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Pressure dependence of thermal conductivity provides a critical test of the validity of the 

model of the minimum thermal conductivity for describing heat transport by molecular 
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vibrations of an amorphous polymer. We measure the pressure dependence of the thermal 

conductivity Λ(P) of poly(methyl methacrylate) (PMMA) using a combination of 

time-domain thermoreflectance and SiC anvil cell techniques. We also determine Λ(P) 

from a computational model of amorphous polystyrene. In both cases, Λ(P) is accurately 

predicted by the minimum thermal conductivity model via the pressure dependence of the 

elastic constants and density. 

 

 

 

 

I. INTRODUCTION 

The model of the minimum thermal conductivity was originally proposed by Einstein 

[1, 2] who supposed that thermal energy is transported by harmonic interactions between 

vibrating atoms with random phases. Allen and Feldman [3, 4] provided a more rigorous 

foundation for this model using a harmonic Green-Kubo formalism and introduced the 

terminology of “locons, diffusons, and propagons” to classify the vibrational modes of 

disordered materials and their contributions to thermal transport. Locons are localized 

vibrational modes that do not contribute to thermal transport in the harmonic 
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approximation. Propagons are wave-like acoustic vibrations that are analogous to the 

phonons of crystalline solids. The largest fraction of vibrational modes, and the dominant 

contributors to heat transport, are diffusons, non-propagating, diffusive vibrational modes 

of the type envisioned by Einstein. Building on these ideas and the assumption of a 

Debye-like density of vibrational states, the thermal conductivity of most amorphous 

materials—and many strongly disordered crystals—can be accurately predicted from the 

atomic density and elastic constants. (An important exception was observed recently for 

amorphous Si [5] deposited by hot-wire chemical vapor deposition where the 

experimental thermal conductivity is a factor of 4 larger than predicted.) In the high 

temperature limit where all vibrational modes are thermally excited, the predicted 

minimum thermal conductivity is ( )2/3
min 0.40 2B l tk n v vΛ = + , where n is the atomic 

density and vl and vt are the longitudinal and transverse speeds of sound, respectively [2]. 

The validity of this description of the thermal transport for an amorphous polymer can 

be questioned, however, because of strong deviations from a Debye-like density of 

vibrational states: stiff force constants associated with covalent bonding within the 

polymer backbone and side groups coexist with soft force constants associated with 

non-bonding interactions between chains. Furthermore, non-bonded interactions between 

the chains are significantly non-linear and anharmonic interactions between localized 
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vibrations, of the type invoked in “fracton hopping” models [6], could conceivably 

contribute to heat transport. Evidence for the importance of anharmonicity in the thermal 

conductivity of amorphous polymers was recently observed in molecular dynamics 

simulations of polystyrene [7] and proteins [8, 9]. Pressure tuning of the thermal 

conductivity enables a critical test of the minimum thermal conductivity model by 

enabling a continuous variation of the atomic density and elastic constants.  

Prior experimental work on the pressure dependence of the thermal conductivity Λ(P) 

of polymers [10-12] extends to only P≈2 GPa because of limitations of the types of 

pressure cells used in the prior work. Modern diamond or SiC anvil cell techniques 

[13-15] easily generate the high pressures needed to significantly alter the elastic 

constants of a polymer. For example, the pressure dependence of the elastic constant C11 

of a typical glassy polymer is on the order of C11≈ 8 GPa+7P and, therefore, at P=10 GPa, 

C11 increases by an order of magnitude to C11≈80 GPa, comparable to the elastic 

constants of Al at ambient conditions. Here, we present our combined experimental and 

computational study of the elastic constants and thermal conductivity Λ of glassy 

polymers: an experimental study of poly(methyl methacrylate) and a numerical study of a 

computer-based model of polystyrene. 
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II. EXPERIMENTAL DETAILS 

