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An approximation scheme for model disordered solids is proposed which leads to the fully analyt-
ical evaluation of the elastic constants under explicit account of the inhomogeneity (nonaffinity) of
the atomic displacements. The theory is in quantitative agreement with simulations for central-force
systems and predicts the vanishing of the shear modulus at the isostatic point with the linear law
µ ∼ (z− 2d), where z is the coordination number. The vanishing of rigidity at the isostatic point is
shown to be the consequence of the canceling out of positive affine and negative nonaffine terms.

PACS numbers: 46.25.-y, 64.60.aq, 45.70.-n

I. INTRODUCTION

Disordered or amorphous solids represent a great part of ordinary matter (e.g., glass), including biological matter
(e.g., cytoskeletal networks)1–3. Yet, the relationship between rigidity and disorder has remained elusive and no theory
has hitherto proved able to correctly describe their elastic constants. The rigidity of disordered solids is also intimately
related to the fundamentally unsolved problem of the glass transition4. Elastic rigidity in supercooled liquids emerges
from the fluid state at the glass transition without any detectable lowering of the symmetry (apart from translational
and replica symmetry-breaking), as opposed to what happens in ”ordinary” liquid-solid phase transitions5. In recent
years it has been recognized that the intrinsic ”softness” of disordered solids is related to the nonaffinity of the atomic
displacements1,4,6,7: the atoms in a strained disordered solid are not displaced proportionally to the global strain. The
calculation of the contribution to rigidity due to such nonaffine displacements poses formidable difficulties because it
requires the analytical knowledge of the eigenmodes of the dynamical or Hessian matrix of the system8,9, which is
a sparse random matrix. The simplest disordered solids where nonaffinity is supposed to play a significant role are
those with nearest-neighbor central-force interactions9,10. In these systems, it is well-known that the shear modulus µ
vanishes at the isostatic point where each particle has an average number of nearest neighbors (mechanical contacts)
z = 2d9,10. Although it seems reasonable from constraint-counting arguments that rigidity is lost when z = 2d11, the
linear law µ ∼ (z − 2d) observed in simulation studies of completely disordered solids12 has remained unexplained
and the physics behind it represents a long-standing problem9,10 where the role of nonaffinity is yet unclear. Further,
the well-documented inadequacy of affine theories to describe the elasticity and transport properties of amorphous
materials calls for an improved theory beyond the affine approximation13. In this Letter, we propose an approximation
scheme which gives a well-defined deterministic limit for the nonaffine contributions to the elastic constants. This
leads to a fully analytical description of the elastic constants which accounts for the microscopic nonaffinity of the
atomic displacements.

II. FORMALISM

In the following, Roman indices are used to label atoms while Greek indices are used to label Cartesian components.
The summation convention over repeated indices holds throughout for Greek indices. Bold characters denote vectors
in dN -dimensional space (N=total number of atoms). We closely follow the notation of Lemaitre and Maloney8 and
we start our analysis from the definition of a Bravais cell for the disordered lattice. The cell is described by three
Bravais vectors and thus by a matrix h. The potential depends on the particle position ri and on the shape of the cell
which enforces boundary conditions. Macroscopically imposed deformations of the cell are described by changes in

the Bravais vectors through a linear map F = h h̊
−1

and the relation h = F h̊. We denote quantities in the reference
frame, as well as quantities that are measured with respect to the reference frame, with a circle. Accordingly, the unit

cell in the reference configuration is given through the matrix h̊. In the language of continua F is the deformation
gradient tensor. The position of atom i after an affine deformation is given by

rαi = Fαβ R
β
i (1)

As a unique exception to the ring notation, we denote with Ri the position of the atoms in the reference cell.
This relation illustrates the definition of affine displacement as atom i is displaced proportionally to the external
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deformation. The position of the atom after a strain is denoted by rαi (F ) and differs from Eq.(1) if the nonaffine
displacement is not zero. It is useful to introduce the particle position r̊i for an atom which undergoes both affine
and nonaffine displacements, defined by

rαi (F ) = Fαβ r̊
β
i (F ). (2)

