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Abstract 

Molecular dynamics (MD) calculations were used to examine shock wave propagation along [100], 

[111], and [110] directions in aluminum single crystals.  Four different embedded-atom method 

(EAM) potentials were used to obtain wave profiles in ideal (defect-free) crystals shocked to peak 

longitudinal stresses approaching 13 GPa.  Due to the lack of defects in the simulated crystals, the 

peak stresses considered, and the short time scales examined, inelastic deformation was not 

observed in the MD simulations.  Time-averaged and spatially-averaged continuum variables were 

determined from the MD simulations to compare results from different potentials and to provide a 

direct comparison with results from nonlinear elastic continuum calculations that incorporated 

elastic constants up to fourth order.  These comparisons provide a basis for selecting the optimal 

potential from among the four potentials examined.  MD results for shocks along the [100] direction 

show significant differences for stresses and densities determined from simulations using different 

EAM potentials.  In contrast, the continuum variables for shocks along the [111] and [110] 

directions show smaller differences for three of the four potentials examined.  Comparisons with the 

continuum calculations show that the potential developed recently by Winey, Kubota and Gupta 

[Modelling Simul. Mater. Sci. Eng. 17, 055004 (2009)] provides the best overall agreement 

between the MD simulations and the continuum calculations.  As such, this potential is 

recommended for MD simulations of shock wave propagation in aluminum single crystals.  

Extending the current findings to elastic-plastic deformation would be desirable.  More generally, 

our work demonstrates that MD simulations of elastic shock waves in defect-free single crystals, in 

combination with nonlinear elastic continuum calculations, constitute an important step in 

establishing the applicability of classical MD potentials for simulations involving dynamic 

compression. 
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I. INTRODUCTION 

 

In recent years, classical molecular dynamics (MD) simulations have been used increasingly 

to examine the shock compression response of crystalline solids.1-3  Such simulations can provide 

important insight into the microscopic mechanisms governing material phenomena such as inelastic 

deformation and structural phase transformations.  Despite the potential usefulness of classical MD 

simulations for understanding the dynamic response of solids, it is difficult to evaluate the validity 

of the calculated results since direct comparisons with experiments pose a challenge:  the length and 

time scales of the simulations and experiments differ by orders of magnitude.  Also, not all material 

details (e.g. defects, heterogeneities) can be incorporated realistically into the MD simulations. 

Although the above indicated differences are well recognized and they constitute an 

important impetus for advances in computational capabilities,4 there is also a fundamental scientific 

issue that needs attention.  Because results from MD simulations depend on the choice of the inter-

atomic potentials, establishing the applicability of the potentials for the loading conditions of 

interest constitutes an important need.  Here, we address this need by focusing on the following two 

key questions:  how to ascertain the applicability of a potential for simulations involving shock 

wave compression, and how to choose the optimal potential when several choices are available. 

Our approach to address these questions consists of using MD simulations to examine and 

analyze shock wave propagation along different crystal orientations in idealized (or defect-free) 

crystals.  The lack of defects in the simulated crystals results in purely elastic deformation for shock 

loading to peak stresses that would otherwise result in yielding and inelastic deformation in crystals 

having defects.  Therefore, our approach enables a direct comparison between the thermo-

mechanical variables determined from MD simulations of shock wave compression and the thermo-

mechanical variables from nonlinear elastic continuum calculations that utilize known second-, 

third-, and fourth-order elastic constants.  By making such comparisons for each of the different 

inter-atomic potentials, we have a basis for selecting between different potentials.  To the best of 

our knowledge, this approach to selecting an optimal potential has not been carried out previously 

for MD simulations of shock compression of crystals. 

