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Hydrogen arranges at dislocations in palladium to form nanoscale hydrides, changing the vibrational spectra.
An ab initio hydrogen potential energy model versus Pd neighbor distances allows us to predict the vibrational
excitations for H from absolute zero up to room temperature adjacent to a partial dislocation and with strain.
Using the equilibrium distribution of hydrogen with temperature, we predict excitation spectra to explain new
incoherent inelastic neutron-scattering measurements. At 0K, dislocation cores trap H to form nanometer-sized
hydrides, while increased temperature dissolves the hydrides and disperses H throughout bulk Pd.
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I. INTRODUCTION

The increasing needs for renewable energy—and issues of production, storage and transportation of energy—motivates inter-
est in hydrogen for energy storage.1 At a fundamental level, open questions remain about how hydrogen acts in metals, despite a
long legacy of study.2,3 Palladium is an ideal metal to study hydrogen behavior due tothe strong catalytic behavior of the Pd sur-
face facilitating hydrogen adsorption, favorableT − pH2 thermodynamic properties, and that hydrogen acts as an ideal lattice gas
in Pd.4 Neutron-scattering characterization is useful,4 in part to a scattering interaction mediated by neutron-nuclear properties
and available incident neutron energies similar to those associated with lattice vibrations. Coherent inelastic neutron scattering
gave the first phonon dispersion measurement of a metal hydride (Pd-H and -D).5 The hydrogen-dislocation trapping interaction
in Pd has remained of significant interest over the last four decades3,6 because of the favorable Pd-H properties mentioned above
and that Pd can be heavily deformed by hydride cycling acrossthe miscibility gap.7

Mobile solutes—substitutional and interstitial—arrangethemselves in a crystal to minimize the free energy; with non-uniform
strains, the arrangement reflects the energy changes from strain. For an edge dislocation, compressive and tensile strains produce
areas that are depleted and enhanced with solute concentration—a “Cottrell atmosphere.”8 Cottrell atmospheres produce time-
dependent strengthening mechanisms like strain-aging in steels and the Portevin-Le Chatelier effect in aluminum alloys,9 and
the rearrangement of hydrogen from dislocation strain fields affects dislocation interactions.10 The dislocation core—where the
continuum description of the strain fields breaks down—provides the largest distortions in geometry and the attractionof solutes
to this region is crucial for solute effects on strength.11–13 Tensile strain also lowers the vibrational excitation for H, and, in a
dislocation core, broken symmetry splits the excitations.14 The vibration of Pd next to H changes the local potential energy for
each H atom, broadening the vibrational excitations. Additionally, the vibrational excitations of the light hydrogenatom are
significantly changed by anharmonicity.15,16 We treat all of these effects: non-uniform hydrogen site occupancy due to strain
and H-H interaction, quantum-thermal vibrational displacements for neighboring Pd, and the anharmonic potential energy to
determine the causes of changes to the vibrational spectra with temperature. Experimentally, in situ inelastic neutron scattering
averages over different H sites to give a direct measurement of H environment. We compare ourab initio treatment of hydrogen
sites and anharmonic vibrational excitations with incoherent inelastic neutron-scattering measurements to observethe formation
and dissolution of nanoscale hydrides around dislocation cores in palladium.

II. METHODS

Incoherent inelastic neutron scattering (IINS) using the Filter Analyzer Neutron Spectrometer (FANS) at the NIST Center
for Neutron Research17 measure the vibrational density of states of trapped hydrogen in polycrystalline Pd as a function of
temperature. FANS scans the incident neutron energy and records the intensity that passes through a Be-Bi-graphite composite
neutron filter. Sample preparation procedures and materialare identical to Heuseret al.,18 with ∼100 grams of polycrystalline
Pd sheet measured at 4K, 100K, 200K, and 300K. Palladium sheet supplied by Alpha Aesar was cold-rolled in the as-received
condition, and further deformed by cycling twice across thehydride miscibility gap.7 It was held under vacuum at room tem-
perature for several days and then annealed for 8 hours at∼400K to completely outgas the sample. The subsequent measured
pressure reduction in a closed volume at room temperature using a portable hydrogen gas loading apparatus gives a total hy-
drogen concentration of 0.0013 [H]/[Pd], corresponding to a total hydrogen inventory of 1.3 mg.The IINS measurements were
performed in an Al measurement can sealed with indium wire.18 This can was isolated with an all metal vacuum valve, mounted
to the FANS instrument, and cooled to 4K. Subsequent measurements were performed at 100K, 200K, and 300K. The sample
was then outgassed at∼420K for∼48 hours completely remove all hydrogen. The zero-concentration background was measured
from the out-gassed sample in the Al can at 4K, 100K, 200K, and300K. We also recorded fast neutron background with the
sample in place and the detector bank blocked with Cd.18 The measured hydrogen vibrational density of states in Fig.3 is the
normalized net intensity after zero-concentration and fast neutron background subtractions. In addition, an energy-independent
flat background attributed to multi-phonon scattering was subtracted, as discussed in Ref. 18.

