), the
energy can be written as:

>

i,j=1,....,m

qEBZ
t,j=1,....m

Jij (V) Sxi - Sxtvj (15)

Jij (a) S_qi-Sqj (16)
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with

= Z Jij(v)e' . (17)

v

Jij(a)

Since (Six)? =1 for all i and x, >-, S = >, S2, =
mN, we see that a lower bound on the energy (per site)
is obtained from the lowest eigenvalue of the matrices

J(q):

> min (J™in 18
L= in (73) 09
where JJ'" is the lowest eigenvalue of the matrix J(q).
If the lattice has a single site per unit cell (m = 1) this
lower bound is reached by a planar spiral of the form:

Sx1 =ucos(Q - x)+ veos(Q - x) (19)

where Q is the propagation vector (pitch) of the spiral,
and corresponds to a minimum of leni“. In spin space,
the plane of the spiral is fixed by two orthonormal vec-
tors u and v. When m = 1, it is only when Janin admits
several degenerate minima in the Brillouin zone that ad-
ditional non-spiral (and possibly non-planar) GS may be
constructed. If the lattice has more than one site per unit
cell, an attempt to construct a spiral with a pitch corre-
sponding to the smallest eigenvalue J(Q)™" will gener-
ally not lead to a physical spin configuration with fixed
spin length S7_ = 1 at every site. We will however see
in the next section that for some models, a non-planar
RMO may reach the lower bound, whereas all the spiral
states are energetically higher.

C. Variational phase diagrams of Heisenberg
models on the kagome and hexagonal lattices

In this section we comment the phase diagrams of J;-
Ja-J3(-J}) Heisenberg models on the kagome and hexag-
onal lattices. .J, is the interaction between n'" neigh-
bors. On the kagome lattice, there are two types of third
neighbors depicted in Fig. 8(a), and thus two coupling
constants J3 and Jj.

For each set of parameters, we determined the lowest
energy RMO (the energies of RMOs are given in Figs. 4
and 5), the lowest energy SS of Sec. IVD and the lower
bound on the energy. The results on these two lattices
are described in Figs. 7 and 8. Such phase diagrams are
a priori variational. However, it turns out than in all the
colored (white included, grey and black excluded) regions
of Figs. 7 and 8, the RMO with the lowest energy reaches
the rigorous lower energy bound of Eq. (18). This demon-
strates that (at least) one GS is regular in these regions of
the parameter space. In the grey areas, the energy lower
bound is not reached, but the regular near-by state could
be a GS as no SS has a lower energy. In the black ar-
eas, the GS is not regular: some SS is energetically lower
(but sometimes still higher than the lower bound). All
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FIG. 7: (Color online) Phase diagram of the Ji-J2-J3 Heisen-
berg model on the honeycomb lattice. Labels refer to the
RMOs described in Fig.5. In each colored region (black ex-
cluded), the RMO is an exact GS. In the black region a gen-
eralized spiral state (SS) has an energy stricly lower than the
RMOs, but the actual GS energy might still be lower.

A\

7NN
DY, 49 .0 ww
\VARVAEVARY 4 VaRvEav,

(a) Definition of the coupling constants of the model.

34 3
\itahedm octahedral
2 2
3T i V3T
J3 0 cubotl 13 0
-1 0 -1 0
24 F 4= -21 F 1=
_34 -3~ T T T ’
-2 -1 0 1 2 3 -2 -1 0 1 2 3
J2 Jz

(c) Ji=1,J5=-02

39 39
2 2 octahedral
11 11
J3 0 cuboc2 J3 0 cuboc2
-1 -1 F
-21 F q= 0 -21 q=0
-3 — 3 ——
-2 -1.0 1 2 3 -2 -1 0 1 2 3
J 2 J 2

(d J1=-1,J5=02 () J1=-1,J,=-02

FIG. 8: (Color online) Phase diagram of the Ji-Ja-J5-J5
model on the kagome lattice. In each colored region (white
included, grey and black excluded), the RMO is an exact GS.
Labels refer to the RMOs described in Fig.4. In the grey re-
gions, the near-by RMO does not reach the lower bound of
Sec. VIB but no SS is energetically lower. In the black re-
gions, a SS has a lower energy than the RMOs, but the actual
GS might yet be lower.
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RMOs (excepted those from continua) appear in some
area of the presented phase diagrams. This shows that
these states are good candidates as variational GSs. The
absence of RMOs of a continuum in an Heisenberg model
is easily understood. The energy FE of any RMO ¢ be-
longing to a continuum cannot be lower than the energies
F; and E»> of the two states ¢; and ¢y between which it
interpolates. One (at least) of the two states, say ¢y, is co-
linear along a direction n. The ¢y spins are then perpen-
dicular to n. Let 8 be the angle between the spins of the
continuum state and n. Then S; = S;* cosf + S;*>sind
and the energy reads F = Fy+ (E; — Ey) cos? §. Thus, E
is in between F; and E5 and is never strictly the lowest
energy.