SiC anvils were etched in 10% HF solutions, rinsed with DI water, and sonicated in 

chloroform followed by ethanol to remove surface contaminants. The anvils were then 

treated with a piranha solution (3 H2SO4 : 1 H2O2 (v/v)) to hydroxylate the surface and 

facilitate chemical attachment of the radical initiator, 

(11-(2-bromo-2-methyl)propionyloxy) undecyltrichlorosilane [16]. PMMA brushes were 

grown from these surfaces by atom-transfer radical polymerization (ATRP) [17]. By term 

“brush”, we are referring to polymer chains covalently bonded to a surface at spacing 

shorter than the radius of gyration [18]. Copper (I) chloride was used as the ATRP 

catalyst. The thickness of the brush and molecular weight of the PMMA chains increased 

with increasing polymerization time. We determined the thickness of the brush by 

picosecond acoustics measurements and comparisons to a simulation of the acoustics 

signals based on Ref. [19]. From this film thickness and the molecular weight, we 

calculated a grafting density of ≈0.6 chains nm-2, indicating sufficient overlap to force the 

extension of polymer chains into the brush regime [18]. 

The PMMA brushes were then coated with a thin Al film, ≈80 nm thick, by magnetron 

sputter deposition to act as an optical transducer for time-domain thermoreflectance 

measurements. We pressurized the SiC anvil cell by loading with Ar cryogenically or by 
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loading with H2O as the pressure medium. (Since Ar is a liquid at P <1.3 GPa and 

sometimes leaked from the cell, H2O was used for measurements at P <1.4 GPa. At room 

temperature and P >1.3 GPa, the equilibrium phase of Ar is a hcp crystal [20].) The 

pressure was determined by ruby fluorescence [21]. 

The thermal conductivity Λ of PMMA brushes was measured by comparing 

time-domain thermoreflectance (TDTR) [22-24] data obtained at room temperature to 

calculations using a thermal model [25] which takes into account heat flow through the 

polymer layer and into the SiC substrate as well as heat flow into the pressure medium 

[26]. The thermal model contains many parameters—laser spot size, and the thickness, 

heat capacity and thermal conductivity of each layer—but the thermal conductivity of the 

PMMA brush is the only significant unknown. The PMMA layers are chosen to be thin so 

that most of the heat flows into the high thermal conductivity SiC anvil and only a small 

fraction of the heat flows into the low thermal conductivity pressure medium; 

uncertainties in the thermal properties of the pressure medium propagate to less than 2% 

error in the measurements of the thermal conductivity of our thickest, 22 nm, PMMA 

layers at 10 GPa.  

The thickness of the Al film was determined by picosecond acoustics and our estimates 

of the heat capacity of Al at high pressures were described in Ref. [15]. Changes in the 
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PMMA thickness were calculated from the equation of state of PMMA. (Our approach 

for determining the equation of state is described below.) Because the PMMA layers are 

“thermally thin”, the model is not sensitive to the heat capacity of the PMMA brush.  

We cannot directly measure the elastic constant of a thin polymer brush and instead 

measured the elastic constant C11 of a thick (>1μm), spun-cast layer of PMMA by 

time-domain Brillouin scattering [15, 27, 28]. For longitudinal modes in a backscattering 

geometry, the Brillouin frequency is 2 /lf Nv λ= , where N is the refractive index, vl the 

longitudinal sound velocity, and λ=785 nm is the laser wavelength. Figure 1(a) shows the 

pressure dependence of f.  

We determine the equation of state and elastic constant C11 by a self-consistent, 

iterative approach; the result is plotted in Fig. 1(b). To begin, we use a trial function for 

the isothermal bulk modulus BT=6 GPa+6P and calculate the pressure dependence of the 

density ρ(P), index of refraction N(P), and C11(P) from the picosecond acoustics data 

using the Lorentz-Lorenz formula ( ) ( )( )2 21 2N N Aρ− + = , where A is a constant [15]. 