Density functional theory calculations for Pd-H14 are performed withvasp19,20 using a plane-wave basis with the projector
augmented-wave (PAW) method21 with potentials generated by Kresse.22 The local-density approximation as parametrized by
Perdew and Zunger23 and a plane-wave kinetic-energy cutoff of 250eV ensures accurate treatment of the potentials. The PAW
potential for Pd treats thes- andd-states as valence, and the Hs-state as valence. The restoring forces for H in Pd change
by only 5% compared with a generalized gradient approximation, or including Pd 4p-states in the valence; our choice of the
local-density approximation is computationally efficient, and gives anα-Pd lattice constant of 3.8528Å compared with the
experimentally measured 3.8718Å. To compute the dynamicalmatrix for Pd, and to relax H at the octahedral site inα-Pd, we
use a 4×4×4 simple-cubic supercell of 256 atoms, with a 6×6×6 k-point mesh; while the dislocation geometry with 382 atoms
uses a 1× 1× 8 k-point mesh. For the PdH0.63 hydride force-constant calculation, a 3× 3× 3 simple cubic cell (108 Pd atoms,
68 H atoms) with displacements of 0.01Å for H and Pd atoms and a8 × 8× 8 k-point mesh. The electron states are occupied
using a Methfessel-Paxton smearing of 0.25eV. For the H octahedral site inα-Pd and the partial dislocation core, atom positions
are relaxed using conjugate gradient until the forces are less than 5meV/Å.
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Dislocations produce a distribution of interstitial site strains; to compute the density of strain sites available forhydrogen, we
consider a simplified model for the distribution of dislocations throughout the crystal. We take the dislocation density ρdisl as
given by cylinders of radiusR = 1/

√
πρdisl with an edge dislocation at the center; we assume that the strain in each cylinder is

due only to the single edge dislocation at the center. The volumetric strainr away from the dislocation core and with angleθ to
the slip plane is

ε = − b
2πr
· 1− 2ν

1− ν
sinθ = − sinθ · b

4πr
(1)

for a Poisson’s ratioν = 1/3, and whereb = 0.298nm is the Pd Burgers vector. This equation becomes invalid for smallr; we
truncate the expression in the “core” of the dislocation. Wecan estimate the size of the core by considering the maximum strain
of ±5% at the partial core from Ref. 14; then,

rc =
b

4π(0.05)
= 1.59b ≈ 4√

6b (2)

The line vector of an edge dislocation ist =
√

6a0/2 with Burgers vectorb = a0/
√

2, and so the core has a volume of
r2
ct = 3a3

0/2 = 6(a3
0/4); hence, there are 6 sites per dislocation line inside thisradius. We assign half the maximum strain of+5%

and half the minimum strain of−5% corresponding to opposite sides of the partial cores. Previousab initio calculations of the
core give a trapping energy of 0.164eV with a 5% strain;14 the trapping energy matches the decrease in hydrogen energyfrom a
5% increase in volume—we then model the binding energy for H as linear in the site strainε: −0.164eV(ε/0.05).