Remark also that Ri = r̊i(0). Hence, for an affine displacement the position vector r̊i is kept fixed while the new
position is determined by F . Any additional (nonaffine) displacement is thus parameterized for a given strain in
terms of r̊i(F ). With these definitions we can express the potential U({ri}, F ) in the coordinates of the reference

frame as Ů({̊ri}, F ) which is defined by

Ů({̊ri}, F ) = U({F r̊i}, F ). (3)

It is convenient to introduce the Cauchy-Green strain tensor η = 1
2 (F>F − I) to describe the deformations since

the elastic constants are defined in terms of second derivatives in η. The deformation is completely described by this
tensor since the total internal energy of the solid being deformed can be expressed as U({|rij |}), i.e. as a functional
of the set {rij} of relative distances between atoms rij = |rij | = |ri − rj |, and η describes affine transformations in

terms of relative interatomic distances according to |F Rij |2 = |Rij |2 + R>ij η Rij .

A homogeneous strain of the cell F will first bring each atom to its affine position rαi = Fαβ R
β
i . In this affine

position the total force acting on atom i is in general not zero since the neighboring atoms may exert a non-vanishing
force-field due to their affine motion. This is especially true for disordered solids where the nearest neighbors are
placed at random around atom i so that they transmit unbalanced forces to i (in an ordered lattice the transmitted
forces balance by symmetry such that this effect is often negligible). It is in response to these virtual forces that the
atom undergoes an additional motion after it has been displaced affinely such that the energy released in the process
reestablishes (local) mechanical equilibrium. Hence the system under reversible strain evolves adiabatically along a
trajectory r(η) that minimizes the mechanical energy for a given strain η. If we denote by D

Dηκχ the derivative with

respect to adiabatic changes of the strain under the constraint of mechanical equilibrium, one obtains an equation of
motion of the nonaffine displacement by differentiating the force fαi = − ∂U

∂rαi
evaluated in the true position (where it

vanishes). In the limit η → 0 the equation reads

∑
j

Hαβ
ij

Dr̊βj
Dηκχ

∣∣∣∣∣
η=0

= Ξαi,κχ (4)

where we have introduced the Hessian Hαβ
ij and the affine force field Ξαi,κχ given respectively by

Hαβ
ij =

∂2Ů
∂r̊αi ∂r̊

β
j

∣∣∣∣∣
η=0

=
∂2U

∂rαi ∂r
β
j

∣∣∣∣∣
η=0

Ξαi,κχ = − ∂2Ů
∂r̊αi ∂ηκχ

∣∣∣∣∣
η=0

= −
∑
j

∂2Ů
∂r̊αi ∂r̊

β
j

∣∣∣∣∣
η=0

∂Fββ′

∂ηκχ
Rβ

′

j

(5)

The elastic constants are defined by

Cιξκχ =
1

V̊

∂2U
∂ηιξ∂ηκχ

∣∣∣∣
η=0

(6)

In order to account for the nonaffine relaxation in the calculation of the elastic constants, the derivatives in Eq.(6)
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have to be taken along a trajectory of (locally) minimum energy. Following Lemaitre and Maloney8, we obtain

Cιξκχ =
1

V̊

[
D
Dηιξ

(
∂Ů
∂ηκχ

+
∂Ů
∂r̊i

Dr̊i
Dηκχ

)]
η=0

=
1

V̊

(
∂2U

∂ηιξ∂ηκχ

∣∣∣∣
η=0

+
∂2U

∂r̊i ∂ηιξ

∣∣∣∣
η=0

Dr̊i
Dηκχ

∣∣∣∣
η=0

)

=
1

V̊

∂2U
∂ηιξ∂ηκχ

∣∣∣∣
η=0

− 1

V̊
Ξi,ιξ

Dr̊i
Dηκχ

∣∣∣∣
η=0

= CAιξκχ − CNAιξκχ

(7)

where it is evident that the true elastic constant is given by the affine (Born-Huang) elastic constant CAιξκχ corrected

by the nonaffine term −CNAιξκχ. Following Lemaitre and Maloney8, and using Eq. (4) in Eq. (7), one derives the
following expression for the nonaffine correction,