(At ambient pressure ρ=1.19 g cm-3 and A=0.241.) Assuming a constant Poisson ratio of 

1/3, ( ) ( ) ( )11
2 .3TB P C P= We fit this BT (P) to a second order polynomial in P and 

calculate the pressure dependence of the molecular density n from ( / )T TB n dP dn= . We 

iterate the procedure described above until C11 and BT are self-consistent. The final 
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equation of state is 2
0 1 2TB B B P B P= + + , where B0=6.15 GPa, B1=7, and B2= − 0.17 GPa-1. 

The atomic density n increases by 31% at 5 GPa and 46% at 10 GPa. We have assumed 

that under high pressure the amorphous polymer deforms plastically so that the state of 

stress is close to hydrostatic. (At low pressures, the yield strength of PMMA is yτ ≈ 0.05 

GPa+0.2P [29].)  

 

III. RESULTS AND DISCUSSION 

Figure 2 shows Λ(P) of PMMA brushes (solid symbols) with different thicknesses; 

Λ(P) is independent of the thickness h when h > 6 nm and increases monotonically with 

increasing P. (The uncertainty in the thermal conductivity measurements is ≈10 % and 

dominated by uncertainties in the thicknesses of PMMA and Al.) For comparison, we also 

measured Λ(P) of a 10 nm thick spun-cast PMMA (open diamond) and found the 

spun-cast and brush forms of PMMA show the same behavior. Our data at ambient 

pressure, ≈0.185 W m-1 K-1, are in good agreement with the literature value, ≈0.20 W m-1 

K-1 (open square) [30, 31]; the weaker pressure dependence at low pressure regime is 

similar to that of prior work by Andersson (open circle) [10] whose ambient value, 0.225 

W m-1 K-1, is ≈10 % higher than the data reported in Refs. [30, 31]. 

The fact that brushes and spun-cast layers behave similarly is consistent with our 
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previous study of the thickness dependence of the effective thermal conductivity at 

ambient pressure [32]. The dry polymer brushes that we are studying are amorphous and 

the chain extension is relatively small; we estimated previously that the brushes are 

extended to only 25% of their contour length and that the enhancement of thermal 

conductivity created by this extension is not significant compared to the experimental 

uncertainties of the data plotted in Fig. 2. 

Data sets for 9 and 22 nm thick brushes and the 10 nm thick spun-cast layer include 

measurements for both increasing and decreasing pressure. This lack of hysteresis shows 

that any structural changes in the PMMA under pressure are reversible.  

Our measurements of the thermal conductivity of PMMA layers include the 

contribution to the thermal resistance from the bulk of the material as well as the thermal 

resistance of the Al/PMMA and PMMA/SiC interfaces. We have not experimentally 

determined the series sum of the Al/PMMA and PMMA/SiC interface conductance; 

instead, we estimateG ≈ 300 MW m-2 K-1 based on our previous study of the thickness 

dependence of the effective thermal conductivity of spun-cast PMMA [32]. Using this 

estimate, the sum of the Kapitza lengths of Al/PMMA and PMMA/SiC interfaces is small, 

/Kl G= Λ ~1 nm, and therefore we do not expect a significant reduction in the effective 

thermal conductivity of PMMA due to the finite interfacial thermal conductance even for 
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our thinnest (6 nm) brushes. 

In Fig. 2, we also compare our data for Λ(P) with the behavior predicted by the model 

of the minimum thermal conductivity minΛ [2]. In the high temperature limit, minΛ depends 

only on n and the sound velocities, 11lv C ρ= and 44tv C ρ= . If we assume that the 

ratio 11 44/C C is approximately independent of pressure, the pressure dependence 

of minΛ simplifies to 1/ 6 1/ 2
min 0 11n CΛ = Λ . A fit to the average of our data at ambient pressure 

Λ= 0.185 W m-1 K-1 gives 11
0 3.25 10−Λ = × J1/2 m K-1 s-1 using n= 284.3 10× m-3 and C11=9.2 

GPa. The dashed line in Fig. 2 shows an evaluation of this expression using the C11 

derived from our polynomial fit and n determined by the equation of state 

( / )T TB n dP dn= as described above.  