With these definitions, we compute the density of strain sites n(ε) by integrating over our cylinder cross-section fromrc out
to R. We consider the 6 core sites (3 attractive and 3 repulsive) separate from this continuum calculation.

n(ε) =

[∫ R

0
d2r

]−1

·
∫ R

rc

d2r δ(ε − ε(r, θ))

= ρdisl ·
∫ R

rc

rdr
∫ 2π

0
dθ δ

(
ε +

b
4πr

sinθ

)

= 2ρdisl ·
∫ min{R,b/4πε}

rc

rdr

∣∣∣∣∣∣
b

4πr
cos

(
sin−1

(
ε4πr

b

))∣∣∣∣∣∣
−1

= 2ρdisl ·
∫ min{R,b/4πε}

rc

dr
r

((
b

4πr

)2
− ε2

)1/2

(3)

where the delta-function integral is calculated by rewriting the delta function in terms of the two rootsθ0 = sin−1(ε4πr/b). To
simplify the expression, we define two strains: the maximum site strainε1 = b/(4πrc), and the maximum strain at the cylinder
edgeε0 = b/(4πR). Then,

n(ε) = 2ρdisl ·
∫ min{R,b/4πε}

rc

dr
r

((
b

4πr

)2
− ε2

)1/2

= 2ρdisl

(
b
4π

)2 ∫ ε1

max{ε0,ε}
dx x−3(x2 − ε2)−1/2

=
2ε2

0

π

∫ ε1

max{ε0,ε}
dx x−3(x2 − ε2)−1/2.

(4)

For |ε| > ε0, this gives

n(ε) =
1
π



(
ε0

ε1

)2

√
ε2

1 − ε2

ε2
+
ε2

0

ε3
arccos

(
ε

ε1

)
(5)

and for|ε| < ε0, this gives

n(ε) =
1
π



(
ε0

ε1

)2

√
ε2

1 − ε2

ε2
−

√
ε2

0 − ε2

ε2
+
ε2

0

ε3

[
arcsin

(
ε

ε0

)
− arcsin

(
ε

ε1

)]
(6)
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These two expressions can be written in terms of the ratioη = ε0/ε1 < 1 as

n(ε) =



1
πε3

(
εη2

√
ε2

1 − ε2 + ε2
0 arccos(ε/ε1)

)
: |ε| > ε0

1
πε3

(
εη2

√
ε2

1 − ε2 − ε
√
ε2

0 − ε2 : |ε| < ε0

+ε2
0 [arcsin(ε/ε0) − arcsin(ε/ε1)]

)
(7)

The general scalingn ∼ |ε|−3, similar to Kirchheim.24 If we integrate this density of states over all strains, we have
∫ ε1

−ε1

dε n(ε) = 1− η2 (8)

which accounts for the “missing” core states, which are a fractionη2 = r2
c/R

2 of all possible sites. We add back the core sites that
make up 6r2

cρdisl of all possible sites; half have tensile strain+ε1, and the other half have compressive strain−ε1. In our sample,
the dislocation density isρdisl = 1011cm−2, soR = 1/

√
πρdisl = 63.7b = 19nm, the maximum site strain isε1 = b/(4πrc) = 0.05,

and the maximum strain at the cylinder edge isε0 = b/(4πR) = 1.25× 10−3, with a ratio ofη = ε0/ε1 = 0.025, and with a core
occupancy of 6r2

cρdisl = 2 · 0.576× 10−3.
The thermodynamics of hydrogen in Pd requires considering not just the site strain from a dislocation, but also from neighbor-

ing hydrogen atoms. The site adjacent to a hydrogen interstitial in Pd experiences strain due to the occupancy of the hydrogen
site; this strain, in term, affects the site energy. In a 256-atom Pd supercell calculationof a hydrogen interstitial, the relaxation
neighboring the hydrogen interstitial site isexpanded by∆ε = 6.864×10−3; this produces a lowered site energy of approximately
∆E = −23meV. It should be noted that this is purely classical approximation—it ignores not only electronic structure effects,
but zero-point displacement of the two hydrogen atoms. However, it should give the correct order of magnitude for the strength
of interaction, and it suggests a propensity for ordering onthe hydrogen sublattice.