We will now address the possible degeneracies of reg-
ular tridimensionnal spin states in these models. On the
hexagonal lattice, our phase diagram is in agreement with
Ref. 10. One should nevertheless notice that the regular
tridimensionnal orders (tetrahedral and cubic states) are
degenerate with colinear non RMOs. These last states
have a higher density of soft excitations (larger energy
wells in the phase space landscape) and will always win
as soon as (thermal or quantum) fluctuations are intro-
duced (order by disorder mechanism ). However the
non planar configurations could be stabilized by quartic
or ring-exchange interactions.

On the kagome lattice (Fig. 8) the occurrence of the
cuboc2 (Fig. 4(f)) for Ji-Jy interactions'® and of the
cubocl (Fig. 4(e)) for Ji-J4 interactions'’ has already
been reported. These two states are not degenerated with
SSs and are to our knowledge unique and stable GSs of
the model. To our knowledge, the octahedral state has
not been found before, but this state has the same energy
as a continuum of non SSs including colinear states, and
it will be destabilized by any fluctuation.

D. Square and triangular lattices: Phase diagrams
of Heisenberg versus ring-exchange models

In this section we will comment the phase diagram
of the Heisenberg models (Eq. (1)) on the square and
triangular lattices and display the effect of 4-spin ring-
exchange (J1-J2-K) on these two lattices. The Ji-Jo-K
model is defined as:

E= ZJ(|XZ - Xj|)Si . Sj + K Z ((Sz : Sj)(Sk : Sl)
] i,5,k,l
+(Si-Si)(S; - Sk) — (S; - Sk)(S;-Si))+S; - S;
+Sj-Sk—FSk'Sl—FSl-Si-i-Si'Sk-l-Sj-Sl) (20)

where the sum in the K term runs on rhombi i, j, k, (.
This model encompasses first and second neighbor J; and
Jo couplings and a K ring-exchange term which intro-
duces quartic interactions as well as modifications of first
and second neighbor Heisenberg interactions.” The phase
diagramms are displayed in Figs: 9 and 10.

In the J;-Js-J3 Heisenberg phase diagrams on the
square and triangular lattice, all RMOs that do not be-
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FIG. 9: (Color online) Phase diagrams on the square lattice
with Ji-J2-J5 Heisenberg interactions (top line) and Ji-J2-K
model (bottom line). Labels refer to RMOs defined in Fig.
6. In each colored region (black excepted), the RMO has the
lowest energy of the set of all regular and generalized spiral
states. In the black regions, a SS has a lower energy than the
RMOs. For pure Heisenberg interactions, we know that we
obtain the GS energy, but for non Heisenberg interactions the
actual GS might be lower. In the J;-J2-J3 model the coplanar
(orthogonal 4-sublattice) phase is degenerate with non regu-
lar colinear states, which will win upon introductions of fluc-
tuations. A contrario the coplanar (orthogonal 4-sublattice)
phase is stable in a large range of parameters in the Ji-J2-K
model.

long to continua do appear as an exact GS in some parts
of the phase diagrams (colored regions - black excepted
of Figs. 9(a), 9(b), 10(a) and 10(b)). In black regions,
SSs are more stable than RMOs. As these lattices are
Bravais lattices, we know how to reach the lower bond of
Sec. VI B thanks to a spiral state. The orthogonal state
on the square lattice and the tetrahedral state on the tri-
angular lattice (Fig. 3(b) and 6(c)) are degenerate with
SSs including colinear states with 2 spins (up, down) in
the magnetic unit cell, which will win upon introduction
of fluctuations. On a large part of the phase diagram on
the square lattice (spirals excepted) the spins are thus
colinear.