CNAιξκχ = Ξαi,ιξ(H
αβ
ij )−1Ξβj,κχ > 0 (8)

The last inequality in Eq. (8) is justified in view of the Hessian matrix being semi-positive definite at mechanical
equilibrium. Hence it follows that the correction due to the nonaffine relaxation, −CNAιξκχ < 0, necessarily gives a

negative contribution to the total rigidity8.

III. APPROXIMATION SCHEME

A. The Cauchy bonded-network model

Let us consider the disordered Cauchy solid, defined by the following properties1: (i) atoms interact pairwise and
only with their nearest neighbors; (ii) the interaction potential is a central-force harmonic potential; (iii) the reference
state is unstressed, i.e all springs (interatomic bonds) are relaxed in the minimum of the harmonic well; (iv) disorder
is spatially decorrelated. The equivalence with a random network of harmonic springs is evident9,14. Hence, the total
free energy is given by U({rij}) =

∑
〈ij〉 Vij(rij) where the sum runs over all pairs of nearest-neighbors 〈ij〉. The pair

interaction potential is given by the harmonic potential V (rij) = κ
2 (rij −R0)2. κ is the atomic force constant and R0

is the interatomic distance at rest in the reference frame. Under these conditions the Hessian matrix becomes

Hαβ
ij = δij

∑
s

κcisn
α
isn

β
is − (1− δij)κcijnαijn

β
ij (9)

where we used the identity ∂/∂rij = nij∂/∂rij , with nij = rij/rij . Further, cij is the (random) occupancy matrix
with cij = 1 if i and j are nearest neighbors and cij = 0 otherwise. cij is a matrix where each row and each column
have on average z elements equal to 1 distributed randomly under the constraint that the matrix be symmetric. Using
this form of the Hessian one obtains the affine part of the elastic constant as

CAιξκχ =
R2

0κ

2V̊

∑
ij

cijn
ι
ijn

ξ
ijn

κ
ijn

χ
ij (10)

which is the well-known Born-Huang formula1,7,8. Further, we also obtain a microscopic expression for the affine force
field from Eq.(5) as Ξαi,κχ = −

∑
j Rijκcijn

α
ijn

κ
ijn

χ
ij . We can now turn to the nonaffine part of the elastic stiffness,

CNAιξκχ. The Hessian is a dN × dN symmetric semi-positive definite matrix with d eigenvalues equal to zero which are

due to the global translational invariance of the solid. Eq.(4) can be solved by normal mode decomposition which
leads to8

CNAιξκχ =
1

V̊

∑
k

λk 6=0

(Ξιξ,vk)(Ξκχ,vk)

λk
(11)

where vk are the eigenvectors of the Hessian (which are orthogonal since the Hessian is symmetric), λk the corre-
sponding eigenvalues and (, ) denotes the normal scalar product on RdN . In the next section, we shall evaluate the
deterministic limit of Eq.(11), which is a self-averaging quantity8.
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B. The approximate Hessian and the affine field projection on its eigenmodes

A rigorous derivation requires one to first determine the eigenmodes vk of the Hessian matrix given by Eq.(9) in
order to calculate the projection on them of the affine fields in Eq.(11). Thereafter the average over the disorder
is taken to get the thermodynamic limit of CNAιξκχ. However, the Hessian is a random matrix and both vk and λk
depend on the realization of disorder. Also, being the Hessian sparse, there are no analytical forms even for its
statistical spectral distributions. Nevertheless, the deterministic limit of Eq.(11) can be calculated analytically within
the following approximation that we propose here.

