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   First principles quasiharmonic calculations play a very important role in mineral physics 

because they can predict the structural and thermodynamic properties of materials at pressure 

and temperature conditions of the Earth’s interior that are still challenging for experiments. They 

also enable calculations of thermal elastic properties by providing second-order derivatives of 

free energies with respect to strain. The latter are essential to interpret seismic tomography of the 

mantle in terms of temperature, composition, and mineralogy, in the context of geophysical 

processes. However, these are exceedingly demanding computations requiring up to ~103 

parallel jobs running on tens or more processors each. Here we introduce an analytical and 

computationally simpler approach that requires only calculations of static elastic constants and 

phonon density of states for unstrained configurations. This approach, currently implemented for 

crystals with up to orthorhombic symmetry, decreases the computational effort, i.e., CPU time 

and human labor, by up to two orders of magnitude. Results for the major mantle phases 

periclase, MgO, and forsterite, α-Mg2SiO4, show excellent agreement with previous first-

principles results and experimental data.  
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1. Introduction 

Elasticity is a basic materials property essential to important phenomena such as 

propagation of elastic waves, flexure, brittle failure, etc. Elasticity of Earth forming minerals at 

high pressures and temperatures is a central topic in solid Earth geophysics. Seismic tomography 

is the primary source of information about Earth’s interior. Interpretation of seismic observations 

in terms of mineralogical, compositional, and thermal fields requires basic knowledge of the 

elastic properties of minerals at relevant pressure and temperature conditions. Although 

experimental progress in the determination of elastic constants has been steady,1-3 measurement 

of elastic constant at pressures and temperatures of the Earth’s deep mantle and core (e.g., 

combined P > 50 GPa and T > 2300 K) remains a considerable challenge.  

Finite strain theory allows one to express elastic moduli as a power series of strains 

similarly to an equation of state.4, 5 These equations allow for extrapolations of elastic moduli 

from low to high pressures. This approach has been used to extrapolate bulk and shear moduli6-8 

and all elastic moduli.9, 10 These equations are non-linear and quite sensitive to parameters that 

can cause large discrepancies in the elastic moduli in the extrapolated regime and must be used 

carefully with associated uncertainties. Experimental and theoretical elastic moduli in wide 

pressure ranges are still desirable to reevaluate these parameters in wider range of conditions. 

First principles calculations of elastic moduli at planetary interior conditions can be 

obtained by quasiharmonic theory (QHA)11-13 or by molecular dynamics(MD).14 These 

approaches are complementary, with the QHA being essential below the Debye temperature and 

MD necessary near and above melting temperatures. At mantle temperatures and pressures both 

approaches have excellent predictive power and give similar results, except for systems 

stabilized by anharmonic fluctuations, such CaSiO3-perovskite.15-17 The QHA, in particular, 
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gives the components of the elastic constant tensor in a continuum of pressures and temperatures. 

Therefore, QHA gives especially accurate temperature and pressure gradients of the elastic 

moduli. Although this approach is computationally less demanding than MD, it is still 

computationally very intensive, since it requires calculations of the vibrational density of state 

(VDoS) for each strained atomic configuration.11, 12 It is, however, very labor intensive. For 

example, for an orthorhombic crystal with nine elastic constants, a very common symmetry in 

mineral structures, the calculation requires computations of VDoSs (at least 6 q-points to be used 

for interpolation in finer q-point meshes) for approximately 15 strained structures, in addition to 

the equilibrium structures, at several volumes (~ 10). The resulting workflow involves ~1,000 

parallel jobs divided in three stages, with output of each stage used as input to the next. This job 

deluge makes these calculations challenging to single researchers and prone to human error. A 

special cyber-infrastructure has been developed to manage these high temperature workflows by 

automatically dispatching jobs in distributed computational environments.18, 19 

Here we introduce an approach that avoids calculations of VDoS for the strained 

configurations and reduces substantially computational requirement and labor. The former is 

approximately the same as that of calculations of thermal equations of state plus static elastic 

constants, which are performed routinely nowadays.   