The presence of a 4-spin ring exchange on the square
lattice gives richer phase diagramms (Figs. 9(c) and 9(d))
with the appearance of states from continua. We recall
that these phase diagrams are variational and give the
minimal energy state among the regular and the gener-
alized spiral states. A dominant 4-spin ring exchange
stabilizes the orthogonal 4-sublattice coplanar antiferro-
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FIG. 10: (Color online) Phase diagrams on the triangular
lattice with Jy-J2-J3 Heisenberg interactions (top line) and
J1-J2-K model (bottom line). Labels refer to RMOs defined
in Fig. 3. In each colored region (black excepted), the RMO
has the lowest energy of the set of all regular and generalized
spiral states. In the black regions, a SS has a lower energy
than the RMOs. For pure Heisenberg interactions, we know
that we obtain the GS energy, but for non Heisenberg inter-
actions the actual GS might be lower.

magnet, which is known to be robust to large quantum
fluctuations.”™ One of these phases belongs to a contin-
uum: the V states (Fig: 6(d)). Part of this phase diagram
on the square lattice has been known for a long time for
the J1-K model,”" but the effect of a second neighbor
interaction leads to new phases that might be interesting
in various respects.

The J1-J2- K phase diagramm on the triangular lattice
(Figs. 10(c) and 10(d)) exhibits all the regular phases
that can be constructed on this lattice. In that model,
large ring-exchange stabilizes the tetrahedral chiral phase
studied by Momoi and co-workers.”"* The presence of
large parts of the phase diagramms with planar or 3-
dimensional order parameter at T = 0, and of points
where a large number of classical phases are in compe-
tition, could give interesting hints in the quest of exotic
quantum phases.

E. Finite temperature phase transitions in
two-dimensions

In two-dimensions, the Mermin-Wagner-" theorem in-
sures that continuous symmetries cannot be sponta-
neously broken at finite temperature. It does however



not prevent discrete symmetries to be broken. Indeed,
some finite temperature phase transitions associated to
discrete symmetries have been found in classical O(3)
models: lattice symmetry breaking in the Ji-J5 and Jy-J3
models on the square lattice,” " chiral symmetry break-
ing in a ring-exchange model on the triangular lattice
and in a Ji-Jo model on the kagome lattice." "

What should be expected in a system where the GS is
a RMO ¢ 7 Let us first consider the case where c is not
chiral, that is when the spin inversion S — —S gives a
state ¢/ which can also be obtained from ¢ by a rotation
in SO(3). At an infinitesimal temperature, the rotational
symmetry is restored and the statistical ensemble is that
of all the (regular) states obtained from ¢ by SO(3) rota-
tions. The thermal average of an observable is therefore
also an average over SO(3) rotations. Now, if we com-
pare an observable O and the same observable after a
lattice symmetry X, we will get the same average (for
RMOs, the effect of X can be absorbed by a rotation).
So not only the rotational symmetries, but all the lat-
tice symmetries are restored at 7' = 07. The simplest
scenario is therefore a complete absence of symmetry-
breaking phase transition from 7' = 07 up to T' = oo.
Now, for a chiral state, the thermal fluctuations will only
partially restore the O(3) symmetry of the model, and
a chiral phase transition should be expected. From this
point of view, a classical system in two-dimensions with
no finite-temperature phase transition is likely to have a
regular and non-chiral GS.

When some magnetic long-range order develops, the
magneto-elastic couplings often drive the system to a
small but detectable (through X-ray diffraction for in-
stance) lattice distortion. This generically happens if the
magnetic order induces some inequivalent bonds, since
the magnetic energy gain is then expected to be linear
in the displacements, whereas the elastic energy cost is
quadratic. However, such inequivalent bonds do not oc-
cur in the case of RMOs (the energy is rotationally in-
variant, hence uniform) and we expect the crystal to keep
its full symmetry in such a magnetically ordered phase.
Likewise, the absence of any lattice distortion down to
zero temperature can be used as an (experimental) indi-
cation that the magnetic phase is regular.

VII. CONCLUSION

Based on symmetry considerations (and on an anal-
ogy with Wen’s”® classification of quantum spin liquids
using the concept of PSG), we introduced a family of
classical magnetic structures, dubbed “regular” magnetic
orders. They can be constructed in a systematic way
for any lattice, in any dimension, for any type of spins,
using the method explained in Sec. III. We found that
these states are often good variational states to study the
zero-temperature phase diagram of “complex” problems
(non-Bravais lattice and/or multiple spin interactions for
instance). In many cases, one of the RMOs is found to
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reach a lower energy bound, allowing to show that it is a
GS.

