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We study the pinning of a two-dimensional membrane to a patterned substrate within elastic
theory both in the bending rigidity and in the strain dominated regimes. We find that both the
in-plane strains and the bending rigidity can lead to depinning. We show from energetic arguments
that the system experiences a first order phase transition between the attached configuration to a
partially detached one when the relevant parameters of the substrate are varied, and we construct a
qualitative phase diagram. Our results are confirmed through analytical solutions for some simple
geometries of the substrate’s profile. We apply our model to the case of graphene on top of a
SiO2 substrate and show that typical orders of magnitude for corrugations imply graphene will be
partially detached from the substrate.

PACS numbers: 68.55.-a,68.65.Pq,68.35.Rh

I. INTRODUCTION

Until recently, the study of two dimensional (2D) membranes was developed mainly for its theoretical interest and its
applications to biological systems which could be well approximated by the 2D membrane model, as well as soft matter
systems 1. Nowadays, however, with the experimental discovery of graphene 2–5 (a two dimensional graphite sheet),
we have in our hands the opportunity of studying a truly 2D membrane. It has been proven that the membrane aspect
of graphene, and in particular the presence or not of a substrate, plays an essential role to characterize its behavior
6–8. Graphene presents intrinsic ripples 9, inherent to its 2D nature, which can interact with the propagating electrons
and affect transport properties 10. In most experimental settings up to date, though, graphene is deposited on top of a
substrate, either purposely patterned or presenting random disorder. A relevant question then is to determine how the
spatial structure of the substrate affects that of graphene. This kind of study also opens the possibility of controlling
the properties of graphene by patterning appropriately the substrate. Experiments have shown that the morphology
of a graphene membrane on top of a substrate is largely determined by the substrate’s profile 11–14, as opposed to
suspended graphene. The attachment of graphene to a corrugated surface leads to the bending and stretching of the
graphene layer, so that the depinning of the layer may become energetically favorable. For device-construction, as
well as for the interpretation of experimental data, it is important to know if the graphene sheet is completely pinned
to the substrate or if there are regions for which depinning occurs and graphene is suspended.

Given its experimental relevance, in this work we address the problem of determining which is the stable configu-
ration of a membrane on top of a substrate which presents either depressions or protrusions. Although we will treat
the problem in the context of graphene physics, our results are general. We analyze this problem from a general
field theory framework, in which we show the possibility of a phase transition between a pinned configuration to a
partially depinned one, where relevant parameters of the patterned substrate act as control parameters. We turn then
to analyze some simple substrate geometries which allow for analytical solutions. We will show that these examples
quantitatively confirm our phenomenological, qualitative model. Our work is the first in the graphene literature that
takes into account the effect of in-plane strains for detachment of the membrane. We show that there is a length scale
for the substrate’s pattern beyond which the in-plane strains are dominant and can lead to depinning. This length
scale marks the crossover from a regime in which the bending rigidity of the membrane is dominant energetically.

In what follows we will analyze the depinning of a membrane from the substrate for the two different limiting
regimes mentioned above 39. Firstly, in Section II we introduce the model for the free energy of a membrane on top
of a substrate and by means of scaling arguments we establish the possibility of a phase transition for the system
between two possible stable equilibrium configurations: the membrane being completely attached to the substrate,
or otherwise it being partially detached. From this we are able to construct a qualitative phase diagram for the
system. In the following sections we proceed to a quantitative analysis for a given geometry of the substrate profile.

∗ Current address: Dahlem Center for Complex Quantum Systems Freie Universitaet Arnimallee 14, 14195, Berlin Germany.
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FIG. 1: Pictorial representation of a membrane on top of a random substrate, partially conforming to the substrate.The height
of the membrane is represented by a field h(x) while the top surface of the substrate is represented by a field s(x), as discussed
in the main text.

We consider a substrate with a Gaussian depression or protuberance and we obtain analytical solutions for the two
limiting regimes, the bending rigidity dominated regime in Section III and the strain dominated regime in Section IV.
In both cases, we show that the system presents a first order phase transition from pinned-to-depinned as the ratio of
width to height of the substrate’s profile is varied. A discussion and possible experimental consequences are presented
in Section V.

II. MODEL AND QUALITATIVE PHASE DIAGRAM

We consider a tethered membrane which lies on top of a substrate. We use the de Monge parametrization 15, by
which the membrane is parametrized by (x, h(x)), where h is the height with respect to some reference plane and
x = (x, y) are the in-plane coordinates. In the same way, the profile of the substrate is represented by (x, s(x)), as
shown schematically in Figure 1.

We assume as a first approximation that the membrane couples to the substrate through its out-of-plane modes
(also denominated flexural modes), via a contact force characterized by a surface tension γS . Previous works that
study the attachment of a membrane to a substrate, have used the so called Deryagin approximation, which approx-
imates the interaction potential between the membrane and the substrate as a harmonic potential 16. However this
approximation results in a strongly confining potential. In our case we are interested in studying the stability of the
pinned configuration and the possibility of detachment, and therefore a contact force approximation is more appropri-
ate. Moreover, the interaction between graphene and a substrate has been studied in Ref. 17 and it has been shown
that the attractive interaction force decays as the inverse distance to a power that depends on the type of interaction
(a power of 2 in the case of undoped SiO2). In that work it was also shown that the coupling strength decays roughly
four orders of magnitude when the graphene sheet is not pinned to the substrate. These considerations justify the
use of a contact force which is finite when graphene is conforming to the substrate and zero otherwise. This is, of
course, an idealization of our model since we are disregarding the equilibrium distance between the substrate and the
membrane, which for graphene on a SiO2 substrate is of the order of 5 Å11. The free energy for the membrane on top
of the substrate within this approximation is given by

