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A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a
graphene quantum dot to be formed without the application of external electric and magnetic fields
[Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local
minimum in which the states become localised. In this work, the physics of such a gap-induced dot
is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced
confined states couple to the states introduced by an electrostatic quantum well potential. Hence
the region in which the resulting hybridized states are localised can be tuned with the potential
strength. The proposed quantum dot may be used to probe quasi-relativistic effects in graphene,
while the induced confined states may be useful for graphene-based nanostructures.

PACS numbers: 73.21.La,73.23.-b,81.05.ue

I. INTRODUCTION

Quantum dots have been studied extensively over the last years because they allow fundamental laws of quantum
physics to be probed and they might also find applications in nanoelectronics as detectors and transistors. Although
a dot in a semiconductor heterostructure can be routinely formed, in monolayer graphene the situation is different.1–4

An ideal graphene sheet is gapless, its energy dispersion is linear, E=±vF|p|, and its charge carriers are massless Dirac
particles. Therefore, they exhibit Klein tunneling, which allows massless particles to tunnel through any electrostatic
potential barrier. This property excludes the possibility of fabricating a graphene dot simply by using electrostatic
gates, as in common semiconductors.

In particular, the states of an electrostatic graphene dot are deconfined, i.e., they have an oscillatory tail outside
the dot region, which is a direct consequence of the Klein tunneling.5–7 This essentially means that the electrons
can only spend a finite time interval inside the dot, and it has been shown theoretically that this time interval is
sensitive to the details of the potential profile and the energy of the quantum state.7 A uniform magnetic field leads
to confined states (bound states) which decay exponentially outside the dot, provided the electrostatic potential rises
slowly compared to the magnetic vector potential.8,9 Thus a graphene quantum dot can be formed with the help of
a uniform magnetic field. This property has also potential applications in graphene waveguides.10,11

It is experimentally possible to induce an energy gap in graphene’s band structure, referred to as the Dirac gap.1,2

In this case the energy dispersion becomes E=±
√

(vFp)2 + ∆2, with 2∆ the value of the Dirac gap. The importance
of the gap stems from the fact that it gives rise to carriers with mass (∼∆/v2

F) and thus a quantum well potential
induces confinement as in common semiconductor dots.1,2 This happens because the Klein tunneling is suppressed
for a particle with mass, as long as its energy lies in the gap. The quantum states with energies within the gap decay
exponentially in the barrier region, thus trapping the electron in the dot for a theoretically infinite time.

This work considers the case of a spatially modulated Dirac gap that enables a graphene quantum dot to be
formed without the application of external electric and magnetic fields.12 This is feasible provided the gap has a
local minimum in which the electron states become localized. Gap-induced states couple with states induced by an
electrostatic quantum well potential; then this property allows the region in which the resulting hybridized states are
localised to be tuned with the potential strength. This type of dot can be used to probe quasi-relativistic effects in
graphene, related to Klein tunneling, while the confined states may be useful for applications. In order to manipulate
the spin states of an electron confined in a quantum dot, magnetic fields are usually needed. Thus, forming a graphene
dot without applying additional magnetic fields to control the charge states can be advantageous. This is one of the
motivations of our proposal. Moreover, the density of states in a gap-induced dot can be made low enough since only
states with energies in the gap are of importance. A magnetic dot does not have this property and to induce a low
density of states is more difficult.13

The value of the Dirac gap depends on the specific experimental technique and can range from a few to hundreds of
meV. For example, a Dirac gap has been measured in graphene grown epitaxially on a SiC substrate.14 A gap opening
has been demonstrated by controlling the structure of the interface between graphene and ruthenium.15 Further, it has
been reported experimentally a spatially modulated and (buffer layer) thickness-dependent Dirac gap.16 Moreover, it
has been suggested theoretically that local strain and/or chemical methods might also be employed to open-up and
tune the Dirac gap.1,2,17–19

This paper is organized as follows. In Sec. II the quantum dot model is presented and the necessary conditions for
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confinement are derived in the presence of a magnetic vector and scalar potentials, as well as a spatially modulated
Dirac gap. In Sec. III a model dot is examined in the regime where the Dirac gap has the same spatial profile as the
electrostatic potential. In Sec. IV some semi-analytical results are derived for the case of a piecewise-constant Dirac
gap profile and the general properties of the gap-induced dot are presented. The interplay of the gap-induced dot
with an electrostatic quantum well potential is studied in Sec. V, and Sec. VI presents the basic conclusions of the
paper.