Our approximation consists in performing a disorder-average of the orientation-dependent part of the Hessian first
and then use the result to calculate the eigenmodes, their inner products with the affine fields and finally the nonaffine
correction. Inverting the sequence of ”calculating” and ”averaging” is sometimes referred to as an effective medium
approximation and is not at all unusual in dealing with disordered systems15 since it is often the only strategy to
keep the treatment analytical. Using some averaged form of the Hessian matrix necessarily implies sacrificing some
details of the vibrational spectrum. This problem is addressed in section IV.B and IV.C where we show what details
are lost and we study the validity and limitations of the approximation.

In d = 3 it is nij = (cosφij sin θij , sinφij sin θij , cos θij) and the pair of angles φij and θij univocally specifies

the orientation of the bond 〈ij〉. The orientation-dependent factors in the Hessian, nαijn
β
ij in Eq. (9), for a large

system with uncorrelated isotropic disorder (where every bond can take any orientation in the solid angle with the

same probability 1/4π), can be replaced with its isotropic (angular) average, i.e. nαijn
β
ij ⇒ δαβ/d. Within this

approximation, the Hessian becomes

Hαβ
ij =

κ

d

δij∑
j

cij − (1− δij)cij

 δαβ (12)

Remark that this is still a sparse random matrix because of the positional disorder in the random coefficients cij .

According to Eq.(12), let us define H = H̃⊗I where I is the d×d identity matrix (which represents δαβ) and H̃ is the

matrix which multiplies δαβ in Eq.(12). Denoting with {aq}q=1..N the set of eigenvectors of H̃, which is an orthonormal

basis (ONB) of RN , and with {el}l=1..d the standard Cartesian basis of Rd, it follows that (H̃ ⊗ I)(a⊗ e) = λ(a⊗ e)
and thus the dN dimensional set {aq el}q=1..N,l=1..d is an ONB of eigenvectors of H as given by Eq.(12). This allows
us to write (with v = a el for some a ∈ {aq}q=1..N ):

(
Ξιξ,v

) (
Ξκχ,v

)
=

(
N∑
r

arΞr,ιξel

) (
N∑
r

arΞr,κχ el

)
= κ2R2

0

∑
r s r′ s′

{(arar′ crscr′s′)

× (nlrsn
ι
rsn

ξ
rsn

l
r′s′n

κ
r′s′n

χ
r′s′)}

(13)

With our isotropic approximation, we replace the orientation-dependent terms with their isotropic angular-averaged
values which gives nlrsn

ι
rsn

ξ
rs n

l
r′s′n

κ
r′s′n

χ
r′s′ = (δrr′δss′ − δrs′δsr′) ·Bl,ιξκχ where the Bl,ιξκχ are geometric coefficients

resulting from the angular average. For d = 3 and d = 2 they are as follows

d = 3 d = 2
l x y z

∑
l x y

∑
l

Bl,xxxx
1
7

1
35

1
35

1
5

5
16

1
16

3
8

Bl,xyxy
1
35

1
35

1
105

1
15

1
16

1
16

1
8

Bl,xxyy
1
35

1
35

1
105

1
15

1
16

1
16

1
8

(14)

Substituting in Eq.(11) we obtain(
Ξιξ,v

) (
Ξκχ,v

)
= κ2R2

0Bl,ιξκχ

×

(∑
r s

a2r crscrs −
∑
r s

aras crscsr

)

= κ2R2
0Bl,ιξκχ

d

κ

N∑
rs

arasH̃rs

(15)
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where we used that c2rs = crscsr = crs and the identities
∑N
r a

2
r

∑
s crs −

∑
rs arascrs =

∑N
rs aras[(

∑N
j crj)δrs −

crs(1− δrs)] = d
κ

∑N
rs arasH̃rs. Recalling that

∑N
s H̃rs as = λar, we obtain

(
Ξιξ,vk

) (
Ξκχ,vk

)
= dκR2

0 λkBl,ιξκχ.