F [u, h, s] =
1
2

∫
d2x

[
κ
(
∇2h(x)

)2
+ 2µũij(x)2 + λũii(x)2

]
− 1

2
γS

∫
S
d2x

(1)

where µ and λ are the Lamé coefficients and κ is the bending rigidity of the membrane, and S is the surface of contact
between the membrane and the substrate. Throughout this paper we will use the accepted values of the elastic and
bending parameters for graphene at room temperature. The bending rigidity is given by κ ≈ 1 eV 18, and the Lamé
coefficients are given by µ ≈ 10 eV Å−2 and λ ≈ 2 eV Å−2 19. We take the value of the coupling constant strength
as γS = 2 meVÅ−2, corresponding to the maximum estimated pinning strength for graphene on a SiO2 substrate 17

40.The functional dependence of F [u, h, s] on the substrate’s profile field s(x) is given implicitly through the contact
term, being h(x) ≡ s(x) when the membrane is attached to the substrate.

(
∇2h(x)

)2 is the local mean curvature
of the membrane and the local intrinsic curvature is encoded in the strain tensor 41: ũij = 1

2 (∂iuj + ∂jui + ∂ih∂jh),
with u(x) the in-plane phonon modes and the i, j = 1, 2 index the two components of the field. Since the action is
quadratic in these modes, they can be integrated out 20 to obtain an effective free energy e−Feff [h,s] =

∫
Du e−F [u,h,s]
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with

Feff [h, s] = −γS
2

∫
S
d2x+

κ

2

∫
d2x

(
∇2h(x)

)2
+

E2D

8

∫
d2x

(
PTij∂ih(x)∂jh(x)

)2
,

(2)

being PTij = δij − ∂i∂j
∇2 the transverse projector and where we have used the expression for the Young modulus in 2D,

E2D = 4µ(µ+λ)
2µ+λ . We are interested in analyzing the possible detachment of the graphene sheet from the substrate, and

in particular, to find the configuration which is energetically favorable. The general procedure would be to minimize
the free energy Eq. (2) given a profile of the substrate to find the stable solution. However, the non-linearity of Eq. (2)
makes this program impossible to follow analytically, even for the most simple geometries. We are then obliged to
make use of approximations if we are to make any analytical progress. It is usually assumed that the in-plane stresses
are small and therefore their contribution, encapsulated in the quartic order term of the effective energy Feff [h, s],
can be neglected. However this is true only if the height fluctuations are not too big, as we proceed to show. If we
consider a substrate of average height fluctuations S over a length scale L, from Eq. (1) we see that the bending
energy of a membrane attached to this substrate scales as

EK ∼ κ
∫
d2x

(
∇2h(x)

)2 ∼ κ

L2
S2 , (3)

where we have used that ∇ ∼ L−1 and the area
∫
d2x ∼ L2. On the other hand, by similar arguments (note that

ũij ∼ S2/L2), the elastic energy due to in-plane strains is given roughly by

Eel ∼
E2D

L2
S4. (4)

Therefore the elastic energy due to in-plane strains is the main contribution to the total energy of the membrane if
E2Ds̄

2 � κ. This analysis is valid except for quasi one dimensional (1D) geometries, where the height profile of the
substrate is constant along one direction. For this case it is easy to show that the in-plane strains are completely
screened by the height fluctuations and hence the in-plane stresses are zero, and the only contribution to the elastic
energy is due to the bending rigidity.

With the previous analysis we have then arrived to a length scale

�l =
√

κ

E2D

(5)

that determines a crossover from a bending rigidity dominated regime (BD regime) for S < �l, to a strain dominated
regime (SD regime) for S > �l. With the values for the elastic parameters of graphene given above, �l ≈ 1 Å42. Note
that this scale is of the order of magnitude of the lattice spacing and in principle this would imply that the BD
regime for graphene is greatly suppressed 21. However recent atomistic simulations have shown that thermal height
fluctuations of this magnitude are possible 22. Moreover, the study presented in Ref. 22 shows that the continuum
model can still be applied in this limit. This scale can thus be realized in graphene11,12 and therefore the crossover is
of experimental relevance.

We can now study the two limiting regimes separately. For the BD regime, the free energy for the membrane can
be approximated by:

Feff [h, s] ≈ −γS
2

∫
S
d2x+

κ

2

∫
d2x

(
∇2h(x)

)2
. (6)

To solve for the equilibrium configuration, we look for the saddle point solutions of equation (6) with a partially
detached membrane and study their stability. Minimizing with respect to the height h(x) yields the bi-harmonic
equation within the detached region: (

∇2
)2
h(x) = 0 (7)

to be solved together with the appropriate boundary conditions, while h(x) ≡ s(x) in the pinned region. The boundary
conditions have to be imposed at the boundary of the surface S, that is the curve at which the membrane starts to
detach from the substrate. If we parametrize this closed curve by x∗ ≡ ∂S, the boundary conditions are given by:

h(x∗) = s(x∗) (8)
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∇h(x∗) = ∇s(x∗) . (9)

The curve x∗ itself is unknown, and can be determined by an extra boundary condition which implies a discontinuity
in the second derivatives due to the surface tension force at the curve of detachment x∗ 23:

γS = κ
[
∇2h(x∗)−∇2s(x∗)

]2 (10)