II. PHYSICAL MODEL

A. Graphene quantum dot Hamiltonian

For energies near the Dirac points (<± 1 eV) and in the continuum limit, a graphene quantum dot can be described
by the effective 2×2 Hamiltonian

H = vFσ · (p + eA) + V I + τ∆σz . (1)

The Fermi velocity vF=γ/~ is assumed to be position-independent, where γ=646 meV nm is a band structure pa-
rameter. Also, σ=(σx, σy), σz are the 2×2 Pauli operators acting on the two carbon sublattices, I is the 2×2 unit
matrix, p=−i~∇=−i~(∂x, ∂y) is the two-dimensional momentum operator, A is the vector potential that generates
the magnetic field B=∇×A, and V is the quantum well potential formed electrostatically, for example, due to a
gate voltage. The last term in Eq. (1), referred to as the mass term, gives rise to an energy gap 2∆ in the spectrum
of graphene, where τ=+1 (τ=−1) corresponds to the K (K ′) valley. The Hamiltonian (1) assumes no intervalley
coupling, which is a good approximation for most graphene samples.1,2

For the dot model we consider that both V and ∆ have cylindrical symmetry and the applied magnetic field is
perpendicular to the graphene sheet, i.e., B=Bẑ. Hence only the azimuthal component Aθ is nonzero, therefore

A = (0, Aθ, 0), Aθ =
B0r

s

s + 1
, (2)

which generates the field B=B0r
s−1; here, s=1 corresponds to a uniform magnetic field. Hamiltonian Eq. (1) is

written in cylindrical coordinates (x=r cos θ, y=r sin θ) with the substitution

∂x − i∂y = e−iθ

(

∂r −
i

r
∂θ

)

, (3)

and

σ ·A = −(σx sin θ − σy cos θ)Aθ. (4)

A two-component solution Ψ to the Dirac equation

HΨ = EΨ, (5)

with E the eigenenergy, is written in the general form

Ψ =
1√
r

(

f1(r) exp[i(m − 1)θ]
if2(r) exp(imθ)

)

. (6)

with m=0,±1, ... being the orbital angular momentum quantum number. The radial components f1 and f2 express
amplitude probabilities on the two carbon sublattices of graphene, and they satisfy the two coupled differential
equations

(V + τ∆)f1 +

(

U + γ
d

dr

)

f2 = Ef1, (7a)

(

U − γ
d

dr

)

f1 + (V − τ∆)f2 = Ef2. (7b)

The term U is due to the angular momentum and the applied magnetic field, and is given by

U =
γ(2m − 1)

2r
+

γeAθ

~
. (8)

Applying the time-reversal symmetry operator iCσy, with C the operator of complex conjugation, to Eqs. (7a)
and (7b), it can be shown that the eigenenergies20 satisfy the condition E(m, B, τ)=E(1 − m,−B,−τ). Also,
E(V, τ)=−E(−V,−τ) due to electron-hole symmetry.
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B. Confinement in a Dirac gap-induced dot

The quantum states of a Schrödinger dot, formed by an electrostatic quantum well, can be classified according to
their energy. A state is confined when its energy relative to the bottom of the well is smaller than the well depth.
This state has an exponential tail at a large distance from the quantum well. In the opposite regime, when the energy
is larger than the well depth, the state is deconfined and it has an oscillatory tail.

This behaviour is no longer valid for a Dirac dot formed in graphene, because the energy spectrum of graphene is
unbound and Klein tunneling takes place. In particular, a massless Dirac electron can tunnel through any electrostatic
potential barrier, as has been confirmed experimentally via transport measurements in p-n junctions.21 For this reason
an electrostatic graphene dot cannot confine electrons.

Nevertheless, confinement can be achieved in the presence of a magnetic field and/or an energy gap in graphene’s
spectrum, though for this to happen some specific conditions have to be satisfied, which are analysed in this section.
As a general rule, confined states should decay asymptotically, i.e., at a large (r→∞) radial distance r, independent
of their energy, whereas deconfined states should have an oscillatory tail. The former states are sometimes called
bound and the latter quasi-bound.