The pressure dependence of the thermal conductivity can also be described 

approximately by a relatively simple function of pressure. In the limit of high pressure, 

the elastic constant C11 is approximately linear in P, and n1/6 is essentially constant. As a 

result, the predicted thermal conductivity can be expressed as 1/ 2
1 2PΛ = Λ + Λ , where 1Λ = 

0.185 W m-1 K-1 is the thermal conductivity at ambient pressure and 2Λ ≈0.11 W m-1 K-1 

GPa-1/2. 

The predicted thermal conductivity based on 1/ 6 1/ 2
min 0 11n CΛ = Λ  captures the trends in 

our data and accurately predicts Λ(P) at higher pressures. We note that in the low pressure 
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regime, P<1 GPa, our data deviate slightly from the prediction but the difference is small 

and comparable to the experimental uncertainties. (Andersson’s data show a similar 

deviation from the model prediction even after picking a new 11
0 3.95 10−Λ = × J1/2 m K-1 s-1 

to fit the data of Ref. [10] at ambient pressure.) The good agreement between our data 

and the model prediction over the entire pressure range supports the idea that the 

dominant mechanism of thermal transport in glassy polymers is the exchange of thermal 

energy between non-propagating vibrational modes [33]. 

To gain further insight into the mechanism of heat transport in amorphous polymers, 

and to evaluate the generality of our findings, we performed molecular dynamics (MD) 

simulations on a model of polystyrene (PS); polystyrene is chosen because of a 

well-established set of force field parameters for sp3- and sp2-hybridized carbon atoms 

and hydrogen atoms existing in Polymer Consistent Force Field [34]. Recently, Algaer 

and collaborators [35] also reported the pressure dependence of the thermal conductivity 

of polystyrene obtained via MD simulations. However, in their studies, pressures up to 

only 60 MPa were investigated, and consequently no dependence on the elastic constants 

was determined. 

 A structural model of amorphous atactic polystyrene (PS) including all atoms was 

initially generated by a Monte-Carlo algorithm based on the rotational isomeric state (RIS) 
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model [36]. The initial structure was then equilibrated at T=298 K and various hydrostatic 

pressures for times up to 3 ns until a stable density was reached. The model contained 

6084 atoms in 18 chains, packed in a bar-shaped cell. At ambient pressure, the size of the 

simulation cell was 139.6×22.5×21.4 Å3, corresponding to a density of 0.966 g cm-3. At a 

pressure of 20 GPa, the stable density was 1.665 g cm-3.  

To calculate the thermal conductivity, we used an MD time step of 0.5 fs and periodic 

boundary conditions in 3 dimensions. The temperature and pressure were controlled 

during equilibration by a Berendsen thermostat and barostat. The non-equilibrium 

thermal conductivity [37] was determined using a constant heat flux imposed by a heat 

source at the center of the computational cell and a heat sink at the edges of the cell. The 

value of the flux was chosen such that the total temperature drop across the model was in 

the range of 20-50 K. In steady-state, a linear temperature profile is established and the 

thermal conductivity was evaluated from Fourier’s law. Molecular dynamics simulations 

capture heat transfer due to propagating (polarized), and diffusive (delocalized but not 

polarized) modes, as well as heat transfer between localized modes when anharmonic 

effects are important [7-9]. By analyzing the results as a function of cell size, we 

established that the conductivity converges at cell sizes of approximately 10 nm. Our 

reported results are for a simulation cell that is 14 nm long at ambient pressure.  
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Figure 3 presents the pressure dependence of the thermal conductivity of polystyrene 

by MD simulations. The solid line shows the predicted Λ based on the minimum thermal 

conductivity model with 11
0 5.66 10−Λ = × J1/2 m K-1s-1, determined from a fit to minΛ = 0.20 

W m-1 K-1 at ambient pressure. The excellent agreement between the MD simulations and 

the model prediction indicates that the mechanism of thermal transport in amorphous 

polymers is the same as assumed by the minimum thermal conductivity model. It also 

suggests that indeed a universal thermal transport mechanism exists in amorphous 

polymers where thermal energy is transferred predominately through the diffusion of 

thermal energy between non-propagating vibrational modes. 