Alternatively, it is equivalent to find the extrema of the free energy Eq. (6) as a function of x∗. For a given,
arbitrary profile of the substrate s(x), it is to be expected that the free energy will have many extrema, corresponding
to unstable and metastable configurations. The curve x∗0 corresponding to a global minimum will give the stable
equilibrium configuration, if this is the null curve then the stable configuration is the totally pinned membrane. We
see then that the curve x∗ emerges as a natural order parameter of the problem, between two possible states of the
system: a null curve x∗0 ≡ 0 corresponding to a membrane which is completely attached to the substrate, and a finite
value of the function x∗0 which gives a partially detached membrane. A scalar order parameter can be obtained, for
example, by taking the total length of the curve |x∗| 43. Our analytical results for the particular geometries studied,
to be developed in the following sections, show that the pinned configuration is always at least a metastable minimum
and hence the pinned-to-depinned transition is always of first order. We can argue this has to be true in general for
smoothly corrugated substrates as follows. If we consider a small deviation of the system from the totally attached
configuration |x∗0| = 0, described by a small detachment curve |δx∗|, the energy cost due to depinning is proportional
to the minimal area enclosed by the curve, ∼ |δx∗|2. On the other hand, the smoothness of the substrate implies
that, for small enough |δx∗|, the area delimited by this curve is locally flat and hence the gain in energy due to the
relaxation of bending and stretching of the membrane is negligible. Hence the pinned configuration is always a local
minimum of the energy and the phase transition to a partially detached configuration is of first order, due to the
development of new metastable states with the variation of the control parameters. It is safe to assume that, for fixed
external conditions, these control parameters will be related to the characteristic width and height of the substrate’s
corrugations. To simplify the analysis, we can consider the problem of a single depression or protuberance in the
substrate. Intuitively it is to be expected that the stability of the pinned configuration, given a coupling strength γS
and bending rigidity κ, will depend on the aspect ratio of the substrate’s profile. A simple energetic argument gives
an estimate for this threshold. The interaction energy between the graphene layer and the substrate in a region of
area L2 is

Epin ∼ γSL2 , (11)

while, as we saw previously, the bending energy cost of height corrugations of scale S is given by Eq. (3). The change
between the regime where the pinning energy is dominant and the layer is attached to the substrate, to the regime
where the cost in bending energy leads to the detachment of the layer, is governed by the ratio

Epin
EK

∼ γS
κ

L4

S2
. (12)

The membrane will prefer to attach to the substrate in the limit Epin
EK

> 1, which translates into a condition for the
substrate profile:

S

L2
<

√
γS
κ
, (13)

indicating that pinning is favored for shallower depressions.
Within the bending rigidity approximation, detachment can occur due to the high bending energy cost that competes

with the energy gain due to pinning. In the opposite regime, S > �l, the in-plane stresses are dominant and we should
consider the possible detachment due to these modes. For this case the free energy (1) can be approximated by:

F ≈ −γS
2

∫
S
d2x+

1
2

∫
d2x

[
2µũij(x)2 + λũii(x)2

]
. (14)

In this limit, the approximate free energy given by Eq. (14) still contains the non-linear coupling between the in-plane
and out-of-plane modes and hence further approximations are necessary for obtaining analytical results 44. We will
introduce these approximations in Section IV when we solve the system for a particular geometry of the substrate.
For now however, we can perform a scaling analysis similar to the one we did for the bending energy to determine a
threshold energy for the pinned-to-depinned transition due to in-plane strains, depending on the aspect ratio of the
perturbation in the substrate. In this case the transition is controlled by the ratio of pinning energy to elastic energy:

Epin
Eel

∼ γS
E2D

L4

S4
, (15)
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FIG. 2: Qualitative phase diagram for a membrane on top of a patterned substrate of characteristic width L and height S, in
units of a the length scale �l. The dashed lines correspond to the critical lines given by Eq. (17), the solid line is an estimated
interpolation. Note that this phase diagram is not valid for 1D geometries, as discussed in the text.

where we have used Eqs. (4) and (11). As in the previous case, we can argue that the membrane will favor the pinned
configuration when Epin

Eel
> 1, which gives us the condition:

S

L
<

(
γS
E2D

)1/4

, (16)

again consistent with the intuitive picture that shallower depressions should favor pinning. The possible equilibrium
solutions for the curve of detachment |x∗| are in this case given by the extrema of the free energy Eq. (14), as in the
BD regime, a globally stable solution with |x∗| = 0 corresponds to the completely pinned configuration.

Equations (13) and (16) define two lines of critical values given by Sc ≡ S(Lc), which mark the transition from
pinned-to-depinned in the parameter space of height and width of the substrate’s profile. Note that while in the BD
regime the dependence of Sc on the critical width Lc is quadratic (see Eq. (13)), in the SD regime this dependence
is linear. In the intermediate region hence it is to be expected a crossover between the two critical lines. These
considerations allow us to construct a qualitative phase diagram. For this it is useful to consider the dimensionless
quantities S→S/�l, L→L/�l that give the height and width of the substrate’s profile in units of the length scale �l of the
BD to SD regime crossover defined in Eq. (5). We can then write the critical lines as:

Sc = �l

√
γS
κ
L2
c Sc � 1

Sc =
(
γS
E2D

)1/4

Lc Sc � 1

(17)

The qualitative phase diagram is shown in Figure 2.
Near the critical line the free energy Eq. (1) can be written as a Landau functional of the order parameter |x|:

F [|x|] = A2 |x∗|2 +A3 |x∗|3 + ...+An |x∗|n , (18)

where A2 is a positive constant (in accordance with |x∗0| = 0 being always a local minimum) and the coefficients Ai,
i = 3 , ...n are functions of the control parameters S, L. As usual, the expansion is cut at order n > 3, being An the
first non-negative coefficient. The powers appearing in the expansion are dictated by the symmetry of the system,
for cylindrically symmetric geometries only even powers are allowed. In the following sections we will re-obtain these
results in an analytical fashion for certain simple geometries of the substrate.