To account for the weak H-H binding on the hydrogen distribution and site occupancy, we consider a simple self-consistent
mean-field model. A site with energyE (or, alternately, strainε) will be shifted by∆E if any of its neighbors are occupied, and
unshifted if all are unoccupied. We will ignore spatial variations in the local site occupancy, and so approximate the probability
of each neighboring site being occupied with the site occupancy f̃ . As there are twelve possible nearest-neighbor sites in the
FCC hydrogen sublattice, the fraction of sites where all twelve neighbors are unoccupied is (1− f̃ )N with N = 12; hence, each
site now has two possible energy levels: a fraction (1− f̃ )N with energyE and a fraction 1− (1− f̃ )N with energyE + ∆E. To
be in equilibrium, these sites have occupancies off0 = (exp(β(µ − E)) + 1)−1 and f1 = (exp(β(µ − E − ∆E)) + 1)−1, respectively.
Thus, the occupancy of a site satisfies the self-consistent equation

f̃ = f1 + (1− f̃ )N( f0 − f1) (9)

This equation is solved for̃f at each site given its energyE, and the chemical potentialµ; the occupancy is integrated over the
density of sites to determine the total concentration of hydrogen. Eqn. 9 can be solved approximately (to 10−4) by making a
quadratic approximation around̃f ≈ f1 to f̃ = g( f̃ ). Defining the function and its first two derivatives atf1,

g(0) = f1 + (1− f1)N( f0 − f1)

g(1) = −N(1− f1)N−1( f0 − f1)

g(2) = N(N − 1)(1− f1)N−2( f0 − f1)

(10)

the quadratic approximate self-consistent solution is

f̃ = 2

[
g(0) − g(1) f1 +

1
2

g(2) f 2
1

]
·
[(

1− g(1) + g(2) f1
)
+

(
(1− g(1))2 + 2g(2)( f1 − g(0))

)1/2
]−1

(11)

This self-consistent mean-field model accounts for the hydrogen-hydrogen attraction, and the primary effect is at low (but above
zero) temperature where the ordering competes with entropy; it produces somewhat higher hydrogen occupancies than would be
expected without any H-H interaction. This approximate thermodynamic model is not accurate when the hydrogen occupancy
becomes large; for example, it does not account for the formation of PdH0.63 before the formation of PdH.

Fig. 1 shows the formation of Cottrell atmosphere at low temperatures and dissolution near room temperature, includingthe
difference between integrated occupancies assuming∆E = 0 and∆E = 23meV. Qualitatively, assuming∆E = 0 shows similar
behavior to∆E = 23meV, with dissolution of the nanoscale hydride between 200K and 300K. The primary effect of the H-H
binding is to maintain a slightly higher hydrogen concentration in the dislocation cores. Fig. 1 shows theintegration of site
occupancy, starting from the core; the derivative with strain gives the fraction of H at a specific strain. At 0K and 100K the core
is fully occupied; hence, the integrated occupancy starts at 0.576× 10−3. At 200K the core is 96% occupied, falling to 54%
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FIG. 1. (Color online) Integrated occupancy of hydrogen around dislocations in Pd with temperature for∆E = 23meV (solid) and∆E = 0
(dashed). The integrated occupied density of sites goes from the most favored sites (dislocation cores) through the range of volumetric strain
around the dislocation core; all hydrogen solutes are accounted for at the saturation concentration ofxH = 1.3× 10−3. The occupancy follows
a Fermi function for∆E = 0, and the effect of H-H coupling is to maintain the nanoscale hydride to slightly higher temperatures. At 0K, the
Cottrell atmosphere has a sharp boundary atr = 4b = 7.9Å. At 100K, the atmosphere shows only small spreading away from the core, while
at 200K there is an increasing occupancy for H at 0 strain. At 300K, the atmosphere is dissolving, with decreased occupancy in the core as
well as around the dislocation.

occupancy at 300K. As temperature rises, lower strain siteshave an increased occupancy due to entropy, and sites near the core
are less populated—the “dissolution” of the Cottrell atmosphere, though the core still has hydrogen. The fractional occupancy of
sites near zero strain decays exponentially, but as the number of sites is growing as|ε|−3 most of the hydrogen is well dispersed
at higher temperatures.

Prediction of vibrational excitations for hydrogen requires sampling of different Pd displacements neighboring the H atom
to determine the potential energy. Hydrogen is surrounded by 6 Pd neighbors ata2〈100〉. These six neighbors are displaced
according to the thermal occupation of phonons, including the quantum-mechanical zero-point motion. The displacements
provide an important broadening of the hydrogen vibrational excitation spectra, as the light hydrogen atom evolves in aBorn-
Oppenheimer-like manner (valid asMH ≈ 10−2MPd), sampling the local potential energy from the neighboringPd. To compute
a density of excitation energies for the H atom, we need to sample the possible displacements for neighboring atoms at a
temperatureT . For the highest frequency excitation of Pd, 8THz (~ω = 33meV), x0/

√
2 = 0.025Å; at 300K, ¯x = 0.033Å.