Below we employ a rigorous treatment to examine the dot states.8 We derive a single second-order differential
equation for each radial component, by decoupling Eqs. (7a) and (7b). Then we identify the form of the state in the
asymptotic region, i.e., at a large radial distance from the origin of the dot. The f2 component satisfies

d2f2

dr2
+ a(r)

df2

dr
+ b(r)f2 = 0, (9)

with the coefficients

a(r) = − V ′
+

V+ − E
,

and

b(r) = a
U

γ
− U2

γ2
+

(V− − E)(V+ − E)

γ2
+

U ′

γ
,

with V±=V ± τ∆ and the prime denotes differentiation with respect to r. The first derivative term in Eq. (9) com-
plicates the analysis of the quantum states. For this reason we eliminate it by writing f2 in the form f2(r)=g(r)u2(r)
and from Eq. (9) we derive that

g
d2u2

dr2
+ (2g′ + ag)

du2

dr
+ (g′′ + ag′ + bg)u2 = 0. (10)

If we choose g=exp(−
∫

a/2dr), the first derivative term cancels and u2 satisfies the Schrödinger-like equation

d2u2

dr2
+ k2

2(r)u2 = 0, (11)

with the r-dependent coefficient

k2
2(r) = b − 1

2

da

dr
− a2

4
. (12)

Here g is not an oscillatory function of r, therefore f2 has the same confined or deconfined character as u2. Specifically
Eq. (11) suggests that u2 is confined only if k2

2 is asymptotically (r→∞) negative. Otherwise u2 is deconfined. The
same arguments are valid for the f1 component.22

To proceed, we assume that for a large radial distance r both V and ∆ are constant or have a power-law dependence;
therefore in this case we derive asymptotically that

k2
2(r) ≈ −

(

eAθ

~

)2

+

(

V − E

γ

)2

−
(

τ∆

γ

)2

. (13)

Equation (13) shows that the sign of k2
2 is tunable with Aθ, V , ∆ and energy E, and thus the same is valid for the

character of the dot states. Further, the character of the states is independent of the choice of valley τ=±1, although
for a fixed m the energies are not the same for both valleys.
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The form of k2
2(r) in Eq. (13) shows that the vector potential acts equivalently to the mass term, namely, both have

the tendency to confine the states. This can be understood as follows. It can be seen from Eqs. (7a) and (7b) that
the radial Hamiltonian which acts on f1 and f2 is

Hr =

(

V + τ∆ U − γ d
dr

U + γ d
dr

V − τ∆

)

. (14)

The similarity transformation P †HrP=Hr with the operator

P =
1√
2

(

1 1
1 −1

)

, (15)

results in the transformed Hamiltonian

Hr =

(

V + U τ∆ + γ d
dr

τ∆ − γ d
dr

V − U

)

. (16)

Among the terms which dominate asymptotically, U and τ∆ are interchanged in Hr with respect to Hr. However,
asymptotically U∼γeAθ/~, therefore in this regime τ∆ and Aθ should act equivalently.

The necessary condition for the occurrence of confinement, i.e., k2
2 < 0 asymptotically, means that at least one

of Aθ, ∆ has to be nonzero, otherwise k2
2 > 0 leading to deconfined states. Most importantly, Eq. (13) shows that

confined states can be induced even for Aθ=0 and V =0 everywhere, provided that E2 − ∆2<0 asymptotically. As
shown in Ref. 12 this inequality can be satisfied when ∆ is spatially-dependent; for example, when ∆ is zero within
a disc area, and nonzero outside that area, ∆=δ0. Then, as shown below, discrete energy levels in the range |E|<δ0

correspond to confined states with a large amplitude within the disc area.

III. A MODEL QUANTUM DOT SYSTEM

To demonstrate the arguments presented in the previous section, consider first a model quantum dot for which
the electrostatic potential V , and the mass term ∆ have a power-law spatial dependence. Equation (13) shows
that if Aθ=0, and V , ∆ are unequal, then confined states occur only if (V − ∆) <0, so that k2

2<0. In this case
confinement is energy-independent, i.e., all the states independent of their energy are confined. In the special limit of
V =∆ only energies which satisfy −EV <0 correspond to confined states, which implies that if V increases (decreases)
asymptotically then confinement occurs only for positive (negative) energies.