III. DETACHMENT DUE TO OUT-OF-PLANE MODES FOR RADIAL SYMMETRY

As we stated in Section II, for 1D geometries the solution obtained by only considering the bending rigidity term
in the elastic free energy, is exact. For three dimensional (3D) geometries this is an approximation that works well



6

FIG. 3: Membrane on top of a substrate with a depression. The figure is axially symmetric with respect to the vertical
axis through the center of the substrate’s depression. R indicates the radius of detachment. The dashed line represents the
approximation used in Section IV for when the in-plane modes are taken into account.

for small height fluctuations of the substrate. Our aim in this section is to obtain analytical results in this limit to
obtain a qualitative understanding of the depinning process. Analytical results can be obtained for certain simple
geometries, we will restrict our analysis to cylindrically symmetric cases. We consider first a substrate with an axially
symmetric depression s(r) as shown in Figure 3. The bi-harmonic equation (7) in cylindrical coordinates, assuming
a rotational invariant case, is given by: (

1
r
∂r + ∂2

r

)2

h(r) = 0 (19)

which has the following general solution:

h(r) = H0 +H1 log r +
H2

2
r2 +H3r

2 log r (20)

For a depression, if we assume that the membrane detaches from the substrate homogeneously at a circumference of
radius R (to be determined), the solution Eq. (20) is valid for 0 ≤ r ≤ R and hence it has to be regular at the origin,
H1 = H3 = 0. The radius r = R gives the parametrization of the curve of detachment x∗ introduced in Section II.
The boundary conditions Eq. (8)-Eq. (10) take the form:

h(R) = s(R)
h′(R) = s′(R)

h′(R)
R

+ h′′(R) =
s′(R)
R

+ s′′(R)±
√
γS
κ
.

(21)

Applying the boundary conditions Eq. (21) over the general solution Eq. (20) we obtain:

h(r) = s(R)− s′(R)
2

R+
s′(R)
2R

r2

s′(R)
R

= s′′(R)±
√
γS
κ
.

(22)

The second equation determines the radius of detachment, but also imposes a condition over the substrate profile for
a non-trivial solution to exist (note that there is always a solution with R = 0). As we pointed out in Section II,
the radius of detachment R corresponds to extrema of the total energy of the membrane, which within the present
approximation consists of

ETot
BD (R) = Epin(R) + Eκ(R) , (23)

with Epin the pinning energy and Eκ the bending energy. In cylindrical coordinates these are given respectively by :

Epin(R) ≈ γS
∫ R

0

πrdr , (24)
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Eκ(R) = πκ

∫ R

0

rdr

[(
1
r
∂r + ∂2

r

)
h(r)

]2
− πκ

∫ R

0

rdr

[(
1
r
∂r + ∂2

r

)
s(r)

]2
.

(25)

In both these expressions the energy is measured from the totally pinned configuration. The total energy ETot
BD (R)

allows us to determine the stability of the solutions R = 0 and Eq. (22). This is simply exemplified for the case of a
parabolic well.

A. Parabolic Well

In the case of a parabolic profile s(r) = S0 + S2
2 r

2, we see that (22) implies that h(r) ≡ s(r) and there is no solution
for a partially detached membrane. If we allow for a quartic term s(r) = S0 + S2

2 r
2 + S4

24 r
4 then we obtain that the

detachment radius is given by:

R2
∗ =

3
S4

√
γS
κ

(26)

where we have taken the minus sign in the second equation of (22) corresponding to the fact that the curvature of
the detached membrane is smaller than the one of the substrate. Therefore S4 needs to be a positive quantity for
a solution to exist. From the total energy ETot

BD (R) given by Eq. (23), it is easy to show that the solution given by
Eq. (26) corresponds to a maximum of the energy profile and hence it is an unstable equilibrium solution while R = 0
is a metastable minimum. ETot

BD (R)→−∞ for R→∞ and therefore R∗ signals the energy barrier for total depinning
which is always the stable configuration. This is however a construction of the unbounded quartic profile we have
chosen for the substrate. In the next sections we will study in detail a more physically sensible profile: a Gaussian
depression or protrusion.

B. Gaussian Depression

A more realistic landscape for the substrate is the case of a Gaussian depression

s(r) = Gs

(
1− e−

r2

2σ2

)
. (27)

For this geometry, the curvature of the substrate varies from positive to negative along the radial coordinate and
therefore we have to allow for both signs ±

√
γS
κ in Eq. (22). However when the condition is applied to this particular

shape we obtain:

s′(R)
R
− s′′(R) =

Gs
σ2

R2

σ2
e−

R2

2σ2 =
√
γS
κ
, (28)

that is, only the positive sign leads to the existence of a solution since we have assumed Gs > 0. The solution for the
membrane’s profile then is given by

h(r) =

{
Gs −Gse−

R2

2σ2

(
1 + R2−r2

2σ2

)
0 ≤ r ≤ R

s(r) r > R ,
(29)

with R given by (28).
We apply now this solution to the particular case of graphene on top of a SiO2 substrate. As we did in Eq. (17), in

what follows we will treat all length quantities as dimensionless, given in units of the characteristic length �l defined
in Eq. (5). We can consider, as an example to illustrate the solutions given by Eq. (28) and Eq. (29), a particular
substrate depression of amplitude Gs = 1 and width σ = 2. We obtain two possible solutions for a partially detached
configuration: R1 ≈ 0.45, and R2 ≈ 2.75. In Figure 4 we depict the graphene membrane profile solutions that
correspond to this particular configuration.
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FIG. 4: Graphene depinning from a Gaussian depression in the BD regime. The plots show the profile of the graphene
membrane h(r) (Color) and of the substrate s(r) (Black), in units of �l, as a function of the distance from the center of the
depression in units of the depression characteristic width σ. The figures have axial symmetry. Main figure: stable solution
with the graphene sheet almost completely detached (R2 ≈ 5.5). Inset: Unstable solution with very little detachment of the
graphene sheet (R1 ≈ 0.9). Height profile as a function of the radial distance to the center of the depression, r. We have taken
Gs = 1 and σ = 2. All quantities are in units of the characteristic length �l ≈ 1 Å.