The Gaussian distribution of displacements for a harmonic oscillator (see Appendix) provides the basis for random sampling
displacements for Pd atoms from independent Gaussians of width x̄(ωn(~q), T ) for each phonon modeωn(~q) in the Brillouin zone.
Let D(~R) be the 3× 3 force-constant matrix between an atom at 0 and~R; moreover, let~u(~R) be the displacement vector for an
atom at~R. Then, the Fourier transforms ofD and~u are

D̃(~q) =
∑

~R

D(~R)ei~q·~R

ũ(~q) =
1
√

N

∑

~R

~u(~R)ei~q·~R
(12)

for a bulk system ofN atoms. The inverse Fourier transforms are

D(~R) =
1
N

∑

~q

D̃(~q)e−i~q·~R

~u(~R) =
1
√

N

∑

~R

ũ(~q)e−i~q·~R
(13)

where we have used the fact that there are alsoN q-points in the Brillouin zone summation. Note also that,
∑

~R

∣∣∣∣~u(~R)
∣∣∣∣
2
=

∑

~q

∣∣∣̃u(~q)
∣∣∣2 . (14)
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Then, the displacements̃u(~q) can be written as the sum of three Gaussian distributed random variablesαn(~q), multiplied by the
corresponding width ¯x(ωn(~q), T ) and normalized eigenvector of̃D(~q), ~un(~q). In reciprocal space, the sampled displacementũ(~q)
is

ũ(~q) =
3∑

n=1

αn(~q)~un(~q)

[
~

2mωn(~q)
coth

(
~ωn(~q)/2kBT

)]1/2

(15)

The final step is to inverse Fourier transform all of the displacements, and to remove the center-of-mass shift for the thesix
neighbors surrounding the H atom at{~r}. In the sum over the discrete~q in the Brillouin zone, the weight of each pointw(~q) = 1/N,
so

∆u(~r) =
∑

n~q

αn(~q)~un(~q)

[
w(~q)~

2mωn(~q)
coth

(
~ωn(~q)/2kBT

)]1/2

·
{

cos(~q · ~r) − 1
6

∑

~r′

cos(~q · ~r′)
}

(16)

This requires 3N − 3 random Gaussian variablesαn(~q) to produce one sample of displacements for Pd atoms neighboring the
hydrogen atom at a temperatureT .

The force-constants for Pd come fromab initio via a direct-force technique25 with a 4× 4 × 4 simple-cubic supercell; this
reproduces the elastic constants and phonons within 5%. We use a discrete 16× 16× 16 Monkhort-Pack mesh26 of q-points the
Brillouin zone. With 40,000 displacements for each temperature (0K to 300K), in the dislocation core and strains from+0.05 to
–0.01 in 0.01 increments, we compute vibrational excitations for H in Pd. Given the H potential energy, we solve the Schr¨odinger
equation numerically. For each Pd displaced environment, we find the minimum energy position for H, and expand the potential
as a fourth-order polynomial in H displacement, and computethe three lowest-lying excitations using a Hermite-polynomial
basis.14 This gives 120,000 excitation energies, binned into 1meV bins. Thus, we predict vibrational density of states for H in a
dislocation core, and at strains from+0.05 to –0.01 at 0K, 100K, 200K, and 300K.

To efficiently describe the energy landscape for a hydrogen atom ina variety of interstitial sites—including small displace-
ments of Pd due to quantum-thermal vibrations—we optimize an embedded-atom method-like potential for H based on its
distance to six neighboring sites. The embedded-atom method27–30can work well for describing the energy of atoms in metallic
systems: neighboring atoms have overlapping charge densities at a site, and atoms experience an “embedding energy” dueto
that local environment. As we are interested in describing Haccurately for a small range of environments, we define a potential
based on similar ideas, but make the fitting parameters as linear as possible so that overfitting can be easily identified, and good
transferability achieved. From previous calculations,14 we have a large amount of force-displacement data for H in different en-
vironments (58 displacements in the dislocation core, 40 displacements in unstrained Pd, and 32 displacements in+5% strained
Pd). This fitting database gives sufficient coverage that our potential will be used tointerpolate rather thanextrapolate. The
general form of the total energy in terms of the H-Pd distances rm is

