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Using first principles techniques we study the electronic structure, deformation potentials and
electron-phonon coupling in both single-walled and double-walled carbon nanotubes (CNTs). The
calculations were done for metallic single-walled carbon nanotubes in the armchair configurations
(5,5) and (10,10). Additionally, we study the effect of concentric multi-walled systems by peforming
calculations on the double-walled tube (5,5)@(10,10). By comparing the properties of the (5,5) and
(10,10) tubes both in isolated and concentric form arrangements, we are able to investigate the effect
on electron-phonon coupling of the double-walled and consequently multi-walled carbon nanotube
arrangement. No significant increase in total electron-phonon coupling is found in the double-walled
tube as compared to the single-walled carbon nanotubes within the calculations of the isolated tubes
under consideration.

PACS numbers:

Following the discovery of the fullerene C601, exten-
sive fundamental research attention has been devoted
to fabricating, measuring and predicting the proper-
ties of novel carbon-based structures. From the fab-
rication of graphene2 to applications such as mea-
sured superconductivity in fullerene-based materials3–5,
ARPES studies of graphene6, predictions and measure-
ments of graphene nanoribbons7, and transport in car-
bon nanotubes8 fullerene-related materials research and
analysis has grown at a rapid pace.

Pioneering studies of carbon nanotubes9 prompted
the measurement and theoretical investigations of a
wide range of properties in these novel systems10,11.
Specifically relevant to this work, the phonons, ther-
mal properties and electron-phonon coupling of nan-
otubes have been measured and calculated in single-
walled systems12–14. These properties are relevant to the
observation of such phenomena as the Kohn effect, pos-
sible Peirels distortion, ballstic transport and supercon-
ductivity.

Predictions of substantial electron-phonon coupling in
doped ultra-small radius carbon nanobutes leading to
possible superconductivity have been published15. Sub-
sequent measurements of nanotubes embedded in a ze-
olite matrix show indications of superconductivity at 15
K16,17. While significant effort has been devoted to the
study of individual nanotubes, fewer first-principles stud-
ies of the electron-phonon coupling and superconductiv-
ity in multi-walled systems exist.

In this work, we describe calculations of the elec-
tronic structure, deformation potentials and electron-
phonon coupling parameters for the single-walled carbon
nanotubes (5,5) and (10,10) as well as for the double-
walled carbon nanotube (5,5)@(10,10). The armchair
arrangement was decided upon because of the symmetry-
imposed metallicity arising from the bandstructure of
graphene which is present in all (n,n) tubes10. The cal-
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FIG. 1: (Color online) Carbon nanotube structures studied in
the calculations of this paper. (a) The (5,5) carbon nanotube
(b) (10,10) carbon nanotube and (c) (5,5)@(10,10) carbon
nanotubes. The diameter D of the (5,5) tube is 6.75 Å, while
the (10,10) and (5,5)@(10,10) tubes possess an outer diameter
of D = 13.56 Å.

culated intertube spacing between the pair of concen-
tric tubes in a (n,n)@(n+5,n+5) DWCNT is 3.4 Å. This
result is very nearly that of the spacing between the
van der Waals-bonded sheets in bulk graphite. Finally,
these particular tubes were selected for the calculations
of this work because the double-walled system composed
of these tubes is invariant to a rotation of 72◦, as in the
(5,5) tube.

These first-principles calculations were performed
within the local density approximation to density func-
tional theory (DFT)18,19. The self-consistent Kohn-
Sham eigenfunctions and charge density were computed
using a plane-wave basis20 with a kinetic energy cutoff
of 60 Ry and charge density cutoff of 240 Ry, while to-
tal energies were computed on a Brillouin zone grid of
1 × 1 × 32 electronic k-points. The core-valence interac-
tion was taken into account through the use of a norm-
conserving pseudopotential21. The lattice dynamics of
the (5,5) CNT were described through density-functional
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perturbation theory22, while the total electron-phonon
coupling of this tube was determined through isotropic
Migdal-Eliashberg theory23. The total electron-phonon
coupling of the (10,10) and DWCNT was determined
through a scaling estimation argument based on the re-
sults of the (5,5) CNT. The carbon nanotubes were con-
structed in a supercell arrangement, each metallic tube
separated by 10 Å from its neighbors to eliminate spuri-
ous interactions24.