FIG. 5: Main figure: Total energy as a function of the detachment radius R in units of the characteristic width σ, for a
Gaussian depression in the bending rigidity dominated regime. Inset: Close up showing the metastable solution at R0 = 0 and
the unstable solution R1. Results for Gs = 1 and σ = 2.

To study the stability of the obtained solutions, we use the total energy which, by Eq. (23) is given by 45:

ETot
BD (R) = σ2

{
γSπR

2

2σ2

+
G2
s

σ4
κπ

[
e−

R2

σ2

(
1
2
R4

σ4
+
R2

σ2
+ 1
)
− 1
]}

.

(30)

The total energy ETot
BD (R) corresponding to the substrate profile shown in Figure 4, is given in Figure 5 as a function

of the detachment radius R. We see that the completely pinned situation (R0 = 0) is a metastable state with a very
small energy barrier to overcome to reach the true minimum R2. The solution R1 corresponds to a maximum of the
energy and hence it is an unstable configuration.

By re-scaling the radius of detachment R by the depression width σ, R̃ = R/σ, the rescaled energy ETot
BD

(
R̃
)
/σ2

depends only on the ratio Gs/σ2 and hence the results can be expressed in an universal manner. In Figure 6, we
show the re-scaled energy ETot

BD

(
R̃
)
/σ2 landscape for various values of Gs/σ2. As expected, the global minimum
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FIG. 6: (Color online) Energy landscape as a function of detachment radius in the bending rigidity dominated regime for
a Gaussian depression with varying Gs

σ2 . Solid (blue): Gs
σ2

˛̨
1

= 0.25; dashed (purple): Gs
σ2

˛̨
2
≈ 0.08; dash-dot (orange):

Gs
σ2

˛̨
3
≈ 0.06; dotted (red): Gs

σ2

˛̨
4
≈ 0.03. The energy presents a minimum for the detached configuration for cases 1, 2 and

3 (being this last one metastable), while for case 4 the energy is a minimum only for the completely pinned configuration, in
agreement with the threshold value discussed in the main text. For cases 1, 2 and 3 the completely pinned configuration is a
local minimum with a low energy barrier, not visible due to the large scale of the plot. Note that σ and Gs are dimensionless:
σ , Gs → σ/�l , Gs/�l.

corresponding to the partially detached configuration evolves into a metastable state as Gs/σ2 is decreased, and
disappears completely for small enough Gs/σ

2. As discussed in Section II, the threshold value for a stable pinned
configuration given by Eq. (17) is Gs/σ2 = �l

√
γS
κ ≈ 0.05. As it can be seen from the figure, this estimated threshold

is in excellent agreement with the exact results.
In Section II we stated that the length of the detachment curve |x∗| is the natural order parameter that controls the

pinned-to-depinned phase transition of the system. This can be easily seen now from Figure 6. Given the cylindrical
geometry of the problem, the length of the curve x∗ is given by |x∗| = 2πR�l and hence we can take R as our order
parameter. As discussed, from Figure 6 we see that the minimum at finite R evolves into a metastable state that
disappears for shallow enough depressions, while R = 0 is the true minimum in this case, indicating that the transition
is a first order one. This can be seen in an alternative way by following the evolution of the order parameter R. From
Eq. (29) again we note that R̃ is controlled solely by the ratio Gs/σ

2, in agreement with Eq. (17) and with the
universal form of the rescaled energy ETot

BD

(
R̃
)
/σ2. The behavior of R̃ as a function of Gs/σ2 is shown in Figure 7,

where we see that R̃ jumps from R̃ = 0 to a finite value at a critical value Gs/σ
2
∣∣
c
≈ 0.2. The figure also shows

the spinodal point, that is, the value Gs/σ
2
∣∣
s
≈ 0.05 at which the first metastable solution appears, in agreement

with the estimated threshold value. The difference between Gs/σ
2
∣∣
c
and Gs/σ

2
∣∣
s
shows that the system in the BD

regime limit is strongly hysteretic. The critical point Gs/σ2
∣∣
c
and the spinodal point Gs/σ2

∣∣
s
can be estimated from

an expansion of the free energy Eq. (30) in the re-scaled order parameter R̃:

ETot
BD

σ2
≈ π

2

[
γSR̃

2 + κ

(
Gs
σ2

)2
(
− R̃

6

3
+
R̃8

4

)]
. (31)

This expansion can be identified with the Landau expansion Eq. (18) and it assumes that the re-scaled order parameter
R̃ is small, and hence (assuming a weak first order transition) it is valid near the critical point Gs/σ2

∣∣
c
. By minimizing

Eq. (31) it is easy to see that the condition for the existence of metastable solutions with R̃ 6= 0 is given by
(
Gs/σ

2
)2

&
(27/4) γS ≈ 0.12, a value which is of the order of magnitude of the spinodal point obtained exactly in Figure 7. For(
Gs/σ

2
)2 (& 27/4) γS , the extrema condition dETot

BD /dR = 0 in expression Eq. (31) renders R̃0 = 0 plus two real
positive roots in agreement with the energy profiles presented in Figure 6 for the exact solution Eq. (30).
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FIG. 7: (Color online) Order parameter R̃ = R/σ as a function of the ratio Gs/σ2 of a Gaussian depression in the BD regime.
The dashed (red) line indicates the spinodal line, while the solid (blue) line corresponds to the true transition.

FIG. 8: Membrane on top of a substrate with a protrusion. The figure is axially symmetric with respect to the vertical axis
through the center of the substrate’s bump. As discussed in the text, the membrane is shown as depinning from the top of the
bump, and re-attaching at a radius L.