The complete physical behaviour can be demonstrated when V and ∆ have the same r-dependence, for example
parabolic, V =V0r

2 and ∆=∆0r
2. Then from Eq. (13) the resultant states are confined when ∆0>V0 so that k2

2<0,
and deconfined when ∆0<V0 and hence k2

2>0. For V0=∆0 only positive energies correspond to confined states.
To quantify this behaviour the two coupled Eqs. (7a) and (7b) are discretised on a uniform grid and the resulting

matrix eigenvalue problem is solved numerically, using a similar technique as in Ref. 8. The boundary conditions for
the components f1 and f2 which lead to a Hermitian eigenvalue problem [Eqs. (7a) and (7b)] are derived in Ref. 8,
and it can be shown that these are not modified by the presence of the mass term. So one component has to vanish
at the origin and the second has to vanish asymptotically (at the boundary of the computational box). The same
procedure is followed in all sections.

Figure 1 shows quantum states for ∆0 constant, ∆0=1 µeV nm−2, and three different choices of V0. The states
plotted are those which correspond to the lowest positive energy when V0=0. When V0=0 (<∆0) the states are
confined and they have an exponential tail. This demonstrates that a graphene dot can be formed thanks to a
spatially modulated Dirac gap without applying external electric or magnetic fields. When V0=0.9∆0 (<∆0) the
states are still confined though the region within which they are localised is slightly modified by the presence of the
potential. On the other hand, when V0=1.5∆0 (>∆0) the states have undergone a transition and they are deconfined
asymptotically with an oscillatory tail. This behaviour of the states with respect to the potential strength is valid
for all values of m and τ=±1; though, as shown in Fig. 1, the relative amplitude of the two components depends on
the choice of τ . In particular, for τ=+1, f1>f2 (f1<f2) when E>0 (E<0), whereas the opposite is valid for τ=−1,
f1<f2 (f1>f2) when E>0 (E<0).23

A similar confinement-deconfinement transition in the character of the dot states can also be induced for ∆=0,
provided that the vector potential is nonzero (Aθ 6=0) and has the same power-law dependence as the electrostatic
potential.8 This can happen because the first and third terms in Eq. (13) have the same sign. This observation might
be the key to fabricate a graphene dot with the help of a uniform magnetic field and an electrostatic potential, and
some preliminary calculations suggest that this should be feasible in realistic dot designs formed in gated graphene.8,24
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FIG. 1: (a) Quantum states for m=2, τ=+1 and different potential strengths V0. The mass term is modelled by ∆=∆0r
2, with

∆0=1 µeV nm−2, and the electrostatic potential is modelled by V =V0r
2. The potential strength V0 is from top to bottom:

V0/∆0=0, 0.9, 1.5. The vertical axes of the insets to the top and middle panels are on logarithmic scale. (b) As in (a) but for
τ=−1.
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FIG. 2: Energy levels of confined states for the two valleys: τ=+1 (solid lines) and τ=−1 (dashed lines). The angular
momentum number is m=2, the electrostatic potential is modelled by V =V0r

2 and the mass term is modelled by ∆=∆0r
2.

Here ∆0=1 µeV nm−2, whereas V0 is tuned.

Figure 2 shows the energy level diagram in a range of confined states for the two valleys τ=±1. The spectrum
consists of two ladders (sets) of discrete levels indicating the existence of confined states. The energy ladders are
separated by a gap which is large when the angular momentum is large. As V0 increases the confinement for negative
energies becomes weak and for this reason the spitting between the discrete levels cannot be clearly resolved. The
pattern of the two ladders is characteristic of confined states in graphene quantum dots and, for instance, can also
occur when the mass term is replaced by a vector potential of the same spatial dependence.24
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FIG. 3: Quantum states for a piecewise-constant mass term ∆ given by Eq. (17). The parameters are m=2, R=100 nm, and
δ0=80 meV. Results for both valleys, τ=±1, are shown. The states correspond to the lowest positive eigenenergy.

IV. INVESTIGATION OF A DIRAC GAP-INDUCED DOT

In this section the basic properties of a Dirac gap-induced dot are investigated numerically. We assume that there
is neither an electrostatic potential (V =0) nor a magnetic field (Aθ=0) and thus confinement is due solely to the
spatial modulation of the gap. Then confinement depends on energy, as can be seen from Eq. (13), and it is achieved
when E2 − ∆2<0, where ∆ is the value of the mass term asymptotically.