EH({rm}) =
D∑

d=2

Udρ
d +

∑

m


C∑

c=1

φcr
c
m



where ρ =
∑

m

e−arm

(17)

whereD andC determine the polynomial order of the embedding energyU(ρ) and the pair potentialφ(r); besides the coefficients
Ud andφc, there is the parametera which determines decay length of the density. This means that the energies (and forces) are
linear in all parameters excepta; we can easily optimize the parameters by solving forUd andφc for a givena with the smallest
mean-squared error in the forces (weighted by the force magnitude). Hence, for any choice ofD andC, we can find optimal
parameters to accurately reproduce the DFT forces. To optimize the choice ofD andC, we computed the leave-one-out cross-
validation score (CVS) for each optimal set of parameters;D = 2 andC = 5 had the lowest CVS. This fit (EH in eV, rm in
Å),

EH({rm}) = 4025.39
(∑

m

e−3.4715rm
)2

+
∑

m

{
− 131.94rm + 119.41r2

m − 54.073r3
m + 12.1883r4

m − 1.09167r5
m

} (18)

had no error larger than 10% in any of the forces, and reproduced the H excitation spectra of the direct DFT calculation to within
2meV. Asr . 2Å, the contribution of the higher order polynomial coefficients is decreasing to larger orders.
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FIG. 2. (Color online) Calculated vibrational density of states for hydrogen in Pd with temperature. Increasing temperature produces larger
displacements of Pd beyond the zero-point motion at 0K; thisincreases the spread in the vibrational excitations. The central peaks for the three
sites are temperature independent. Peak broadening smearsthe low and high excitations in the dislocation core at room temperature.

III. RESULTS

Fig. 2 shows the predicted vibrational density of states forhydrogen at equilibrium zero strain, a 5% expanded site, andin the
partial core. Increasing temperature broadens the excitation spectra with increased vibration of neighboring Pd atoms. There
is no shift in the peak position with temperature due to Pd vibration, but only from strains. The dislocation core environment
breaks cubic symmetry, giving three peaks below 120meV.14 Temperature widens the peaks above and below 78meV on each
side of the central peak at room temperature. Hence, despitedislocation core occupancy at room temperature, it is difficult to
experimentally identify H in the dislocation core except atlow temperatures.

Fig. 3 shows the predicted vibrational spectra for 0.13at.%H in Pd as a function of temperature, and the comparison with in-
elastic neutron scattering measurements. Combining the site-occupancy data from Fig. 1 with the predicted vibrational spectra in
Fig. 2, we predict the expected measured vibrational spectra with temperature. To compare with the experimental measurements,
we scale all of our peak heights to be equal, scale intensity by 1/

√
hν to produce a scattering cross-section under the condition

of variable incident energy and fixed final energy (as is the case for the measured IINS spectra reported here), and scale energy
by 7/8. The latter scaling corresponds to a needed softening of the DFT calculations of vibrational spectra for H in Pd compared
with experimental measurements; the overestimation of vibrational excitation is independent of exchange-correlation potential
and treatment of H and Pd ionic cores14 and is consistent with earlier fully-anharmonic calculations of isolated hydrogen in
Pd.15 The experimentally measured line shape is in good agreementwith the prediction of scattering at room temperature, but
the shapes begin to deviate as temperature is lowered.

Lowering temperature forms a Cottrell atmosphere and the predicted scattering cross-section shifts and narrows; the shift in
peak energy agrees with the experimental measurements, butthe peak narrowing does not. At 300K, hydrogen is primarily in
low strain environments, and has a peak widened primarily byvibration of Pd neighbors. As temperature is lowered,ab initio
calculations predicts a shift of the peak to lower frequencies as higher strain sites and the dislocation core is preferentially
occupied; this matches the experimental measurement as well. However, theab initio calculations predict a narrowing of spectra;
this narrowing is due to the smaller displacements of Pd neighbors producing less random distortion of the potential energy. As
the Cottrell atmosphere forms, the local hydrogen concentration near the dislocation core is very high, forming hydride phases
in nanoscale cylinders. This corresponds well with recent small-angle neutron scattering measurements at low temperatures and
hydrogen concentrations in deformed single-crystal Pd.31 The vibrational spectrum ofβ-PdH is wider due to H-H interactions;18