C. Gaussian bump

For a Gaussian protrusion

s(r) = Gse
− r2

2σ2 (32)

the general solution Eq. (20) holds for r > R. Since the origin is avoided, H1 and H3 can be different from zero. This
solution however diverges for r→∞ unless h(r) = const, which in turn cannot satisfy h′(R) = s′(R). Hence a kind
of solution for which the graphene membrane follows the substrate for 0 < R < r and then detaches “forever” is not
possible. The most general solution is to assume that there is a radius of detachment R and a radius of re-attachment
L, with R < L. The gain in pinning and bending energies with respect to the totally attached configuration in this
case are given by:

Epin(R) ≈ γS
∫ L

R

πrdr , (33)

Eκ(R) = πκ

∫ L

R

rdr

[(
1
r
∂r + ∂2

r

)
h(r)

]2
− πκ

∫ L

R

rdr

[(
1
r
∂r + ∂2

r

)
s(r)

]2
.

(34)
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FIG. 9: Main figure: Total energy as a function of the re-attachment radius L for a pronounced Gaussian bump in the bending
rigidity dominated regime. Inset: Close-up near the metastable configuration corresponding to a completely pinned membrane.
We have taken Gs = 1 and σ = 2.

Intuitively it is easy to see that if the bump is very pronounced, R has to be approximately zero, otherwise the
bending energy cost is too high. A sketch of the system is shown in Figure 8. Assuming this type of configuration,
the general solution Eq. (20) holds now for 0 ≤ r ≤ L, with H1 = 0 for it to be regular at the origin. The constant
H3 in this case is allowed to be finite since the contact force is acting at r = 0 23. Imposing continuity of the solution
and its first derivative at r = L, and h(0) = s(0) (note that h(r)→H0 for r→0), for the region 0 ≤ r ≤ L we obtain
for the membrane profile:

h(r)= Gs−
Gs
L2
e−

L2

2σ2

[
−1+e

L2

2σ2 − L2

2σ2
log (L2)−log (L2)+e

L2

2σ2 log (L2)
]
r2 +

Gs
L2
e−

L2

2σ2

[
− L2

2σ2
−1+e

L2

2σ2

]
r2 log (r2) ,

(35)
while h(r) = s(r) for r > L. The optimal value of L can be obtained numerically, as previously, by imposing
the discontinuity of the Laplacian of the solution due to the contact force. However since we are interested in the
qualitative aspect of the solution, it is simpler to analyze directly the energy profile as a function of the re-attachment
radius L. As it was the case for the Gaussian depression in Subsection III B, the energy Eq. (36) and the re-attachment
radius L can be rescaled by the width of the bump to show the universal behavior.

ETot
BD (L̃)
σ2

= γSπ
L̃2

2
+ κπ

G2
s

2σ4
e−L̃

2
[
L̃4 + 6L̃2 + 2

(
9− 8e−

L̃2
2

)
− 16

(
1− e− L̃

2
2

)2 1
L̃2

]
− κπ G

2
s

2σ4
, (36)

with L̃ = L/σ. The energy profile Eq. (36) is shown in Figure 9 for a bump with Gs = 1 and σ = 2, as a function of
the re-attachment radius L̃. From the figure, it can be seen that the case of total adhesion of the graphene membrane
to the substrate, in the case of a pronounced bump, is a metastable state with a very low energy barrier to fall into a
configuration for which the membrane attaches to the substrate after a finite radius L.

As we mentioned previously, the solution Eq. (35) is valid in principle for pronounced Gaussian protrusions, for
which Gs/σ2 & 1. However it can be shown that this is true for any Gaussian bump. This can be seen more rigorously
by calculating the most general solution for which both the depinning and re-attachment radius are finite, and finding
the minimum of the energy surface. The explicit solution for this most general case is rather cumbersome and it is given
in Appendix A, here we show a plot of the energy surface profile as a function of both detachment and re-attachment
radius R̃ and L̃. As it can be seen from Figure 10, the complete solution indeed shows that the case R = 0 and finite
L is a minimum for the case Gs/σ2 = 1, and the same can be shown for other aspect ratio protrusions. From Eq. (36)
it is evident that ETot

BD (L/σ) /σ2 depends only on the ratio Gs/σ2. The re-scaled energy profile projection onto the
R = 0 plane, ETot

BD (L̃)/s2, for varying Gs/σ2 is shown in Figure 11, showing the crossover from the pinned to the
partially detached configuration for increasingly pronounced bumps. As in the case of a Gaussian depression analyzed
in the previous subsection, the case of a finite re-attachment radius L̃ is the energy minimum for Gs/σ2 & 0.05, while
in the opposite limit the minimum corresponds to L = 0, that is, for smooth bumps the membrane minimizes its
energy by conforming completely to the substrate.

Similar results to those obtained in Subsection III B for the behavior of the re-scaled order parameter R̃ as a function
of Gs/σ2 can be obtained here for L̃, showing a first order phase transition between the pinned and de-pinned phases.
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FIG. 10: Energy profile as a function of detachment radius R̃ = R/σ and re-attachment radius L̃ = L/σ with Gs/σ2 = 1 for a
Gaussian bump. The global minimum corresponds to R̃ = 0 and finite L̃.

FIG. 11: (Color online) Energy landscape as a function of re-attachment radius L̃ = L/σ in the BD regime for a Gaussian
protuberance of varying ratio Gs

σ2 . Solid (blue): Gs
σ2

˛̨
1

= 1; dashed (purple): Gs
σ2

˛̨
2

= 0.25; dash-dot (orange): Gs
σ2 ≈ 0.1

˛̨
3
;

dotted (red): Gs
σ2 ≈ 0.04

˛̨
4
. The energy presents a minimum for the partially detached configuration for case 1 which disappears

completely for case 4, going through a metastable state for case 3. Note that σ is dimensionless: σ → σ/�l.