A. Graphene dot formed by a piecewise-constant Dirac gap

First a regime for which analytical results can be obtained is examined. Consider the special limit where the
spatially-dependent mass term ∆ changes discontinuously. In this case ∆ can be modelled by the expression

∆(r) = δ0Θ(r − R), (17)

with Θ the Heaviside step-function. For simplicity we assume that ∆(r)=0 for r<R, although in the following analysis
a nonzero value can be introduced straightforwardly. As shown in the previous section, the two radial components f1

and f2 satisfy a second-order differential equation, which for V =0 and Aθ=0 has the form [(τ∆)2=∆2]

d2f1

dr2
− 4(m − 1)2 − 1

4r2
f1 +

E2 − ∆2

γ2
f1 = 0, (18a)

d2f2

dr2
− 4m2 − 1

4r2
f2 +

E2 − ∆2

γ2
f2 = 0. (18b)

If we assume a solution of the form fi=
√

rFi, then Fi have to satisfy the following Bessel’s differential equations

d2F1

dr2
+

1

r

dF1

dr
− (m − 1)2

r2
F1 +

E2 − ∆2

γ2
F1 = 0, (19a)

d2F2

dr2
+

1

r

dF2

dr
− m2

r2
F2 +

E2 − ∆2

γ2
F2 = 0. (19b)

Setting k=E/γ and q=
√

|E2 − δ2
0 |/γ, the solutions for confined states can be written in the general form

(

F1

F2

)

=

(

αJm−1(kr)
αJm(kr)

)

, r ≤ R, (20)
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and
(

F1

F2

)

=

(

βKm−1(qr)
cβKm(qr)

)

, R ≤ r, (21)

with c=
√

|E2 − δ2
0 |/(E + τδ0) and α, β are constants that can be determined from the normalisation condition and

the requirement that both components are continuous at r=R. Here Jm is an ordinary Bessel function of the first
kind, and Km is a modified Bessel function of the second kind. These have been chosen since Jm is regular at the
origin (r=0), while Km decays exponentially at large radial distances as needed for confined states.25 The coefficients
(α, β, c) in Eqs. (20) and (21) are introduced in order f1 and f2 to satisfy the coupled Eqs. (7a) and (7b).

Both components have to be continuous at r=R, leading to the following algebraic equation

cJm−1(kR)Km(qR) = Jm(kR)Km−1(qR). (22)

This is solved numerically, with bisection, to give the energies of the confined states in the range |E|<δ0. Thanks to the
properties of the Bessel functions: J−m=(−1)mJm and K−m=Km, the energies satisfy the condition E(m, τ)=E(1−
m,−τ) as time-reversal symmetry requires when Aθ=0. Figure 3 shows one example of the two confined components
for the lowest positive energy. When this is much smaller than δ0 the states decay quickly in the region r>R, while
the states exhibit a kink at r=R because their first derivative are discontinuous at that point.

B. Graphene dot formed by a continuous Dirac gap profile

In any realistic graphene system the spatial modulation of the Dirac gap will not be perfectly sharp. For this reason
we make a more realistic choice of the mass term, than that in Eq. (17), and use the expression

∆(r) =







0, r ≤ R

−δ0 cosh
(

r−R
d

)−2
+ δ0, R ≤ r,

(23)

so that asymptotically ∆≈δ0. For all the calculations we choose for the parameters R=250 nm and d=150 nm,
although these choices do not affect the main conclusions. In the limit d→0 we recover Eq. (17).

Figure 4 shows the energy levels as a function of the asymptotic value of the mass term δ0, giving rise to an energy
gap of 2δ0. The (quasi) continuum of levels, corresponding to the black area in Figs. 4(a) and (b), reflect deconfined
states. The finite system size needed for the numerical calculations generates a gap at δ0=0, which increases with |m|.
However, the system size is chosen large enough and hence it does not affect the physics of the discrete levels of the
dot that we are interested in. These levels emerging through the continuum reflect the formation of confined states.
The transition from continuum to discrete levels, and vice-versa, is accompanied by the appearance of anticrossing
points.12 As seen in Figs. 4(a) and (b), the discrete levels form two ladders (sets) of energy with either positive or
negative values, separated by a gap pertinent to the angular motion. The typical splitting of the levels increases with
δ0 because the confinement becomes stronger. Further, the two energy ladders are formed after a critical value of δ0

depending on the angular momentum. This happens because the angular motion tends to delocalize the states near
the origin of the dot, see Eq. (8), and therefore for a given δ0 not all m values produce confined states. For this reason
there are no discrete levels for δ0.3 meV and 28 meV in Fig. 4, when m=2 and m=15, respectively.