By examining idealized, or defect-free, crystals over the peak stress range considered here, 

the focus of our simulations is purely on the thermo-elastic response of the material.  Because the 

thermo-elastic response reflects the intrinsic behavior of the crystal lattice, its validation is a key 

first step toward the use of MD simulations of shock-induced inelastic deformation and/or structural 
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transformations.  Our long-term objective is to use MD simulations to help develop continuum 

models for dynamic compression of crystals.5 

In the present work, we chose to examine the anisotropic response of shocked aluminum 

single crystals.  Aluminum was selected for this study because it is representative of face-centered 

cubic (FCC) metals having high stacking fault energies and because several embedded-atom 

method (EAM) potentials for Al are available.6-10  To address the scientific questions indicated 

above, we have focused on elastic shock wave propagation along [100], [110], and [111] 

orientations in Al single crystals.  Continuum averages from MD simulations, carried out using four 

different EAM potentials, are compared with each other and with nonlinear elastic continuum 

calculations that utilize elastic constants up to fourth order.  Computational methods are described 

in Section II and the continuum results are summarized in Section III.  The results are discussed in 

Section IV and conclusions from our work are provided in Section V. 

 

II. COMPUTATIONAL METHODS 

 

A. MD Simulations 

 

All of our MD simulations were performed using the LAMMPS code.11  To simulate shock 

wave propagation in aluminum single crystals, atomic systems containing ~1 million atoms were 

constructed having approximate dimensions 640 Å ( )1x  by 160 Å ( )2x  by 160 Å ( )3x , where ix  

refer to a coordinate system in which the shock wave propagates along the 1x  direction.  Free 

surface boundary conditions were used in the longitudinal ( )1x  direction, whereas periodic 

boundary conditions were applied in the transverse ( ) 2 3and x x  directions.  Shock wave 

propagation was examined along the [ ]100  direction [ ] [ ] [ ]( )1 2 3100 , 010 , 001x x x− − − , the [ ]111  

direction [ ]( )1 2 3111 , 110 , 112x x x⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦ , and the [ ]110  direction 

[ ] [ ]( )1 2 3110 , 110 , 001x x x⎡ ⎤− − −⎣ ⎦ .  The systems were equilibrated for 10 ns (107 timesteps of 1 fs 

each) to bring them to zero stress and 300 K temperature.  To produce planar shocks in the 

equilibrated systems, four atomic layers at one end of the crystal were assigned a fixed velocity for 

the duration of the simulation, resulting in the propagation of supported shock waves having 
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prescribed particle velocities.  Previous work has shown that shock wave propagation in MD 

simulations is insensitive to the method by which the shocks are produced.1  The simulations 

presented here utilized a small timestep (0.01 fs) to adequately capture the dynamics associated with 

the propagating shock wave. 

 

B. Continuum Variables from MD Simulations 

 

To calculate mass density, Cauchy stress and temperature from our MD results, we used the 

method introduced by Hardy,12 in which two descriptions of a material system are considered. One 

description constitutes the continuum viewpoint, where the variables are point-wise functions of 

fixed spatial positions and time.  The other description is that the system consists of atoms, each of 

which has an associated mass, momentum, potential energy and kinetic energy. The two 

descriptions are connected using a prescribed localization function ψ, which enables the properties 

of the atoms to be averaged over a localized region surrounding the spatial point and allows the 

atoms to contribute to continuum properties at that point.  For example, mass density at fixed spatial 

position ix  is given by 

 

( ) ( ) 

1
,

N

i i ix t m x xα α

α
ρ ψ

=
= −∑  ,        (1) 

 

where N is the number of atoms in the system, mα is the mass of atom α, and ixα  is the spatial 

position of atom α.  By using expressions similar to Eq. (1) for mass, momentum and energy 

densities in the balance laws of continuum mechanics, Hardy was able to derive an expression for 

Cauchy stress (assumed positive in compression here),12 

 

( ) ( ) ( )   

1 1 1

1 ˆ ˆ,
2

N N N

jk i i j k i ij kP x t x f B x m v v x xαβ αβ αβ α α α α

α β α
β α

ψ
= = =

≠

= + −∑ ∑ ∑ ,    (2) 
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where jj jx x xαβ α β≡ − , kf
αβ  is the inter-atomic force between atoms α and β, ( )iB xαβ  is a bond 

function determined by integrating ψ, and ( ) ( )ˆ , ,j i j j iv x t v v x tα α≡ − , where jvα  is the velocity of 

atom α and ( ),j iv x t  is the continuum velocity field calculated by dividing momentum density by 

mass density.  Although not derivable from the continuum balance laws, Hardy also defined an 

expression for localized temperature, 

 