IV. DETACHMENT DUE TO IN-PLANE MODES FOR RADIAL SYMMETRY

In the previous sections we studied the detachment of a graphene membrane from a patterned substrate due to the
bending rigidity term in the free energy Eq. (2). This approximation is widely used, but, as we showed, it is valid for
relatively small fluctuations of the substrate landscape for a 3D pattern. In this section we consider the less studied
case of depinning due to in-plane modes, for which the free energy Eq. (1) is approximated by Eq. (14). As before,
we will restrict our study to cases that allow for an analytic solution, in particular a substrate with radial symmetry.
In cylindrical coordinates this elastic energy is given by:

Eel =
λ

2

∫
2πrdr

[
∂rur +

ur
r

+
1
2

(∂rh)2
]2

+ µ

∫
2πrdr

[
∂rur +

1
2

(∂rh)2
]2

+ µ

∫
2πrdr

(ur
r

)2

,

(37)

where ur is the radial component of the in-plane displacements, and Epin was defined in (24). In the following
subsections we will obtain results for a Gaussian depression and protrusion.
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A. Gaussian Depression

In this section we consider again a Gaussian depression given by Eq. (27), over which there is a membrane partially
attached. For radius greater than a radius R the membrane is pinned to the substrate and follows its profile while
for 0 < r < R the membrane is completely detached. When analyzing the effect of the in-plane modes we encounter
an added complication which is that we do not know the height profile of the membrane for the detached region,
since this would imply to solve the problem completely by treating the full coupled non-linear differential equations
in both h and u fields resulting from minimizing Eq. (1). Here we consider as a first approximation that the graphene
membrane remains flat within the detached region as shown in Figure 3. Hence the differential equation to solve is
given by:

− (λ+ 2µ)
(
∂2
rur +

∂rur
r
− ur
r2

)
= {

0 0 ≤ r ≤ R
(λ+ 2µ)∂rs

(
∂2
rs
)

+ µ
r (∂rs)

2
r > R

(38)

Our ansatz corresponds to a membrane profile given by:

h(r) =
{
h0 0 ≤ r ≤ R
s(r) r > R

(39)

with s(r) given by Eq. (27). The general solution of Eq. (38) is given by (see App. B):

ur(r) =

 r
G2
s

4σ2
µ

(λ+2µ)e
−R2

σ2 0 ≤ r ≤ R
G2
s

4 e
− r2

2σ2

[
r
σ2 + (λ+µ)

(λ+2µ)
1
r

]
− 1

r
G2
s

4σ2
(λ+µ)
(λ+2µ)

(
R2 + σ2

)
e−

R2

σ2 r > R .
(40)

The radius R of detachment can be found by finding the extrema of the total energy ETot
SD (R) = Epin(R) + Eel(R)

where Epin is given by Eq. (24) and we measure the elastic energy Eq. (37) from the totally attached configuration.
The total energy as a function of detachment radius can be calculated to be:

ETot
SD (R) = σ2π

2

{
γS

2R2

σ2
+
G4
s

σ4

µ(λ+ µ)π
8(λ+ 2µ)

[
e−

2R2

σ2

(
2
R2

σ2
+ 1
)
− 1
]}

. (41)

Minimizing ETot
SD (R) renders a solution with R0 = 0 which is a local minimum and corresponds to the membrane

completely pinned, and the following transcendental equation for the equilibrium detachment radius:

γS =
G4
s

2σ4

R2

σ2
µ2 (λ+ µ)

(λ+ 2µ)2
e−

2R2

σ2 . (42)

Again, as in the BD dominated regime case of Section III, we see that by re-scaling both the detachment radius and
the total energy by an overall factor given by the depression width σ, R̃ = R/σ and ETot

SD (R̃)/σ2, the re-scaled energy
shows universality. In this case, and in agreement with Eq. (17), the system is controlled by the ratio Gs/σ, opposed
to the dependence on Gs/σ2 found for the BD regime.

We can apply our results to a graphene membrane on top of a SiO2 substrate as we did in Section III. Taking the
accepted values for room temperature for the Lamé coefficients of graphene, µ ≈ 10 eV Å−2, λ ≈ 2 eV Å−2 19, and
Gs = 5 (in accordance with the validity of our approximation) and σ = 4 (note that we are still working in in units of
the scaling length �l) we get two possible depinning radius, R1 ≈ 0.1 corresponding to an unstable minimally detached
configuration, and R2 ≈ 8.4 which is the stable, global minimum solution. The total energy ETot

SD is plotted as a
function of detachment radius R̃ = R/σ in Figure 12, showing the different equilibrium solutions.The energy barrier
to be overcome for detachment from the metastable equilibrium configuration at R0 = 0 is very small as can be seen
from the inset in Figure 12. Note also that the minimum at R2 is very shallow in comparison to the energy scale,
as shown in the inset of Figure 12 and hence any fluctuation could lead to the graphene membrane to be detached
at a radius R > R2, and therefore closer to the flat configuration. This effect is less pronounced as the width of the
depression is increased.

In Section II, Eq. (17), for the SD regime we predicted a critical value for the ratio Gs/σ above which the stable
configuration is that of the membrane partially detached from the substrate. Taken the values for graphene discussed
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FIG. 12: Energy profile for a Gaussian depression as a function of detachment radius R̃ = R/σ for Gs = 5 and σ = 4 as
discussed in the main text. The insets show the local minimum that corresponds to the totally pinned configuration, and the
global minimum corresponding to the partially detached membrane.