We note that, although one can always find a planar
GS in Heisenberg models on a Bravais lattice, non-planar
spin structures with many sublattices are rather com-
mon in presence of competing interactions, non quadratic
spin interactions and non-Bravais lattices. As mentioned
in the introduction, we believe this approach may find
an application in the study of real magnetic compounds
where the (equal time) spin-spin correlations are mea-
sured, but the strength and range of the magnetic ex-
change interactions are not known.

We have studied the case where the spin manifold
A = S, is that of a three-component spin (unit vector),
but other manifolds could be investigated using the same
approach. For instance, reqgular nematic orders would be
obtained with A = S3/Zs and Sg = SO(3).

This approach was applied here to purely classical
models, but can be applied similarly to quantum systems
where the spin rotational symmetry is broken (magnetic
long range order). App. C describes a similar approach
for the case of spin liquids, where no symmetry at all is
broken. It is interesting to understand the connections
between RMOs and (mean-field) spin liquids. In particu-
lar, an important question is to identify which spin liquid
may give rise to which RMO upon spinon condensation.
This issue has been addressed in Ref. 32 and will be the
subject of a future publication.
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Appendix A: Derivation of the algebraic symmetry
groups on the triangular lattice

In this section, we look for all the algebraic symmetry
groups on the triangular lattice with symmetries of Fig. 2.
They are the solutions of the system Eq. 8 recalled here:

Gr,Gr, =Gp,Gr, (Ala)
G, Gr,Gr, =GR, (Alb)
Gr,G1,G1, =G1,GR, (Alc)

Gr,Gy, =G,Gr, (Ald)
G%G =17 (Ale)

Gy = (A1f)
Gr,GoGRr, =G,. (Alg)

Each element Gx in O(3) is characterised by its de-
terminant ex = 1 and by a rotation Ry,s, of axis
nx and of angle fx € [0, 7] such that Gx = exRnyox-



We choose an orthonormal right-oriented basis (x,y,z)
to express the results (such that x- (y Az) = 1).

Some simple conditions on solutions are easily ob-
tained: from Eq. Alc we deduce that ey, = 1, from
Eq. Alb that ey, = 1. Eq. Ald is a similarity relation
thus 07, = 0r,. Egs. Ale and Alf gives 60r, = 20, =0
modulo 27. These first results are summarized below:

Ery, =ET, = 1 (AZa)

Or, =01, (A2Db)

0, € {0, 7} (A2c)
T 27

Or € {0,3,3,7r}. (A2d)

The values of €, and € g, have no influence on the validity
of a solution. Thus we solve Eq. Al only fore, =¢ep, =1
and then obtain all solutions by extending their values
(€o,€Ry) to (£1,£1), keeping the other parameters (fx,
ny) fixed.

We will divide the solutions in families depending on
the relations between G, and Gr,. We immediatly dis-
cern the case O, = 0 (G, = G, = I). From now,
61, > 0 thus the directions ny, and np, are uniquely
defined (with only a sign ambiguity when 67, = ).
Eq. A2a implies that G, anf Gp, are rotations and
possess at least one eigenvalue equal to 1 along the di-
rections ny, and np,. Eq. Ala applied to vectors nr,
gives that Gpynp is an eigenvector of G, with eigen-
value 1. If this vector is linearly independant of np,
then we know two independant invariant vectors of G, .
As the eigenvalue product er, is 1 with two eigenvalues
equal to 1, we obtain that Gp, = I, what contradicts the
hypothesis 6, > 0. We are let with two possibilities:
GT2IIT1 = :EIITI.

If Gp,npy, = —ngpy, then ny, and np, are two perpen-
dicular eigenvectors of Gy, with eigenvalues —1 and 1.
The third direction must correspond to the eigenvalue
—1. We obtain that 6; = .

If Gp,ny, = np, then ny, = +np,. Combined with
Eq. A2b, it means that Gy, = Gp, with 07, €]0,7[ or
Gr, = G with 07, €]0,m]. The second subcase is in-
compatible with Eq. Alc.

We obtain three families of solutions that will now be
explored successively:

Gr, =G, =1 (A3a)
9T1 = 9T2 = m and np, 1 nr, (Agb)
GTl = GT2 7& 1. (ASC)

e In the case of Eq. A3a, the remaining constraints
are Eqs. Alg, A2¢ and A2d. We treat separately
the two cases of Eq. A2c.