( ) ( ) ( )  

1 1
ˆ ˆ, 3

N N

i j j i i B i iT x t m v v x x k x xα α α α α

α α
ψ ψ

= =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ,     (3) 

 

where kB is Boltzmann’s constant. Further details about Hardy’s method and its use in thermo-

mechanical problems can be found in Ref. 13. 

We defined spatial points as the vertices (nodes) on a rectangular grid.  For our simulations, 

this grid consisted of 4,672 elements, each having approximate dimensions: 10 Å by 20 Å by 20 Å.  

To allow for translation of the atomic system, the grid extended a length of 730 Å in the 

longitudinal direction to encompass the atomic system plus some free space.  Linear interpolation 

functions between nodes were used to create a tent-shape localization function in three dimensions.  

Continuum variables were calculated at the spatial points every 0.01 ps (1000 timesteps).  

To reduce the statistical uncertainties in the continuum variables, averaging methods were 

used.  First, the 64 nodes located at the same longitudinal position were averaged to create a single 

value for each continuum variable.  Next, to arrive at steady-state estimates of continuum properties 

behind the shock front, the continuum variables were averaged spatially over a domain of 200 Å 

and temporally over a domain of 3 ps. 

 

C. Nonlinear Elastic Continuum Calculations 

 

For comparison with the MD results, continuum variables for shocked Al single crystals 

were calculated using nonlinear elasticity theory.14-16  It is convenient to express the differential 

changes in stress and temperature in terms of the elastic strain increments and entropy change:14,15 

 

0ij ijkl kl ijdt C d TdSη ρ Γ= −          (4) 
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ij ijdT T d TdS cηΓ η= − +          (5) 

 

where Cijkl are the isentropic elastic coefficients and both the thermodynamic stresses tij and the 

Lagrangian strains ηij are referred to the initial configuration.  In our calculations, both the 

Grüneisen tensor Γij 14 and the specific heat at constant strain cη were held constant. 

The isentropic elastic coefficients Cijkl are defined as the second derivatives of the internal 

energy with respect to strain at constant entropy.15,16  Therefore, from a truncated expansion of 

internal energy in powers of elastic strain, the elastic coefficients are given by16 

 

( ) 1,
2ijkl ijkl ijklmn mn ijklmnpq mn pqC S C C Cη η η η= + +  ,      (6) 

 

where ijklC , ijklmnC , and ijklmnpqC  are the second-, third-, and fourth-order elastic constants, 

respectively, and the overbar indicates evaluation at the initial configuration.  Measured values for 

the second- and third-order constants for aluminum were taken from Refs. 17 and 18, respectively.  

The fourth-order constants were determined from available shock wave propagation data, as 

described in Appendix A.  For the elastic loading calculations considered here, the entropy 

dependence of the elastic coefficients can be neglected. 

For elastic shock waves propagating along [100], [110], or [111] directions in a cubic 

crystal, the Lagrangian strains are uniaxial and can be written as 

 

2
11

1
2

e eη = − +  ,          (7) 

 

where 01e ρ ρ= −  is the engineering strain and 1x  is along the wave propagation direction.  For 

uniaxial strain, the Cauchy stresses (positive in compression) are related to the thermodynamic 

stresses by  

 

( ) 111xP e t= − −           (8) 

( )
22

1y
tP

e
= −

−
           (9) 
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( )
33

1z
tP

e
= −

−
 .                   (10) 

 

In terms of the Cauchy stresses and engineering strain, the entropy change encountered in shock 

wave loading is19 

 

 02 x xTdS e dP P deρ = −  .                  (11) 

 

To determine Cauchy stresses and temperature for shocked Al single crystals, numerical methods 

were used to obtain a simultaneous solution for Eqs. (4) – (11).  The stresses and temperatures 

determined from the continuum calculations were then compared with analogous quantities from 

the MD simulations. 