IV. RESULTS AND DISCUSSION

A. Elastic moduli

Hence, we have shown that within the isotropic approximation of the Hessian, Eq.(12), the nonaffine part of the
elastic stiffness, Eq.(11), has the following thermodynamic limit

〈CNAιξκχ〉 =
1

V̊

N∑
q=1

d∑
l=1

dκR2
0 λq Bl,ιξκχ
λq

= d
N

V̊
κR2

0

d∑
l=1

Bl,ιξκχ.

(16)

The affine part of the elastic constants for the disordered Cauchy solid can be obtained by performing the disorder
average of Eq.(10), 〈CAιξκχ〉, where 〈.〉 denotes the angular average, and we always use the isotropic distribution of

the bond orientations. In d = 3 we thus obtain µA = 〈CAxyxy〉 = 1
30
N
V κzR

2
0, for the shear modulus, and KA =

1
3 (〈CAxxxx〉 + 2〈CAxxyy〉) = 1

18
N
V κzR

2
0, for the bulk modulus. Therefore, using these affine moduli together with the

coefficients of Eq.(14) and with Eq.(16) we derive expressions for the shear and bulk modulus of the d = 3 disordered
Cauchy solid, respectively as

µ = µA − µNA =
1

30

N

V
κR2

0(z − 6)

K = KA −KNA =
1

18

N

V
κR2

0(z − 6)

(17)

For d = 2 we obtain

µ = µA − µNA =
1

16

N

V
κR2

0(z − 4)

K = KA −KNA =
5

48

N

V
κR2

0(z − 4)

(18)

Generalizing this result to arbitrary space dimensions gives the following scaling for the moduli in d dimensions

µ ∼ K ∼ (z − 2d) (19)

The predictions of Eq.(17) for the shear modulus, without fitting parameters, can be compared with the simulations
of Ref.12 of d = 3 disordered packings of (monodisperse) compressible spheres interacting via harmonic repulsion in
Fig.(1). In the simulations the spheres, at T = 0, are slightly compressed to packing fractions φ just above the so
called jamming point at φJ = 0.64 which is also an isostatic point with zJ = 2d9,12. Further, the jamming point is
a zero-stress point12, and the effect of stress on the global rigidity is therefore small. However, it seems from this
comparison, and from our results, that stresses, in general, are not likely to affect the qualitative behavior of the global
rigidity as they play no role in arriving at the fundamental scaling law Eq.(18).

Finally, we note that the vanishing of K at the isostatic point predicted by our theory does not agree with the scaling
of K observed in soft-sphere packings where it remains finite at zJ = 2d12,14. It agrees however with the behavior of
random networks where K vanishes linearly at zJ = 2d14. The reason for this might be tentatively identified with
the fact that in our theory, just like in networks, excluded volume effects are irrelevant, whereas they are important
in packings14.

B. Vibrational density of states and validity of the approximation

The isotropic Hessian matrix introduced for the calculation of the nonaffine contribution to the elastic moduli can
be used to obtain the density of vibrational states (DOS) numerically. Recall that the approximate Hessian is given
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FIG. 1: (color online). The theoretical predictions for the shear modulus, Eq. (17), and the simulation results of Ref.12. No
fitting parameter is used in the comparison. κ = 1, R0 = 1.

by the following random matrix

Hαβ
ij =

κ

3

δij∑
j

cij − (1− δij)cij

 δαβ

The Hessian is defined by the coefficients cij which depend on the realization σ and are, therefore, random variables.
The eigenvalues and thus the eigenvalue distribution of a random matrix are also random quantities. The explicit
calculation of the eigenvalues as functions of the matrix elements is not possible. The approach to the eigenvalue
problem in random matrix theory makes use of the self-averaging assumption that the eigenvalue distribution becomes
deterministic in the limit of an infinite system size16. As analytical solutions for the eigenvalue distribution in our
case are not possible (due to the sparseness of the Hessian), we resort to a numerical analysis assuming that the
self-averaging property holds. Therefore, we can define a limiting eigenvalue distribution ρ(λ) as follows

lim
N−→∞

〈ρN (λ)〉σ = ρ(λ)

Then we have for all realizations σ that

lim
N−→∞

ρN (λ)[σ] = ρ(λ) .