If G, = I, then the possibilities for 6 restrict to
{0,7}. We set ng, = z and obtain the two solu-
tions:

GT1 :GT2 :IaGa'ZlaGRG :I7
Gr, = Gp, = I,Gy = I,Gp, = Ry

14

If G, = R,:, we have the easily found solution:
GT1 = GTZ = I7GO' :RZTHGRG = Ia

and solutions with 6, # 0. Then from Eq. Alg
we have Gpr,Gong, = Gonpg,, which implies
R,-npr, = £ng,. In the “4” case, ng, = z and
Egs. Alg and A2d imply that 0z € {0,7}. In the
“—7 case, ng, L z. We choose ng, = x. Eq. Alg
is verified for each Op, of Eq. A2d. Solutions are

Gr, =Gp, =1,G, = Ryr, Gry, = Ry,
Gr, = Gr, = 1,G5 = Ryn,GRs = Ryry3,
Gr, = Gr, =1,G5 = Ryr,Grs = Ry2r/3,
Gr, = Gr, = I,Gy = Ryn, Gy = Rucr.
e In the case of Eq. A3b, we choose np;, = x and
np, =y. Eq. Alb applied to y, Alc applied to

z, Ald applied to y and Ale applied to y give the
following forms for the Gr, and G, matrices:

0 e 0 Oes 0
GRG = 0 0 e, GJ =1 €3 00 y (AG)
€1€2 00 00-1

whith ey, es and e3 are £1. From Eq. Alg we
find that e; = —e3. It remains 4 possibilities. But
we can take e; = e; = 1 up to a basis change:
(x,y,2) — (eax, e1e2y,e12z). Thus:

GT1 = Rx7r7 GT2 = RyTra

010 010
G,=-[100],Gg, = (001
001 100

e In the last case of Eq. A3c, we choose ny = z. Com-
bining Eqs. A1b and Alc, we obtain that G%, = I,
Thus, Gr, = G, = R,2x We treat separately the
two cases of Eq. A2c.

If G, = I, then Egs. Alb and Alg imply g, = 7.
Eq. A1b applied to z gives Gr,z = £z The “4” case
(ng, = +2z) contradicts Eq. Alb, so it remains the
“—7 case: we choose ng, = x, which is a solution:

Gr, = Gr, = Ry22,Go = 1,GRy = R

If , = 7w, Eq. Ald implies that G,z = +z. G, is
either R,, or a rotation of m around an axe per-
pendicular to z, say x. This last case contradicts
Eq. Ald. The only possibility is thus G, = R,.
From Eq. Alb we know that Gr,z = +z. In the
“+” case (np, = £2), GRr,, Gr1 and Gr2 commute
and Eq. Alb is not verified. We set ng, = x. From
Eq. A2d, only 0r, = m verify all the equations,
giving the unique solution:

GT1 = GT2 = RZQT’T,GO’ = RZﬂaGRG = Ryr.
By taking into account the 4 solutions deriving of each

of the previous one by multipling G, and G, by £1, we
finally obtained the list of solutions of Eq. 10.



s(lQ)
o —
s(Q)
e =
CH
saQ)
e =
E

0 1
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
1Ql 1Ql 1Ql

(a) F state (b) Tetrahedral (¢) Coplanar state
state

FIG. 11: Powder-averaged equal time structure factors S(|Q|)
of the RMOs on the triangular lattice (|Q] is in units of 27,
S(]Q|) in arbitrary units).
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FIG. 12: Powder-averaged equal time structure factors S(|Q|)
of the RMOs on the kagome lattice (|]Q| is in units of 2,
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Appendix B: Powder-averaged structure factors of
regular magnetic orders

Equal time spin-spin correlations partially characterize
a spin state and are independent of the energetic proper-
ties of the system. Equal time structure factors can thus
be analytically calculated on RMOs to form a set of refer-
ence neutron scattering results. They can be used to an-
alyze measurements done on compounds with unknown
GS. We define the equal time structure factor S(Q) of a
state as

S(Q) o Y e Axixs, . S, (B1)
ifj

where x; is the position vector of the site i. The pro-
portionality factor is adjusted to verify the sum rule
ZQ S(Q) = 1. For perfect long-range orders, S(Q) is
zero everywhere except for a finite number of Q where
Bragg peaks are present. They are broadened when
chemical defects, non zero temperature or quantum fluc-
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State

Classical spin Quantum
models Mean-field
Regular magnetic Physically

order

symmetric Ansatz

Internal symmetry

Ss (global spin

® (local gauge

group rotation, etc.) transformations)
Symmetry group o, PSG
of a state
Unbroken m'ternal s GG
symmetries

TABLE I: Analogy between the construction of RMOs and
that of symmetric Ansétze in

tuations are taken into account.