 

III. RESULTS  

 

MD simulations of defect-free Al single crystals shocked along the [100], [111], and [110] 

directions were performed using four different EAM potentials:  Voter and Chen (VC);6,7 Ercolessi 

and Adams (EA);8 Mishin, Farkas, Mehl and Papaconstantopoulos (MFMP);9 and Winey, Kubota 

and Gupta (WKG).10  Shock waves having particle velocities of 300 m/s and 600 m/s were 

simulated, resulting in peak longitudinal stresses of ~6 GPa and ~13 GPa, respectively.  Detailed 

examination of the atomic positions behind the shock front revealed that the material response was 

elastic for all the simulations reported here.   

Averaged continuum variables for shocked Al, determined from the MD simulations as 

described in Sec. II.B, constitute the key results of this study.  Because the crystal response is 

elastic, temperature results are of less importance and the main focus is on the mechanical variables 

– stresses as a function of density compression.  For each simulation, the following stresses, 

corresponding to the peak state, are shown in Figs. 1 – 3:  longitudinal (Px) and lateral stresses (Py, 

or Py and Pz when not equal), the mean stress (Pm), and the stress difference (Px - Py).  Although the 

mean stress and the stress difference do not provide information that is not already contained in the 

longitudinal and lateral stresses, plots of these quantities are useful in discussing crystal anisotropy 

effects.  Also shown in the figures are continuum curves for shocked Al single crystals, calculated 

using nonlinear elasticity theory as described in Sec. II.C. 
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A. [100] Compression 

 

In Fig. 1, the averaged stresses from the MD simulations, for each of the four potentials, are 

plotted as a function of density compression for shock wave propagation along the [100] direction.  

For shocks having a given particle velocity, Fig. 1a shows that density compression 0ρ ρ , 

longitudinal stress Px, and lateral stress Py values determined from the MD simulations are 

significantly different for the different EAM potentials.  Similarly, the stress difference Px - Py, 

shown in Fig. 1b, differs significantly for different potentials. 

Also shown in Fig. 1 are the continuum stress-density curves.  Comparisons between the 

MD results and the continuum curves show that simulations using the WKG potential provide the 

best agreement with the continuum calculations.  Although all the Py values from the MD 

simulations are close to the continuum curve in Fig 1a, this agreement is somewhat misleading 

because the density compression values are quite different.  Perhaps the most telling results are 

those shown in Fig. 1b for the higher shock amplitude (particle velocity of 600 m/s).  The mean 

stress and the stress difference values are markedly different for the four potentials.  The continuum 

curve provides the basis for selecting between the four potentials. 

 

C. [111] Compression 

 

In Fig. 2, averaged stresses from the MD simulations are plotted as a function of density 

compression for shock wave propagation along the [111] direction.  Compared to the [100] results 

shown in Fig. 1, the MD simulation results in Fig. 2a show that differences for the stresses and 

density compression values, corresponding to the four potentials, are less pronounced.  Although 

the results from the WKG potential again provide the best overall agreement with the continuum 

curves, the other three potentials show reasonable agreement with the continuum curves.  Similar to 

Fig. 1b, the stress difference results in Fig. 2b are helpful in discriminating between the different 

potentials. 
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B. [110] Compression 

 

In Fig. 3, averaged stresses from the MD simulations are plotted as a function of density 

compression for shock wave propagation along the [110] direction.  In Fig. 3a, the two lateral 

stresses Py and Pz are plotted separately because they are not equivalent for shocks along [110].  

The stresses and density compression obtained for three of the four potentials (WKG, MFMP, and 

EA potentials) are in good agreement with each other.  In contrast, the longitudinal stress Px, mean 

stress Pm, and stress difference Px - Py resulting from using the VC potential show differences when 

compared to the other potentials.  Results using the WKG, MFMP, and EA potentials agree well 

with the continuum calculations, whereas the agreement for results using the VC potential is not as 

good.  