This paper is organized as follows: in section 2 we introduce the formalism; we briefly 

summarize the first principles method used and other details of the calculations in sections 3; 

section 4 illustrates the method’s performance by comparing results on periclase, MgO, with 

previous results obtained by full QHA thermal elastic calculations.11 Results on α-Mg2SiO4, 

forsterite, the magnesium end-member of the major upper mantle phase, olivine, is also obtained 

and compared with experimental data in this section. Conclusions are presented in section 5. 
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2. Formalism 

2.1 Quasiharmonic thermal elasticity  

Isothermal elastic constants in Cartesian coordinates are given by:20 
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The relationship between isothermal and adiabatic elastic constants is5: 
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Here, eij (i=1-3) are infinitesimal strains, VC is heat capacity at constant volume, S is entropy, and 

F is the Helmholtz free energy, which is expressed in the QHA21, 22 as: 
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Subscript q is the phonon wave vector and m is the normal mode index. Ust e,V( ) is the static 

internal energy at equilibrium volume V under isotropic pressure P with infinitesimal strain e. 

Ust e,V( )  is computed by first principles here. As pointed out earlier11, 12, 23 24Eq (1.1) is 

equivalent to: 
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where G is the Gibbs free energy,  
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To compute ),( TPcT
ijkl , the VDoS for equilibrium (unstrained) and deformed (strained) atomic 

configurations at selected pressures is necessary. In total these can number 100-200 

configurations for orthorhombic structures, depending on the number of pressures (~10) and 

strains applied (15-20). First principles phonon calculations are much more time-consuming than 

standard self-consistent ones, e.g., two to three orders of magnitude, depending on the size of 

unit cell and the level of code parallelization. Therefore, calculation of thermal-elastic constants 

using the QHA is a relatively large computational effort and surely requires considerable man 

power. 

       The volume dependence of phonon frequencies contains also information about the strain 

dependence of phonon frequencies, especially for anisotropic crystals. If we are able to extract 

this frequency dependence under infinitesimal strains from its volume dependence, then we can 

obtain the thermal elastic constants without performing phonon calculations for strained 

configurations. Here we derive relations and formulas needed in calculating 9 elastic constants 

for orthorhombic crystals. The ideas used here can be applied to other crystals besides cubic, 

tetragonal, and orthorhombic crystals. But the new formulas are needed to calculate remaining 

elastic constants 

2.2. Relations between volume and strain Grüneisen parameters for longitudinal strains  
 
Mode Grüneisen parameters express the volume dependence of phonon frequencies: 
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The anisotropic generalization is: 
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Henceforth we refer to qmγ as volume Grüneisen parameters and to ij

qmγ as strain Grüneisen 

parameter.  If volume changes are caused exclusively by infinitesimal longitudinal strains, as in 

the case of orthorhombic crystals under hydrostatic compression, frequencies change as:  

 11 22 33
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e e e
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= − + +  (5) 

Now, we can either express frequency changes as a power series in volume changes or as a 

power series on strains. To second order, the former is:   
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while the latter is: 
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For any combination of longitudinal strains, both equations must give the same frequency change. 

Equating the first order terms in Eqs. (6) and (7) we get: 

  11 22 33 3311 22
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This relation also ensures that the last terms in Eqs. (6) and (7) are equal. To keep the second 

terms in the r.h.s. of Eqs. (6) and (7) equal, the corresponding coefficients in both equations 

should be related as: 
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We now introduce two parameters and qm qmθ φ , which we call the Grüneisen azimuth angles 

(see Fig. 1) for each phonon (q,m). They are defined in relation to Eq. (8-1) as: 
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They are simple auxiliary quantities and express the sensitivity of strain Grüneisen parameters to 

strains. We introduce a distribution function f (θ,φ) , defining the density of modes with 

Grüneisen azimuth angles between ),( φθ  and ),( φφθθ dd ++ . For isotropic materials f (θ,φ) 

must be a constant:  

                  f = 3N
4π

,                                                                      (10) 

where 3N is the total numbers of modes. This is not the case for anisotropic materials but we will 

assume this isotropic distribution of Grüneisen azimuth angles. This approximation is equivalent 

to having a completely isotropic material from the thermal point of view, and therefore isotropic 

thermal pressure. It is well known that thermal pressure is not isotropic,25 however, treatment of 

thermal pressure as isotropic does not incur in significant errors in elastic constants at mantle 

conditions.26 As will be seen later, this approximation works very well up to very high 

temperatures. 