The nanotubes, as depicted in Figure 1, were initially
constructed with a nominal C-C bond distance of 1.41
Å. A fully self-consistent structural relaxation was per-
formed on each system such that the interatomic forces
were less than 0.02 eV/Å. The unit cell of an (n, n) nan-
otube contains 4n carbon atoms, therefore the calcula-
tions on the single- and double-walled nanotubes of this
work were performed using 20, 40 and 60 atoms, respec-
tively.

In each of the three carbon nanotube systems consid-
ered, maximally localized Wannier functions (MLWFs)
were constructed which allow for the precise sampling of
the electronic structure25,26. The ground state charge
density was computed using a grid of 1×1×24 k-points,
while the MLWFs were constructed on a line of 1× 1× 8
points, creating a real-space separation of 9.7 Å between
identical Wannier functions. In each CNT, Wannier func-
tions were utilized such that five functions described each
two atom graphene-like unit cell. This resulted in calcu-
lations composd of 50, 100 and 150 Wannier functions
for the separate systems. The nature of these Wannier
functions was such that one out-of-plane π orbital was lo-
calized around each C, and one localized on the sp2 bond
between neighboring atoms. The spread, Ω, of these
Wannier functions was 0.91 Å and 0.62 Å, respectively26.

The Wannier-interpolated electronic bandstructure
and density of states are shown in Figures 2, 3 and 4.
The densities of states in both single-walled tubes is al-
most the same, a result which is explained by the zone-
folding of the graphene bandstructure. In a single-walled
armchair carbon nanotube, a graphene K-point is folded
into each zone, leading to the presence of a pair of linear
bands crossing the Fermi level. In this work, we will refer
to the Fermi point where the graphene K-point has been
folded into the one-dimensional zone as the K-point of
the one-dimensional Brillouin zone (BZ). In the relaxed
(5,5) carbon nanotube, K lies at a point between the zone
center Γ and the zone edge X such that K = 0.64ΓX. In
the (10,10) tube, K = (0, 0, 0.335), while the bandstruc-
ture of the DWCNT is very nearly the superposition of
the (5,5) and (10,10). In this case K5 = (0, 0, 0.317) and
K10 = (0, 0, 0.334).

The bandstructures of these nanotubes leads to a den-
sity of states at the Fermi level per unit cell in the double-
walled tube which differs from the sum of the single-
walled densities of states by less than 1%.

The phonon dispersions of the (5,5) CNT have been
calculated and are in agreement with previous first-
principles lattice dynamical results27,28. However, the
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FIG. 2: (Color Online) Electronic bandstructure and density
of states for the (5,5) carbon nanotube. The DOS at Ef is
0.607 states/ eV / spin / cell.
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FIG. 3: (Color Online) Electronic bandstructure and density
of states in the (10,10) carbon nanotube. The DOS at Ef is
0.570 states/ eV / spin / cell.

lattice dynamics of the (10,10) and (5,5)@(10,10) CNTs
were not explicitly calculated via density functional per-
turbation theory because of the significant computational
cost associated with these large systems.

We have calculated the total electron-phonon coupling
from first principles for the (5,5) CNT. The coupling to
a single mode of a phonon wavevector is given by Eq. 1.
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FIG. 4: (Color Online) Electronic bandstructure and density
of states in the (5,5)@(10,10) double-walled carbon nanotube.
The DOS at Ef is 1.190 states/ eV / spin / cell.