If |m| is large, then δ0 has to be large for the formation of confined states. This effect has a direct signature in the
local density of states (LDOS) which is shown in the contour plot of Fig. 4(c). For simplicity only τ=+1 is considered,
since inclusion of τ=−1 simply doubles the number of states. Moreover, because V =Aθ=0 the energies satisfy the
condition E(m, τ)=−E(1 − m, τ) and thus the LDOS is symmetric with respect to E=0. For a small δ0 only a few
energy levels near zero lie within the gap, corresponding to small angular momentum states. The general trend is
that with increasing δ0 the number of discrete levels that falls in the gap increases since gradually larger m values
give confined states. As an example, for δ0=5 meV the discrete levels correspond to angular momentum numbers
−1 6m6 2, whereas for δ0=20 meV to −9 6m6 10. Still, however, for energies near the middle of the Dirac gap,
−5 meV.E. 5 meV, the LDOS remains low regardless of δ0, because only small m values contribute to this energy
range. This suggests that the formation of a gap-induced dot can be probed using similar charge measurements as,
for example, in GaAs dots. The Fermi energy of the graphene dot has to be adjusted near the middle of the energy
gap where the LDOS is expected to be low and scanning tunneling microscopy could be used to probe the confined
quantum states.
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FIG. 4: (Color online) (a), (b) Energy levels, for τ=+1, as a function of the asymptotic value of the mass term δ0 which
generates a Dirac gap of 2δ0. The mass term ∆ is modelled by Eq. (23). (c) The contour plot shows the local density of states;
the maximum number of states is restricted to five.

V. EFFECT OF A QUANTUM WELL POTENTIAL ON A GAP-INDUCED DOT

In this section the effect of an electrostatic quantum well potential on a gap-induced dot is examined. It is assumed
that the potential can be generated by a gate electrode and is not related to the presence of the Dirac gap. We
consider the most common experimental regime where both the electrostatic potential V and the mass term ∆ are
constant asymptotically. In this case, if Aθ=0 then confinement depends on energy, as can be seen from Eq. (13), and
it is achieved when (V − E)2 − ∆2<0. If Aθ has a power-law dependence the states are always confined independent
of their energy, but in this work we focus on the case where Aθ=0, and therefore there is no magnetic field in the
graphene sample.

The interplay of a quantum well potential with the gap-induced dot has a drastic effect on the resulting states. In
particular, gap-induced dot states couple to the states induced by the potential. As a result the region in which the
resulting hybridized states are localised is tunable with the strength of the potential. Also, Klein tunneling in the
electrostatic barrier region occurs.

It has been experimentally demonstrated that gate electrodes can be suspended above the graphene sheet inducing
a smooth quantum well or barrier potential that is tunable with the applied gate voltage.26,27 The exact potential
profile can be determined by solving the Poisson equation within a semiclassical Thomas-Fermi model properly taking
into account charge screening effects and the specific electrode geometry.8,27 However, a smooth and slowly varying
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FIG. 5: (a) Energy levels versus the electrostatic potential depth V0, for m=6, τ=+1 and a constant Dirac gap of 2∆=50 meV.
(b) As in (a) but for a spatially modulated Dirac gap with an asymptotic value of 2δ0=50 meV. (c) As in (b) but for m=2.
The states of the energies marked by circles are shown in Fig. 6.
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FIG. 6: (a) Quantum states for m=2 and for different electrostatic potential depths V0; from top to bottom: V0=0, 30, 50,
70 meV for the left panels, and V0=0, 30, 70, 100 meV for the right panels. The Dirac gap is spatially modulated with an
asymptotic value of 2δ0=50 meV. Left (right) panels show states with energies marked by • (◦) in Fig. 5(c). (b) As in (a) but
for m=6 and V0=0, 40, 85, 100 meV for the left panels, and V0=0, 40, 85, 120 meV for the right panels. Left (right) panels
show states with energies marked by • (◦) in Fig. 5(b). The vertical axes of the insets range from 0 to 1×10−3.

potential can be modelled, to a good approximation, by the Gaussian expression8,24

V (r) = −V0 exp

(

−r2

l20

)

. (24)

The parameters V0 and l0 model the effective depth and width of the quantum well potential, which are controlled
by the geometry of, and the applied voltage to the gate electrodes. Typical gate voltages of a few volts generate a
potential well depth of some hundreds of meV, with an effective width of some hundreds of nm. This work is concerned
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only with the regime where the quantum well potential is formed inside the spatial region where ∆.δ0, with ∆ as in
Eq. (23), therefore for all the calculations l0=180 nm and V0 6 120 meV.