    As will be shown in the next section, calculations of thermal elastic properties require average 

values of strain Grüneisen parameters, of their products, or of their strain derivatives. We obtain 
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these averages from Eqs. (8) - (10) and by assuming a single average value for the volume 

Grüneisen parameter: 
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The averages necessary to compute thermal elastic constants are: 
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From Eqs. (8-2), (12-1), and (12-2) we also get   
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In all cases i,j =1-3. 

  Sinceγqm , their volume derivatives, and their averages are obtained at various volumes 

(pressures), average strain Grüneisen parameters and the average of their products or strain 

derivatives shown in Eqs. (12-1,2,3) can be obtained as well, avoiding a direct calculation of 

phonon frequency changes with strains. As will be seen below, despite the approximations 

involved, there appears to be an advantage to this scheme. 

2.3. Thermal elastic constants 

2.3.1. Longitudinal and off-diagonal elastic constant 
 

Orthorhombic crystals have nine elastic constants. With exception of the shear elastic 

constant in Eq. (1) the others can be written as:    
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is the static elastic constant with V
VUVP stst

∂
∂−= )()( , the static pressure. Phonon 

contributions to the elastic constants are included in the second term: 
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where )(),(),( VPTVPTVP stph −= is the contribution of vibrations to pressure. Zero point 

motion and thermal contributions to the elastic constants are given by: 
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Similarly, the derivative of the entropy with respect to strain, which is needed to calculate 

adiabatic elastic constants (Eq. 1), is 
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2.3.2 Shear elastic constants 
Similarly, shear elastic constants can be expressed as  
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where 1,2,3i j≠ = . So far, the second term in Eq. (18) is unknown. Fig. 2 shows strains depicted 

in two coordinate systems. The equation relating Cartesian strains e and e′ in coordinate systems 

rotated by an angle θ in the X1X2 plane is: 

e'= T−1eT                                                      (19) 
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In particular, for θ = π/4 shear strain in coordinate system X transforms to pure diagonal strains 

in coordinate X′, irrespective of crystal symmetry: 
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Such coordinate transformation does not change the strain energy, namely,  
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The static elastic constant cancels because this relationship is true also for the static part. 

Therefore, the total phonon contribution to shear elastic constants can be expressed as: 
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Eqs (12) is derived for arbitary Cartesian coordinate system if Eq. (10) is a good 

approximation under the corresponding diagonal strains and hence can be used to calculate all 

terms in the r.h.s. of Eqs (23). The difference is that we need to know the corresponding strains 
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we  have:   

 11 22 11 22 11 22
1'1' 2 '2 ' 3'3' 33 1'2 ';  ;  ;  

2 2 2
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Here we take '2'ie  as negligible and we are left only with pure longitudinal strains ei′i′ (i′=1,3) 

mentioned above in X′ system. For diagonal strains, Eq, (12) is applicable and we only need to 

replace e11, e22 and e33 by e1′1′, e2′2′ and e3′3′ to obtain ' ' ' '
ph
i i j jc  We also need new mode Grüneisen 

parameters, 'qmγ , corresponding to these longitudinal strain. However, the difference between 

'qmγ and qmγ should be small because (i) in contrast to the longitudinal strain, the shear strain 

1'2 'e  is small (see Eq. (25), it is 0 for cubic systems), and (ii) frequency changes caused by the 

shear strain are far smaller than the frequency changes caused by the longitudinal strain hence 

contribution to Grüneisen parameters from the small shear strain in Eq. (25) are relatively small. 

Therefore, it is reasonable to use the same qmγ  to calculate shear elastic constants without 

sacrificing much accuracy. We then obtain all ' ' ' '
ph
i i j jc  necessary to calculate ijijc in Eq. (23). For 

example, formula (12-1) in the X′ coordinate system changes into: 

γγ
)(3

)(2
2211

332211'1'1

ee
eee

+
++=                                                       (26) 

where e11, e22, and e33 are strains in X caused by hydrostatic compression. For cubic crystals, e11

=e22=e33, 1'1'1'1' 1111
ph phc c= , 1'1'2 '2 ' 1122

ph phc c= , and 1212 1111 1122( ) / 2ph ph phc c c= − , the latter being a well known

 result that holds for isotropic systems.  