Remark that for a finite N the eigenvalues distribution is discrete and given by

ρN (λ)[σ] =
1

N

N∑
i=1

δ(λ− λi)

where δ is the Dirac delta function. In the limit N −→ ∞, the set of eigenvalues has infinite elements, and the
distribution becomes continuous. The factor 1/N is necessary to normalize the density given that the normalization
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D
(ω

)

ω

FIG. 2: (color online). 1: The DOS calculated for a system of N = 10000 particles according to Eq. (1) (solid line) and z = 8.
2: Simulations for repulsive unstressed harmonic packings of17 with φ− φc = 0.1 which corresponds to z − 6 ' 2.

condition is
∫∞
0

ρ(λ) dλ = 1. To analyze numerically the eigenvalue distribution we calculate the eigenvalues sets
{λi}r for large systems ( N ' 10000 ). Then we create an histogram of the eigenvalues set and we fit it with
a continuous curve which approximates the limiting eigenvalue distribution. The eigenvalue distribution is usually
described in terms of the vibrational DOS which we denote as D(ω), where ω is the vibrational frequency. The latter
is related to the eigenvalue distribution by the change of variables

λ→ ω =

√
λ

m
and its inverse ω → λ = mω2

Hence, with dω = 1
2
√
mλ

dλ and dλ = 2mω dω we get that the density distributions of λ and ω are related by:

D(ω) = ρ(mω2) 2ω and ρ(λ) =
D(
√

λ
m )

2
√
mλ

We compare the so obtained DOS from Eq. (12) with the DOS from simulations of unstressed harmonic packings17

where φ − φc = 0.1 (φc ≈ 0.64 is the jamming packing fraction), corresponding to z − 6 ' 2. The comparison is
shown in Fig.2. While the upper end and the main features of the spectrum (width and average) are quite well
reproduced, this was somewhat expected because sacrificing information about the bond orientations does not change
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the single-particle parameters (of order
√
κ/ω) which dominate the highly (Anderson) localized high-ω modes. On

the other hand, it is now clear from this comparison what details of the vibrational spectrum went lost in our isotropic
approximation of the Hessian, Eq. (12): the spectrum calculated with the isotropic Hessian is significantly depleted
of low-frequency modes whose density is significantly underestimated in comparison with the DOS of the packings.
This is probably related to the anisotropic character of the local correlations between particles in the packings
(ultimately related to excluded-volume and static effects) which play an important role in the low-frequency modes
and that are lost in the approximation. This observation hints again at the possibility that overall our model describes
random networks (where excluded-volume are absent) better than sphere packings. The relationship between these
observations and the excluded-volume effects should be more systematically investigated in future studies. This was
already noted in relation to the bulk modulus prediction of our theory which agrees indeed with the random-network
scaling (K ∼ z − 6), though not with the sphere packing one, for arguably similar reasons.

In view of these considerations, it is natural to ask why our theory, which seems to underestimate the low-ω modes,
still yields a correct prediction of the shear modulus for sphere packings. This question is related to the issue of the
role played by the low-frequency modes in the nonaffine response. While this issue is a very open and unsolved one in
our current understanding of amorphous solids10, a tentative, and certainly incomplete, answer to this deep question
is proposed in the next section.

C. On the role of low-frequency modes in the nonaffine response

To assess the relative importance of different regimes of the vibrational spectrum in the nonaffine elastic response, it
is instructive to rewrite the elastic moduli with the nonaffine correction in the continuous frequency domain. According
to the nonaffine linear response formalism of Lemaitre and Maloney Ref.8, in the thermodynamic limit one has

〈Cιξκχ〉 = 〈CAιξκχ〉 −
∫ ∞
0

D(ω)Γιξκχ(ω)

mω2
dω (20)

where the correlators on the frequency shells are defined by

Γιξκχ(ω) = 〈(Ξιξ,vk)(Ξκχ,vk)〉ωkε[ω,ω+dω] (21)