Results from both the MD simulations and the calculated continuum curves show that the 

stress difference Px - Py is large for shock propagation along the [110] direction and is comparable 

to the mean stress Pm.  This result is in contrast to the results for shock propagation along the [100] 

and [111] directions, where Px - Py is significantly smaller than Pm. 

 

D. Temperature Calculations 

 

As expected, temperature increases achieved in both the MD simulations and the continuum 

calculations for shock propagation along all three crystal orientations are quite modest for the 

elastic loading examined here; calculated results in Fig. 4 are shown primarily for completeness.  

Compared to results for the [111] and [110] orientations, temperature-density values from MD 

simulations of shock wave propagation along the [100] orientation are significantly different.  In 

addition, differences in the temperature-density values, corresponding to the four different 

potentials, are significantly larger for the [100] orientation, compared to the other orientations.  For 

all the orientations examined, temperatures obtained from the simulations using the VC potential 

are higher than those obtained using the other potentials.   

In contrast to the MD results, the continuum temperature-density curves for shocked Al 

show only modest differences for shock wave propagation along different crystal orientations.  

Compared to the other EAM potentials, results obtained using the WKG potential provide 

somewhat better overall agreement with the continuum curves. 
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IV. DISCUSSION 

 

 The results presented in Figs. 1 – 3 provide a basis for examining the applicability of inter-

atomic potentials for use in MD simulations involving shock wave compression.  In particular, as 

discussed below, comparison of results from MD simulations of shock waves in defect-free single 

crystals with the results from nonlinear elastic continuum calculations enables the optimal potential 

to be selected from the available choices.  Although our method is not the only way that different 

interatomic potentials can be compared, it provides the only approach currently available for 

directly comparing results from MD shock wave simulations against a benchmark derived from 

experimental results.20 

Examining the stresses plotted in Fig. 1, the significant differences in the results from MD 

simulations using different EAM potentials clearly demonstrate the importance of comparing inter-

atomic potentials to determine their applicability for shock wave compression.  Also, differences in 

the stresses obtained from simulations using different potentials are considerably larger for shock 

wave propagation along the [100] direction (Fig. 1), in contrast to the [111] and [110] directions 

(Figs. 2 and 3).  This finding demonstrates the need to test inter-atomic potentials by examining 

shock wave propagation along several orientations, and shows the importance of crystal anisotropy 

for evaluating different potentials.  

For the simulation results shown in Figs. 1 – 3, the stress difference Px - Py exhibits the 

largest overall variation for MD simulations using different potentials.  Therefore, the calculated Px 

- Py values provide the best discriminant for choosing among the potentials examined.  In contrast, 

the differences in the calculated mean stress Pm using different potentials are less pronounced.  

Hence, examination of Pm alone does not provide a good basis for selecting between available 

potentials.   

For MD simulations of shock wave propagation along the [110] direction (Fig. 3), the stress 

difference Px - Py and the mean stress Pm are of comparable magnitude, in contrast to results for the 

[100] and [111] directions, where Pm is significantly larger than Px - Py.  This feature, resulting from 

the anisotropic elastic response of Al single crystals, provides an additional constraint for choosing 

between different potentials. 

Because the stress difference Px - Py is related to the shear stresses that cause inelastic 

deformation, the large differences in Px - Py for shocks along the [100] direction suggest that MD 

simulations of the elastic-plastic response in Al single crystals, with defects, will likely be different 
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for different EAM potentials.  Thus, our results demonstrate the need to consider the anisotropic 

elastic response, in addition to properties such as the stacking fault energy, width of extended 

dislocations, etc., when choosing the optimal potential for simulating shock wave propagation in 

crystals having defects, where inelastic deformation is anticipated.  Whether the differences 

observed here for elastic compression will also hold for elastic-plastic deformation is a question that 

needs to be explored in the future. 