3. Calculation method 
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3.1 First principles approach 

Calculations were performed using the Quantum ESPRESSO27 suite of codes for electronic 

structure calculations based on density functional theory, plane waves,28 and pseudopotentials. 

The local-density approximation29, 30 is used in all calculations. The pseudopotential for 

magnesium was generate by the method of von Barth and Car, while those for oxygen and 

silicon were generated by the method of Troullier and Martins.31 The plane wave cutoff energy is 

70 Ry. Brillouin-zone sampling for electronic states was carried out on 10 and 4 special k-points 

for periclase (2 atoms/cell) and forsterite (28 atoms/cell), respectively. Structural optimizations 

were carried out using damped variable cell shape molecular dynamics.32 The VDoSs of 

periclase and forsterite used in this work were previously calculated by Wu et al33 and Yu et al34  

using density functional perturbation theory (DFPT).35 

3.2 Other details 

The calculations were repeated for 8 to 10 pressures. The volume dependence of the free 

energy, lattice parameters, and phonon frequencies were fitted using polynomials to third power 

in Eulerian strains. Linear compressions were obtained in points of a regular grid in Eulerian 

strain, i.e., 332211 :::: eee
c
c

b
b

a
a =ΔΔΔ , and were then used in Eqs. (12).  

4. Results and discussion  

Here we present the thermal elastic constants of two important Earth forming minerals, 

cubic MgO (periclase) and orthorhombic forsterite (α phase of Mg2SiO4). These are the 

magnesium end-members of ferropericlase, the second major phase of the lower mantle, and 

olivine, the most abundant phase of the upper mantle. The (adiabatic) thermal elastic constants11 

and thermodynamic properties36 of MgO have been calculated by first principles within 
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quasiharmonic theory. Its thermal properties have also been calculated including anharmonic 

effects.33, 37 Here we repeat the same static and high temperature elastic constant calculations. 

The quasiharmonic VDoS is the same one obtained in Ref.33. As shown in Fig. 3, the calculated 

elastic moduli of MgO at zero pressure are essentially identical to those predicted by the 

quasiharmonic method using strained configurations, except for some small deviations in c44 

above 2000 K and c12 above 1200 K. In fact, present results on c11 and c12 appear to agree 

slightly better with the experimental values of Isaak et al.38 than results obtained using strained 

configurations, while c44 appears to be quite comparable. Deviations of calculated c11 and c12 

from the experimental data at high temperature are caused by the overestimation of the thermal 

expansivity predicted by the QHA.33, 37 The discrepancy between theoretical and experimental 

c44 remains; its cause is unlikely to be unharmonicity since it is present even at room temperature.  

Unexpectedly, the present method produces results slightly more consistent with 

experiments than the original method, especially the slope of c44, despite the fact it appears to be 

more approximated. The reason of this unexpected result is that the present method does not use 

strained configurations to obtain the thermal contribution to the elastic constant. “Infinitesimal” 

strains in practice are small but non-vanishing, i.e., < 1%. Ideally one would like to perform 

calculations using even smaller strain amplitudes, e.g. 0.1%. However, the convergence criterion 

in the self-consistent cycle must decrease by a factor of ten for comparable accuracy in the static 

elastic constants and this is computationally costly. A 1% strain is a compromise between a small 

strain and good numerical accuracy for energy differences between strained configurations with 

a reasonable total energy convergence criterion. Although small, a 1% strain changes slightly the 

internal pressure at which elastic constants are reported. In the present approach, pressure is 

unaltered since no strains are applied in practice.  
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The (adiabatic) thermal elastic moduli of forsterite at zero pressure are also in very good 

agreement with experimental data (see Fig. 4). Only static elastic constants39 and thermal 

properties40,34 have been reported by first principles so far. At room temperature, the longitudinal 

elastic constants c11, c22 and c33 are slightly smaller than the experimental data.41 However, their 

temperature derivatives are in excellent agreement with the experimental results. At temperatures 

above ~1000 K, the longitudinal elastic constant decreases more slowly with temperature than 

the experimental data. This small difference in temperature gradient also appears in the adiabatic 

bulk modulus, KS, (see Fig. 4). The bulk modulus in Fig. 4 was calculated from the equation of 

state without using any of the approximations mentioned above. Therefore, the deviation from 

experimental data must be attributed to the QHA as in the case of MgO. However, MgO and 

forsterite show opposite behavior. The longitudinal elastic constant of MgO decreases more 

rapidly than the experimental data, while those of forsterite decrease more slowly than the data. 