The function Γιξκχ(ω) thus represents the projection of the affine fields on the frequency shells and its magnitude
gives the importance of the contribution of each frequency shell to the nonaffine response. From Eq.(20) it is evident
first of all that in the zero-frequency limit ω → 0 the moduli diverge to minus infinity, i.e. 〈Cιξκχ〉 → −∞, unless
either D(ω = 0) = 0 or Γιξκχ(ω) = 0. At the isostatic or jamming point of sphere packings one has that the DOS
develops soft modes with D(ω = 0) 6= 0. As the nonaffine linear formalism is an exact theory, it is then strictly
necessary that

lim
ω→0

Γιξκχ(ω) = 0 (22)

i.e. the zero-frequency modes must not contribute to the nonaffine response. This is what has been observed indeed
in the numerical simulations of Ref.8 where, in the case of a Lennard-Jones glass, the function Γιξκχ(ω) measured
in the simulations goes to zero at ω = 0. Furthermore, in the same simulation study8, it was found that Γιξκχ(ω)
not only goes to zero at zero frequency, but is a monotonically growing function of ω in the entire domain, such
that it has significantly lower values at low ω than in the middle and upper part of the spectrum where it reaches its
maximum value (cfr. Fig.5 in Ref.8). Hence, the simulation results of 8 indicate that the contribution of low-frequency
modes to the nonaffine response is small whereas the leading contribution comes from the high-frequency modes. This
observation is also in agreement with physical intuition: the source of the nonaffine response is given by the projection
of the affine fields on the eigenmodes which has a higher value the more energetic the modes are.

Based on these observations, one can conclude that the low-frequency modes play a relatively minor role in the
nonaffine response as compared to the high-frequency modes. This explains why our theory, which underestimates the
low-frequency modes in the case of sphere packings, still yields correct predictions for the shear modulus in excellent
agreement with simulations (Fig.1).

In the case of the bulk modulus, simulations8 give practically the same behavior for the correlator Γιξκχ(ω) as
for the shear modulus, with the low-frequency modes contributing to the nonaffine response to a minor extent. In
this case, the failure of the theory in predicting the correct scaling for sphere packings (despite being successful for
networks) is more likely to be ascribed to the geometric attenuation of the random affine fields under hydrostatic
pressure due to excluded volume, as we speculated in section IV.A. However, this hypothesis has to be tested in future
work by means of ad hoc numerical studies as the bulk modulus scaling of packings is a problem currently under
debate14.
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V. CONCLUSION

We have developed an approximate, fully analytical theory of the nonaffine elastic response of amorphous solids
which explicitly takes into account the nonaffinity of the atomic displacements. We have applied the nonaffine
linear formalism in the formulation of Lemaitre and Maloney8 to the so-called Cauchy bonded-network model1,
i.e. to networks of harmonic central-force springs. In order to evaluate the nonaffine correction to the elastic moduli
analytically, an approximation of the Hessian matrix has been proposed where the bond orientation-dependent factors
in the Hessian are replaced with their isotropic average (isotropic Hessian). Even though the isotropic Hessian has a
density of states which significantly lacks low-frequency modes in comparison with sphere packings, our approximation
yields predictions of the shear modulus in excellent quantitative agreement with simulations of sphere packings12. The
good agreement is explained with the observation, supported by simulations in the literature8, that the low-frequency
modes, underestimated by our approximation, play a relatively minor role in the nonaffine response, which is controlled
by the upper part of the vibrational spectrum (that is well reproduced by our theory). While our approximation is
not suited to accurately describe transport properties of disordered solids in the low-connectivity and low-frequency
limits18, it seems on the other hand successful in accurately describing the elastic response to shear of disordered
solids. Furthermore, our theory provides a completely new insight into the linear vanishing of shear rigidity at the
isostatic point (z = 2d) of disordered solids: this happens because the nonaffine correction at the isostatic point
becomes equal in absolute value, but with opposite sign, to the affine part of the shear modulus.
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