The energy level diagram as a function of V0 is shown in Fig. 5(a), for a spatially-independent (constant) Dirac gap
with 2∆=50 meV. Confined states have discrete energy levels that lie within the gap, whereas deconfined states form
an upper and a lower band of (quasi) continuum of levels, for energies E>∆ and E<−∆, respectively. If V0 is small,
the angular momentum delocalizes the states; therefore confined states are formed after a critical value of V0, that
is ∼19 meV in Fig. 5(a). As V0 increases, the number of discrete levels increases due to the stronger confinement.
Energy levels emerge from the upper continuum into the gap, while the lowest discrete levels merge into the lower
continuum via anticrossing points. These are formed inside the two bands as shown in Ref. 12. The quantum states
undergo a transition from confined to deconfined and vice-versa. Specifically, a confined state transits to a deconfined
via tunneling into the valence (lower) band, when its energy falls below the gap.28 In this regime the deconfined state
has an oscillatory tail but has a large amplitude near the origin of the dot (see below).

Figures 5(b) and (c) show the energy diagram when the Dirac gap is spatially modulated with an asymptotic value
of 2δ0=50 meV. The appearance of discrete levels for V0=0 is a consequence of the gap-induced confinement. Such
levels are absent in the constant gap system. Furthermore, for V0=0 there are more discrete levels for m=2 than
m=6, as expected based on the above arguments. Anticrossing points, formed now between discrete levels, indicate
a coupling between potential- and gap-induced states. The gap-induced states of the upper energy ladder couple
strongly to the potential states and for this reason the corresponding anticrossing points are not well-formed. On the
other hand, states of the lower energy ladder couple weakly to the electrostatic potential for m=6 [Fig. 5(b)], and
therefore the anticrossing points are well-formed, while this coupling is much stronger for m=2 [Fig. 5(c)].

Figure 6 illustrates the dot states as the potential depth V0 increases. Consider first the m=2 states shown in the
left panels of Fig. 6(a). Confinement for V0=0 is due to the spatial modulation of the Dirac gap and cannot be realised
for a constant gap. As V0 increases, the gap-induced state couples to the lowest energy state induced by the potential
well (V0=30 meV), and its energy decreases. The state acquires a large amplitude in the potential well region and
with increasing V0 it couples successively to gap-induced states of the lower energy ladder (V0=50 meV). In this range
the resulting hybridised state is spread with significant amplitude over the whole non-asymptotic region defined by
∆ . δ0. Further increasing V0, the energy of the state falls below the gap (V0=70 meV); the state tunnels in the
valence band and becomes deconfined with an oscillatory tail.

Strong coupling between gap- and potential-induced states occurs also for the m=2 states shown in the right panels
of Fig. 6(a); for instance, for V0=70 meV and 100 meV. With increasing V0, the gap-induced state that corresponds
to the highest energy in the lower ladder (for V0=0) couples successively to excited potential-induced states. This
effect is reflected in the energy level diagram [Fig. 5(c)] by the appearance of a series of anticrossing points as V0

increases. A similar effect is displayed by gap-induced states of smaller energy, although with increasing V0 the number
of gap-induced states in the lower energy ladder decreases. For instance, as seen in Fig. 5(c) for V0=0 there are five
states, whereas for V0=50 meV there are three. The number of states can be determined using a similar approximate
formalism as that in Ref. 9. The necessary condition for the existence of confined states is that there must be a spatial
region near r=R in which k2

2>0, with k2
2 as given in Eq. (12), whereas asymptotically k2

2<0.
In Fig. 6(a) the coupling between potential- and gap-induced states of the lower ladder is strong and therefore the

resulting hybridised states have a relatively strong amplitude over the whole region where ∆ . δ0. In contrast, the
coupling is weak for the m=6 states shown in Fig. 6(b). Therefore, for V0=85 meV, the states peak mainly in the
region defined either by the potential well (left panel) or the Dirac gap modulation (right panel). These two regions
have a small overlap when m is large and the effective width of the potential well is smaller than the radius of the
zero-gap region.