As a striking contrast with the relatively weak pressure dependence predicted by the 

model of minimum thermal conductivity, the Leibfried-Schlömann (LS) equation, often 

used to describe the thermal conductivity of isotropic crystalline solids, predicts a strong 

pressure dependence: 

1
33

2
D

LS
VA

T
ω

γ
Λ = ,      (1) 

where V is the volume, Dω the Debye frequency,γ the Grüneisen constant,T the 

temperature, and A is a constant independent of pressure [38, 39]. If we assume thatγ is 

also independent of pressure and 11D Cω ∝ , then the predicted Λ(P) based on Eq. (1) is 
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shown as the dashed line in Fig. 3. The distinctly different pressure dependence of Λ 

predicted by the LS equation supports our conclusion that diffusion of thermal energy 

between non-propagating vibrational modes dominates heat conduction in amorphous 

polymers. The propagation of wave-like vibrational modes—the dominant heat 

conduction mechanism in crystalline structures—is a minor consideration. 

 

IV. CONCLUSION 

In summary, we have studied the pressure dependence of elastic constants and thermal 

conductivity of PMMA using time-domain Brillouin scattering and time-domain 

thermoreflectance combined with SiC anvil cell techniques. The pressure dependent Λ(P) 

of PMMA by TDTR measurements and polystyrene by MD simulations can both be well 

accounted for by the model of minimum thermal conductivity. It also appears that there is 

no need to invoke localized excitations and non-harmonic energy transfer to capture the 

basic heat transfer mechanism in amorphous polymers. We point out, however, that with 

increasing pressure, contrast in the bonding strength between non-bonded and covalent 

interactions becomes less pronounced; these effects may reduce the density of localized 

vibrations at high pressures and suppress contributions to thermal transport from 

localized modes and anharmonic effects.  
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FIG. 1. Pressure dependence of the (a) Brillouin frequency and (b) C11 of a spun-cast layer 

of PMMA. C11 is derived from the Brillouin frequency data using a self-consistent 

equation of state of PMMA and the assumptions that the Poisson ratio is constant and the 

refractive index follows the Lorentz-Lorenz equation. Data for PDMS [40] and 

previously estimated C11= 110 GPa+4P of Al [41] are plotted for comparison. 
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FIG. 2. Measurements of the thermal conductivity of PMMA brushes (solid symbols) and 

a spun-cast layer (open diamond) as a function of pressure. The uncertainty in the thermal 

conductivity and pressure measurements are ≈10 % and 0.2 GPa, respectively. Ar was the 

pressure medium for all measurements except for that of 13 nm brushes and 10 nm 

spun-cast layer where H2O was used. The dashed line shows the predicted thermal 

conductivity of PMMA based on the minimum thermal conductivity model, the pressure 

dependence of the atomic density n, and the elastic constant C11 obtained by a polynomial 

fit. Data for bulk PMMA by Andersson et al. (open circle) [10] and by Cahill et al. and 

Putnam et al. (open square) [30, 31] are included for comparison. Lines between 

Andersson’s data are added to emphasize that the pressure dependence of the prior data 

are similar to that of our measurements in the low pressure regime. 
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FIG. 3. Pressure dependence of the thermal conductivity of polystyrene by molecular 

dynamics simulations (solid circles). The solid line shows the predicted thermal 

conductivity by the model of the minimum thermal conductivity. The pressure 

dependence of the thermal conductivity predicted by the Leibfried-Schlömann equation 

using the scaling 11D Cω ∝  is shown as the dashed line. 
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