λqν =
2

Nk

1

NF ωqν

∑

mnk

|gν
mn(k, q)|2δ(ǫk,m)δ(ǫk+q,n) (1)

Here the electronic band indices are given by m and
n, the phonon frequency at wavevector q and mode ν

is denoted by ωqν , and Nk is the number of electronic
k-points sampled in the BZ. To understand the electron-
phonon coupling in these nanotubes, Eq 1 can be bro-
ken into contributions from its constituent elements. We
see that the total coupling to a single mode depends
on the electron-phonon matrix elements |gν

mn(k, q)|2, the
phonon frequency ωqν , the density of states at the Fermi
level NF and finally on the particulary geometry of the
Fermi surface through the nesting function χ(q) (Eq 2).
The nesting function is a geometrical property of the
Fermi surface in a material wherein peaks indicate partic-
ular wavevectors which connect large numbers of states
on the Fermi surface. In the case of a one-dimensional
BZ, the nesting function peaks at wavevectors which con-
nect large numbers of the Fermi points.

χ(q) =
1

NkN2
F

∑

mnk

δ(ǫk,m)δ(ǫk+q,n) (2)

Strictly speaking, the nesting function cannot be seen
as a multiplicative factor of the total coupling because
of the inclusion of the electron-phonon matrix elements
in the sum over electron band indicies. However, under
the assumption that these matrix elements do not vary
significantly throughout the zone, χ(q) provides a solid
physical foundation for understanding the appearance of

particular values of coupling. Since the calculated opti-
cal phonon modes which couple electrons do not have a
strong dispersion throughout the zone, we can reformu-
late the experession for the total coupling into Eq 3. In
this way, the total coupling becomes the product of the
sum of the average matrix elements of the phonon fre-
quencies for a given mode with the nesting function and
includes a Fermi level density of states prefactor.

λ ≈ 2NF

(

∑

ν

|gν |
2

ων

)(

1

Nq

∑

q

χ(q)

)

(3)

In carbon nanotubes where the Brillouin zone con-
sists of a line in reciprocal space, the nesting function is
straightforward to calculate and intepret. Because of the
simple electronic structure at the Fermi level, the nest-
ing function consists only of two distinct and equal peaks;
one peak is centered at Γ and represents the contribution
from normal scattering processses of states near K. A
second identical peak is centered at 2(ΓX − K) ∼ K,
and gives the total coupling which arises from Umk-
lapp processes of q-vectors equal to 2kF . An integra-
tion of χ throughout the zone includes half of the zone-
center peak and the entire Umklapp peak. The intergral
shows that two thirds of the weight of the nesting func-
tion arises from Umklapp processes while the remaining
third results from zone-center phonons scattering elec-
trons among states near the K-point.

In our (5,5) nanotube calculations, we have obtained
the first-principles phonon linewidths and electron-
phonon coupling for the phonon modes at the zone center
as well as the nested wavevector K. At each wavevector,
four optical modes contribute to the total coupling. The
coupling at q = (0, 0, 0) is found to be λΓ =

∑

ν λΓν =
0.20, while the coupling at q = (0, 0, 0.32) is λK = 0.32.

We can therefore estimate the total electron-phonon
coupling in a (5,5) tube by appropriately weighting
the contributions from the phonons at the two relevant
wavevectors. The broadening used to determine the
peak height of the nesting function at each resonance
is approximately the average frequency of the coupling
phonons, 120 meV. The total coupling arising from the
peaks near the relevant wavevectors is found by scaling
the nesting function such that the values at Γ and K are
equal to the first-principles calculations. In this way we
utilize first-principles calculated values with an efficient
sampling method to arrive at a good estimate of the to-
tal electron-phonon coupling in the (5,5) tube. Using this
method, we find that the total electron phonon coupling
in (5,5) isolated metallic carbon nanotubes is λ = 0.08.
This value is of very similar size to that found in prior
works29,30.