The m-dependent coupling of the states is related to the width of the classically forbidden region formed between the
confinement regions defined by the gap modulation and the electrostatic well. The semiclassical approach developed
in Ref. 6 shows that for a large positive m the width of the forbidden region is large. This results in a weak coupling
between the potential- and gap-induced states of the lower energy ladder. Also, as m increases the gap between the
upper and the lower energy ladders increases too, (Fig. 4) and therefore V0 has to be large for the formation of coupled
states. The coupling effect, though, is insensitive to the details of the gap modulation. Our calculations show that
both weak and strong couplings can be realised even when the Dirac gap changes discontinuously as in Eq. (17).

When the potential is nonzero (V0 6=0) the induced states can have an oscillatory amplitude inside the barrier region,
though asymptotically they decay.29 This effect is a consequence of the Klein tunneling in the non-asymptotic region
defined by ∆ . δ0. In contrast, the quantum states of a Schrödinger dot display only an exponential decay inside an
electrostatic barrier. Numerical calculations of the LDOS, shown in Fig. 7, suggest that it should be experimentally
possible to resolve graphene states with large oscillatory amplitude in the barrier and the coupling between the states
described above. In order to probe the states with scanning tunneling microscopy the LDOS has to be low. This
could be achieved for a small V0, since in this case only energies that correspond to small m states fall in the gap.
For the same reason the LDOS is low when the asymptotic value of the Dirac gap is small.
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FIG. 7: (Color online) Local density of states versus energy E and electrostatic potential depth V0, for τ=+1, and an asymptotic
Dirac gap of 2δ0=50 meV.

VI. DISCUSSION AND CONCLUSIONS

The existence of a Dirac gap in the energy spectrum of monolayer graphene suppresses the Klein tunneling and
thus enables charge confinement by an electrostatic quantum well and formation of quantum dots. Here it was shown
that a graphene dot can be formed as a result of a spatially modulated Dirac gap. It was found, by solving the Dirac
equation in the continuum limit, that when the gap has a local minimum confined states with discrete energy levels
can be formed, without applying external electric and/or magnetic fields. This cannot be achieved in a constant Dirac
gap graphene system. The required gap modulation may be introduced with substrate engineering, local strain, or a
chemical technique. Unlike quantum dots formed in nanocrystals of graphene, the proposed dot is formed in a large
sheet of graphene, therefore the physics of the edges is unimportant and does not affect the dot properties.

The general conditions for confinement in the presence of a spatially modulated Dirac gap, an external electrostatic
potential, and a magnetic vector potential were analysed. When the gap and/or the vector potential rises asymp-
totically, while the electrostatic potential is zero (constant), the resulting states are confined regardless of angular
momentum and eigenenergy. The interplay of the gap-induced dot with an electrostatic potential leads to tunable
quantum states, i.e., from confined to deconfined and vice-versa. This can only happen provided the potential and
the mass term, which generates the Dirac gap, have the same spatial forms asymptotically, while the magnetic field
is zero. In this case the states can be tuned with the strength of the potential: the states are deconfined when the
electrostatic potential is stronger than the mass term and confined in the opposite regime.

When the Dirac gap is zero within a disc area and constant outside that area confinement is energy-dependent, thus
the choice of angular momentum and valley is important. Confined states are localised inside the disc area when their
energies lie in the gap, otherwise the states are deconfined. The energy spectrum of the confined states consists of
two ladders (sets) of discrete levels separated by a gap. Numerical calculations of the LDOS suggest that states with
small angular momentum lie in a region of low density and hence they could be probed using standard techniques
such as scanning tunneling microscopy.

It was also shown that states induced by a quantum well potential, which may be generated by a gate electrode, can
coexist and couple to gap-induced dot states. When the coupling is weak the states retain their character, whereas
in the opposite regime the states are strongly hybridised. The signature of this coupling in the energy spectrum is
the appearance of a series of anticrossing points. This coupling property offers a way of tuning the spatial region, in
which the hybridised states are localized, with the strength of the potential. Moreover, the states can have a large
oscillatory amplitude in the barrier region, before they eventually decay asymptotically. Calculations of the LDOS
indicate that these quasi-relativistic effects could be probed.
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