This different behavior is also consistent with the opposite effects cause by anharmonicity in 

these two minerals:37 at high temperatures the QHA overestimates the thermal expansivity in 

MgO and underestimates the thermal expansivity in forsterite.37, 40  

High-pressure results in forsterite also reproduce experimental data very well. Fig. 5 shows 

the pressure dependence of longitudinal (VP) and shear (VS) velocities in polycrystalline 

aggregates42 of forsterite at various temperatures. Static calculations are in good agreement with 

previous results by da Silva et al.39 and both overestimate longitudinal velocities. After inclusion 

of zero point motion and thermal effects, the agreement with experimental data41, 43, 44 improves 

considerably at 300 K and 1070 K. The temperature effect on velocities, as expected, decreases 

with increasing pressure, e.g., from 0.47 (0.30) m/s/K at 0 GPa to 0.32 (0.19) m/s/K at 10 GPa 

for the longitudinal (shear) velocity. Given the overall agreement between calculations and 
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experiments at low pressures and high temperatures, the relatively small disagreement between 

theory and experiments at 1073 K between 5 and 8 GPa44 is likely caused by difficulties in 

measuring shear velocities at high pressures and temperatures. In overall, the current method 

offers similar accuracy for cubic and orthorhombic systems.  

4. Summary and conclusions 

We have introduced an efficient and effective method for calculating thermal elastic 

properties of crystals with up to orthorhombic symmetry at high pressures and temperatures. It 

combines static elastic constant calculations with quasiharmonic calculations of VDoS and free 

energies for structures under isotropic pressure only. In contrast with a previous method 

requiring free energy calculations for strained configurations,23 the present method makes use of 

analytical expressions for the thermal part of the elastic constants relating strain derivatives 

(strain Grüneisen parameters) with volume derivatives of phonon frequencies (mode Grüneisen 

parameters). The central approximations used in the derivation of these relationships consist in 

assuming that the Grüneisen azimuth angles, which describe the relation between strain 

Grüneisen parameters and mode Grüneisen parameters, have isotropic distribution, which is 

equivalent to assuming that thermal pressure is isotropic. 

The first principles implementation of this method has offered results in periclase (MgO) 

and forsterite (α-Mg2SiO4) that are in excellent agreement with experimental data and with 

previous calculations of elastic constants in MgO at high pressures and temperatures. Since this 

method does not require calculations of VDoS for strained configurations, it requires 10-20 times 

less computations for orthorhombic systems. But, even more important, is the reduction of labor 

involved in preparing and monitoring ~103 parallel jobs, as required by the previous approach.   
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Figure Captions 

Figure 1. Convention for azimuth angle. 

Figure 2. (Color online)Relationship between strains in different coordinate systems. Structures 

before and after strains are applied are denoted in green and red, respectively. The structure 

experiences a shear strain as shown by the solid line if viewing from the X1 and X2 axis. This 

shear strain can also be viewed as a combination of a compressive strain along the X1′ and a 

tensile strain along the X2′ as indicated by the dashed lines. 

Figure 3. (Color online)The temperature dependence of the elastic constant of MgO at 0 GPa 

(solid line), compared to results using the previous method11 (the dashed lines) and experimental 

data38 (open circles).  

Figure 4. (Color online)The temperature dependence of the elastic modulus of forsterite at 0 

GPa (solid line), compared to experimental data41 (scatter points)  

Figure 5. (Color online)The pressure dependence of the velocity of forsterite at various 

temperatures, compared with experiment data from Issak et al.41 (open circles), Zha et al.43 (solid 

circles) and Li et al.44 (solid squares).   
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