When only powders are realisable, one can measure the
powder equal time structure factor S(|Q|). It is the aver-
age of S(|Q|sinf(ucost + vsiny)) over all the possible
3d orientations of Q, where 6, 1 are the spherical coor-
dinates angles of Q in the orthonormal basis (u, v,uAv)
with u, v in the sample plane. Thus

e(Q[—ld)
QIVIQ[* —af?

where O is the Heaviside step function and q browses the
reciprocal 2d space.

The equal time structure factors S(Q) were given in
Fig. 3, 4, 5 and 6 for the RMOs on the triangular,
kagome, honeycomb and square lattices. The powder-
averaged equal time structure factors S(|QJ) on the tri-
angular and kagome lattices are shown in Fig. 11 and
12.

S(Q)) x / q S@, (B2

Appendix C: Analogy with Wen’s Projective
symmetry groups (quantum spin models)

For quantum spin—% Heisenberg models, a standard
mean-field approximation consists in expressing the spin
operators in term of fermionic operators f;,, where i is
a lattice site and « =7, | is the spin +1/2. A mean-field
decoupling based on some bond parameters 7;; and &;;
(notations and details to be found in in Ref. 3) can then
be performed to make the Hamiltonian quadratic in the
fermionic operators.

This theory has a local SU(2) gauge invariance. The
set of gauge transformations is denoted by ®. Physi-
cal quantities, which can be expressed using spin opera-
tors, are unaffected by a gauge transformation, although
7;; and &;; are generally modified. A mean-field state is
characterized by a set of 7;; and &;; values, called Ansatz.
Two mean-field states do have the same physical observ-
ables if they are related by a gauge transformation. The
group of transformations (lattice, gauge and combined
transformations) that do not modify an Ansatz is called
the projective symmetry group (PSG). Its subgroup of



pure gauge transformations is called the invariance gauge
group (IGG).

One may be interested in states for which all the physi-
cal quantities are invariant under the lattice symmetries.
To classify these “uniform” states, one can first fix the
IGG and then look for the “algebraic” PSG which obey
the constraints derived from the algebraic structure of
lattice symmetry group St.” The actual Ansétze can then
be constructed.

Clearly, there is a close correspondence between the
construction of RMOs discussed in this paper, and that of
symmetric Ansétze. This correspondence is summarized
in Tab. I.
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Once all the RMOs have been constructed for given lattice
and spin symmetries (using a simple group theoretic con-
struction, as explained in Sec. III), one can directly com-
pare their energies for a given microscopic Hamiltonian.
A case where Sy # Sg x Sp is the antiferromagnetic
square lattice with a site-dependent magnetic field taking
two opposite values on each sublattice. The spin inversion
S; — —S; is not in Sg, the translation by one lattice spac-
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ing is not in S, but the composition of both is in Si. The
theory developed in this paper can however be used in this
case by replacing St by Su/Ss.

Notice that nearest neighbors on the lattice do not neces-
sarly correspond to nearest neighbor spin directions in spin
space.

Again, the plaquettes of the lattice need not to map to the
faces of the polyhedron.

This relation is particularly easy to visualize in the case of
the tetrahedral state on the triangular lattice, since both
the lattice and the polydedron ¥ have triangular plaque-
ttes/faces: one can put a tetrahedron with a face posed
onto a lattice face. Then, one roll the tetrahedron over the
lattice to obtain a spin direction at each lattice site. Notice
that such a construction would not work with a cube on the
square lattice (and indeed, there is no such eight-sublattice
RMO on the square lattice, see Sec. IV C).

In the presence of an external magnetic field h and if
a one-dimensional representation included in G is ferro-
magnetic (as it is the case for some umbrella’s and for
the V-states), n aligns on h. The energy then reads F =
E; + (E1 — E?) cos’ 0 — hcosf and an umbrella state be-
comes stationnary. It is well known that such structure can
be the GS in presence of a magnetic field.™
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