To obtain an estimate the electron-phonon coupling in
the larger SWCNT and in the DWCNT, we have calcu-
lated the deformation potential for a perturbation in the
nanotubes along the radial direction. In addition to cal-
culating the deformation potential for motions of all C
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NF

Nanotube (states/eV/spin/cell) ∆E
∆a

(eV/Å) λ

(5,5) 0.607 5.31 eV/Å 0.08
(10,10) 0.570 4.87 eV/Å 0.07
(5,5) in DWCNT 0.607 5.86 eV/Å 0.09
(10,10) in DWCNT 0.570 5.15 eV/Å 0.08
(5,5)@(10,10) total 1.190 5.13 eV/Å 0.10

TABLE I: Calculated electronic density of states at the Fermi
level, deformation potential and estimated electron-phonon
coupling parameter for (5,5), (10,10), and (5,5)@(10,10) car-
bon nanotubes.

atoms in the DWCNT we attempt to estimate the effect
of intertube coupling. To this end, we have calculated
this potential for a deformation which perturbs only the
(5,5) and (10,10) tubes in the double-walled configura-
tion. Results for the change in total energy per C atom
in the case of single-walled tubes compare favorably with
previous calculations31–34. Table I gives the results of the
deformation potential for each case under consideration.

It is found that the deformation potential in the (5,5)
tube is 5.31 eV/Å for the bands which cross the Fermi
level, while in the (10,10) case this potential is 4.87 eVÅ.

Using the deformation potential as an approxima-
tion for the electron-phonon matrix elements, we use a
simple scaling argument to estimate the total electron-
phonon coupling in double-walled carbon nanotubes.
This method scales the total electron-phonon coupling in
the (5,5) tube by the ratios of the densities of states, de-
formation potentials and the q-sums of the nesting func-
tions in the remaining tubes. In the double-walled tube,
the coupling can be interpreted as arising from 1) the
coupling in the (5,5) tube, 2) the coupling in the (10,10)
tube and 3) the coupling from electrons scattered from
the (5,5) to the (10,10). As can be seen in Table I, the de-
formation potential of the bands crossing the Fermi level
in the individual tubes while arranged in a double-walled
structure is increased by ∼ 10%. The total deformation
potential when the entire structure is perturbed, however
leads to an average value of the deformation potential
which is only slightly increased over that in the isolated
tubes. Therefore we conclude that the construction of a
multi-walled carbon nanotube system has a small affect
on the total electron-phonon coupling as compared to
separate tubes. Finally, the superconducting transition
temperature estimated using the McMillan equation35

arising from the calculated electron-phonon parameters
in these tubes is much less than 1 K.

Strong Van Hove singularities are present in the den-
sities of states of the one-dimensional CNTs of this work
at points away from the undoped Fermi level. Because
the calculations of this work have been performed within
pristine, undoped nanotubes, these Van Hove singular-
ities do not factor into the results of this work. In the
case of doped nanotubes, the Fermi points and density of
states at the Fermi level may be strongly affected, result-
ing in possible increased electron-phonon coupling and

superconducting transition temperature. Additionally,
the effects which may occur in the case of metallic single-
walled or multi-walled CNTs in close proximity but not
arraged concentrically are not addressed. Future studies
to consider ropes of carbon nanotubes36 are needed to
fully consider the effects on total electron-phonon cou-
pling of systems where a description of isolated single-
walled does not accurately represent reality.

In conclusion, we have calculated from first principles
the electronic structure of three carbon nanotube sys-
tems: the (5,5), (10,10) and (5,5)@(10,10) nanotubes.
Additionally, first principles calculations of the lattice
dynamics and electron-phonon coupling have been per-
formed on the (5,5) tube. Using the above results, we
have estimated the total electron-phonon coupling in an
isolated, double-walled carbon nanotube. No appreciable
increase in the total coupling from the separate tubes was
found to result from a deformation potential estimate.

Calculations were performed using the
Quantum-ESPRESSO37 package and wannier9038. This
work was supported by National Science Foundation
Grant No. DMR10-1006184 and by the Director, Office
of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, U.S. Department
of Energy under Contract No. DE- AC02-05CH11231.
Computational resources have been provided DOE
at Lawrence Berkeley National Laboratory’s NERSC
facility.
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