Comparing the MD results with the calculated continuum curves in Figs. 1 – 4 shows that 

MD simulations using the WKG potential10 provide better overall agreement with the continuum 

results, compared to the other potentials.  Therefore, the WKG potential is recommended for use in 

simulations of shock wave propagation in aluminum single crystals.  This conclusion represents the 

end result of our evaluation and demonstrates the efficacy of our approach for selecting an optimal 

potential for MD simulations involving shock wave compression. 

The differences in 0ρ ρ , Px and Py for MD results using different potentials, shown in Fig. 

1a, indicate that the elastic coefficients governing shock compression, which depend on second- and 

higher-order elastic constants (see Eq. (6)), are significantly different for different EAM potentials.  

In contrast, previous simulations showed that the second-order elastic constants of Al resulting from 

using different potentials are not much different at ambient pressure and temperatures less than 400 

K.10  Therefore, the differences in stresses and density compression shown in Fig. 1a are due to 

differences in the higher-order elastic constants resulting from using different potentials.  These 

results indicate the importance of using higher-order elastic constants in the development of 

interatomic potentials, as was done for the WKG potential,10 because the higher-order constants 

contain information about anharmonicity and crystal anisotropy under mechanical loading that is 

not contained in the second-order constants. 

 

V. SUMMARY AND CONCLUSIONS 

 

The applicability of available inter-atomic potentials for molecular dynamics (MD) 

simulations involving shock wave compression was examined by simulating shock wave 

propagation along [100], [111], and [110] directions in defect-free Al single crystals using four 

different EAM potentials.  Due to the lack of defects in the simulated crystals and the short time 

scales examined, no evidence for inelastic deformation was observed in the MD simulations for 

longitudinal stresses reaching ~13 GPa.  Averaged thermo-mechanical continuum variables were 



12 
 

determined from the simulations to provide a direct comparison with results from nonlinear elastic 

continuum calculations performed using the elastic constants of aluminum up to fourth order.  This 

comparison, the key development in the work presented here, provides a basis for selecting the 

optimal potential from the four potentials examined.  

MD results for shocks along the [100] direction show significant differences for stresses, 

density compression, and temperatures determined from simulations using different EAM 

potentials.  In contrast, the continuum variables for shocks along the [111] and [110] directions 

show smaller differences for three of the four potentials examined.  These results demonstrate the 

need to test potentials using simulations of shock wave compression along more than one crystal 

orientation and, more generally, indicate the importance of crystal anisotropy in the evaluation of 

potentials. 

Our results show that the stress difference Px - Py provides the best overall discriminant 

among the different potentials.  In addition, the large differences in Px - Py for shock wave 

compression along the [100] direction (Fig. 1b) suggest that the elastic-plastic response resulting 

from shock wave simulations of Al single crystals using different EAM potentials will likely be 

different.  Therefore, testing the anisotropic elastic response under shock wave compression is an 

important factor (along with stacking fault energy, width of extended dislocations, etc.) for selecting 

a potential for use in MD simulations involving shock-induced inelastic deformation. 

Comparison of the MD results with the nonlinear elastic continuum calculations shows that 

the potential developed recently by Winey, Kubota and Gupta (WKG)10 provides better overall 

agreement among continuum variables, compared to the other three potentials considered here.  

Strictly speaking, validating this conclusion for shock-induced elastic-plastic deformation will 

require further calculations in which the material deforms inelastically.  However, in the absence of 

such calculations, the WKG potential is recommended for use in MD simulations of shock wave 

compression in aluminum single crystals.  In addition, the good agreement between the MD results 

and the continuum calculations for the stress difference Px - Py suggests that the WKG potential 

may prove useful for simulations of shock wave propagation in Al crystals with defects, where 

elastic-plastic response is expected. 