this dispersion is lacking in theab initio calculations due to the difficulty of predicting fully anharmonic dispersion relations.
We have computed the harmonic bulk PdH0.63 vibrational density-of-states that includes dispersion,but lacks anharmonicity; the
comparison with the IINS signal from 0K to 200K strongly backs up the presence of hydride. Fitting the experimental intensity
to a linear combination of the two predicted intensities suggests all hydrogen is in hydride and none is free at 0K; a 9:1 ratio at
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FIG. 3. (Color online) The predicted vibrational density ofstates and inelastic neutron scattering intensity for 0.13at.% H in Pd as a function of
temperature. The temperature determines both the occupancy of states for H (c.f. Fig. 1) and the vibrational spectra forall states (c.f. Fig. 2);
taken together, we predict the density of states in the top figure. To compare with IINS measurements, we scale intensity by 1/

√
hν, equalize

amplitudes, and scale energy by 7/8 (DFT/experimental discrepancy). The agreement in line shape at 300K confirms that the main cause of
peak broadening is Pd vibration. At lower temperatures, theformation of a Cottrell atmosphere creates nanoscale regions with high hydrogen
concentration. The scattering signal fromβ-PdH has a width similar to the experimentally measured spectrum at 0K;18 the difference from the
ab initio prediction is due to the dispersion of a hydride which is missing in our calculation of isolated hydrogen vibrations. Thecomputed
PdH0.63 spectra (dashed lines) has dispersion but is a harmonic approximation for hydrogen. The signal change can estimate the fraction of
nanoscale hydrides at dislocation cores.

100K; a 9:4 ratio at 200K; and dissolution of the hydride at 300K. Hence, we conclude that the Cottrell atmosphere is forming
of nanoscale hydride particles near dislocation cores, despite the low total hydrogen concentration in the sample, to explain the
changes in vibrational spectra.

IV. CONCLUSION

Combining the experimental measurement of hydrogen vibrational spectra withab initio calculations of vibrational spectra
with temperature, we can identify the formation of Cottrellatmosphere leading to nanoscale hydride precipitates at dislocation
cores. By separating the sources of spectral broadening—dispersion in hydrides at low temperatures, and thermal broadening
from Pd vibration of neighbors—and the causes of a peak shift, we havein situ characterization of the hydrogen environment
evolution with temperature.
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Appendix A: Harmonic displacement distribution at finite temperature

For an isolated harmonic oscillator of massM and natural frequencyω, we want to determine the probability distribution
of displacementsx from equilibrium. The state energies areEn = ~ω(n + 1/2), and so the probability of being in staten at
temperatureT (β = (kBT )−1) is

zn =
e−βEn

∑
m e−βEm

= e−nβ~ω
(
1− e−β~ω

)
(A1)

The wavefunctions are

ψn(x) = (2nn!)−1/2(πx2
0)
−1/4e−x2/2x2

0Hn(x/x0) (A2)

for natural lengthx0 =
√
~/mω, and Hermite polynomialHn. Then the probability distribution of displacementx is

P(x) =
∞∑

n=0

zn |ψn(x)|2

= (1− e−β~ω)
∞∑

n=0

e−nβ~ω

2nn!
√
πx0

e−x2/x2
0H2

n(x/x0)

=
1− e−β~ω
√

1− e−2β~ω

1
√
πx0

exp

−
1− e−β~ω

1+ e−β~ω
· x2

x2
0



=
1

√
2πx̄(ω, T )

exp

(
− x2

2x̄2(ω, T )

)

(A3)

where

x̄(ω, T ) =

(
~

2mω
coth

(
β~ω

2

))1/2

(A4)

is the thermal Gaussian width; the simplification is possible by using Mehler’s Hermite polynomial formula,32,33

∞∑

n=0

Hn(x)Hn(y)
n!

(w
2

)n
= (1− w2)−1/2 exp


2xyw −

(
x2 + y2

)
w2

1− w2

 .

In the low temperature limit, ¯x ≈ x0/
√

2 as expected from zero-point motion; and in the high temperature limit, x̄ ≈
(kBT/mω2)1/2, as expected from the equipartition theorem.
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