In general, the work presented here shows that MD simulations of elastic shock wave 

propagation in defect-free single crystals, in combination with nonlinear elastic continuum 

calculations, constitute an important step in establishing the applicability of classical MD potentials 

for shock wave simulations. 
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APPENDIX A 

 

The fourth-order elastic constants used in the nonlinear elastic continuum calculations were 

determined by fitting to available wave propagation data21 for shock loading and unloading along 

the [100], [110], and [111] directions in Al single crystals.  Because of the limited data available, 

the Cauchy relations22 were invoked to reduce the number of independent fourth-order elastic 

constants from 11 to four.  The fitting was performed using a previously developed anisotropic 

approach for wave propagation simulations in single crystals,23 along with the known second-

order17 and third-order18 elastic constants.  The resulting fourth-order elastic constants are: 

 

C1111 = 25000 GPa 

C1112 = 3000 GPa 

C1122 = 3000 GPa 

C1123 = 500 GPa. 
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FIGURE CAPTIONS 

 

FIG. 1.  (a) Longitudinal (Px) and lateral (Py) stresses versus density compression and (b) mean 

stress (Pm) and stress difference (Px - Py) versus density compression for Al single crystals shocked 

along the [100] direction.  Px, Py and Pm refer to Cauchy stresses assumed positive in compression.  

The lines are continuum stress-density curves calculated using the second-, third-, and fourth-order 

elastic constants.  The symbols denote averaged stresses determined from MD simulations of elastic 

shock compression.  Results are shown for four different EAM potentials:  WKG – Ref. 10; MFMP 

– Ref. 9; EA – Ref. 8; VC – Refs. 6 and 7.  Error bars are shown for simulation results where the 

statistical uncertainties are larger than the size of the symbols. 

 

FIG. 2.  (a) Longitudinal (Px) and lateral (Py) stresses versus density compression and (b) mean 

stress (Pm) and stress difference (Px - Py) versus density compression for Al single crystals shocked 

along the [111] direction.  Px, Py and Pm refer to Cauchy stresses assumed positive in compression.  

The lines are continuum stress-density curves calculated using the second-, third-, and fourth-order 

elastic constants.  The symbols denote averaged stresses determined from MD simulations of elastic 

shock compression.  Results are shown for four different EAM potentials:  WKG – Ref. 10; MFMP 

– Ref. 9; EA – Ref. 8; VC – Refs. 6 and 7.  Error bars are shown for simulation results where the 

statistical uncertainties are larger than the size of the symbols. 

 

FIG. 3. (Color online)  (a) Longitudinal (Px) and lateral (Py and Pz) stresses versus density 

compression and (b) mean stress (Pm) and stress difference (Px - Py) versus density compression for 

Al single crystals shocked along the [110] direction.  Px, Py, Pz and Pm refer to Cauchy stresses 

assumed positive in compression.  The lines are continuum stress-density curves calculated using 

the second-, third-, and fourth-order elastic constants.  The symbols denote averaged stresses 

determined from MD simulations of elastic shock compression.  Results are shown for four 

different EAM potentials:  WKG – Ref. 10; MFMP – Ref. 9; EA – Ref. 8; VC – Refs. 6 and 7.  

Error bars are shown for simulation results where the statistical uncertainties are larger than the size 

of the symbols. 

 

FIG. 4. (Color online)  Temperature versus density compression for Al single crystals shocked 

along the [100], [110], and [111] directions.  The lines are continuum temperature-density curves 
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calculated using the second-, third-, and fourth-order elastic constants, along with constant values 

for the Grüneisen tensor and specific heat.  The symbols denote averaged temperatures determined 

from MD simulations of elastic shock compression.  Results are shown for four different EAM 

potentials:  WKG – Ref. 10; MFMP – Ref. 9; EA – Ref. 8; VC – Refs. 6 and 7.  Error bars are 

shown for simulation results where the statistical uncertainties are larger than the size of the 

symbols. 
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Figure 1 – Zimmerman, Winey, and Gupta 
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Figure 2 – Zimmerman, Winey, and Gupta 

 

 

 

 

 

 

 



20 
 

(a) 

 
(b) 

 
 

Figure 3 – Zimmerman, Winey, and Gupta 
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Figure 4 – Zimmerman, Winey, and Gupta 

 