FIG. 13: (Color online) Energy landscape in the SD regime as a function of detachment radius R̃ = R/σ, for a Gaussian
depression of varying ratio Gs

σ
. Solid (blue): Gs

σ

˛̨
1

= 0.5; dashed (purple): Gs
σ

˛̨
2
≈ 0.33); dash-dot (orange): Gs

σ

˛̨
3

= 0.25;
dotted (red): Gs

σ

˛̨
4
≈ 0.17. The energy presents a minimum for the detached configuration for cases 1, 2 and 3 (being this last

one metastable), while for case 4 the energy is a minimum only for the completely pinned configuration, in agreement with the
threshold value discussed in the main text. For cases 1 and 2 the completely pinned configuration is a local minimum with a
low energy barrier, not visible due to the large scale of the plot. The region of metastability for the depinned configuration is
very small, as seen in this plot and also in Figure 14. Note that σ is dimensionless: σ → σ/�l.

above, this ratio is given by
(

4 γS
E2D

)1/4

≈ 0.1. This estimate is in good agreement with the exact results for the

re-scaled energy profile ETot
SD (R̃)/σ2 depicted in Figure 13, as a function of the re-scaled detachment radius R̃ and

varying Gs/σ.
As discussed in Section III, the radius of detachment R can be taken as the order parameter of the problem. We

show the behavior of R̃ = R/σ as a function of Gs/σ in Figure 14. Again, a pronounced jump in R̃ to a finite
value with increasing Gs/σ is observed, at a critical value Gs/σ|c in agreement with the predicted threshold for the
transition. The spinodal line, also shown in Figure 14, is basically indistinguishable from the true transition and
hence in the SD regime there is almost no hysteresis. The expansion of the free energy Eq. (41) in powers of the order
parameter R̃:

ETot
SD

(
R̃
)

σ2
≈ π

2

{
γSR̃

2 +
G4
s

σ4

µ (λ+ µ)
(λ+ 2µ)

[
− R̃

4

4
+
R̃6

3

]}
(43)
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FIG. 14: (Color online) Order parameter R as a function of height Gs of the Gaussian depression in units of σ in the SD
regime. The dashed (red) line indicates the spinodal line, while the solid (blue) line corresponds to the true transition. In the
SD regime these two lines are indistinguishable.

FIG. 15: (Color online) The two possible solutions for the energy profile as a function of re-attachment radius L̃ = L/σ in the
SD regime, as calculated in Appendix B. We have taken Gs = 5 and σ = 4.

gives a good qualitative description of the first order transition obtained exactly in Figure 14. Moreover, in this
case the spinodal point given by the expansion Eq. (43) is given by (Gs/σ)4 = (44/15) γS , giving Gs/σ|s ≈ 0.28, in
excellent numerical agreement with the exact value.

B. Gaussian bump

Following similar manipulations to the previous section, we can calculate the solution for the radial component for
the in-plane displacements in the graphene membrane due to a Gaussian protrusion parametrized by Eq. (32). Given
our findings for the BD regime in Subsection III C, we consider a configuration of membrane on top of the substrate
that is pinned at the very top (detachment radius R = 0) and re-attaches at a radius L as shown in Figure 8. This
takes into account the energetic cost of bending. As in Subsection III B, we have to make a sensible approximation
for the unknown profile of the membrane on the detached section. We hence approximate the detached profile of the
membrane by the general solution valid for small protrusions (BD regime), Eq. (20) 24. The details for the solution
using this ansatz are given in Appendix B. Imposing the boundary conditions results in two possible solutions, leading
to the two energy profiles shown in Figure 15 for Gs = 5 and σ = 4. Although these solutions differ for the metastable
or unstable regions (a construction of the approximation involved), they coincide for the minimum and hence the
stable re-attachment radius L is uniquely defined.
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V. DISCUSSION

In this work we have analyzed the possibility of depinning of a membrane on top of a patterned substrate. We
have studied simple configurations of the substrate that allow for analytical solutions, in the two relevant limits for
the problem: the bending rigidity dominated regime, valid for small corrugations of the substrate, and the elastic,
strain dominated regime which holds for larger corrugations. We have shown that in both limits, the energy cost of
either bending or stretching can cause the membrane to prefer to detach from the substrate. The particular results
confirm the more general picture we sketched in Section II, in which we obtained a qualitative phase diagram for
the system presented in Figure 2. This phase diagram presents two phases, a completely pinned phase in which
the membrane follows the profile of the substrate, and a detached phase in which the membrane prefers to depin
partially at some optimal detachment curve x∗. We have shown that an order parameter can be constructed from this
detachment curve which allows us to write the problem in terms of a Landau energy functional Eq. (18). By scaling
arguments we were also able to obtain the critical lines (17) in both BD and SD limiting regimes and found excellent
agreement with analytical calculations. The critical line in Figure 2 represents a first order phase transition, as argued
in Section II and shown explicitly for specific geometries of the substrate. We showed that the energy of the system
shows universality, and depends on the ratio of S/L or S/L2 for the SD and BD regimes, where S is the height of the
substrate’s corrugation and L its characteristic width. We obtained the critical and spinodal points exactally for the
analytically solvable cases, and showed that the Landau energy functional gives a very good estimate to locate these
points.

The depinning process is dependent on the aspect ratio of the spatial perturbations of the substrate, the elastic
parameters of the membrane, and its interaction with the substrate. The interaction between graphene and different
types of substrates is not well known. Order of magnitude estimates for different mechanisms 17 suggest that the
interaction coupling γS ∼ 10−2 − 2 meV Å−2 (note that the interaction between two graphene layers in graphite
is 20-30 meV Å−2 17). Within this work we have set γS = 2meV Å−2, its most conservative value, and hence the
obtained values for depinned configurations are underestimations. For this value of γS we find that, in the elastic
regime, the depinning of graphene becomes relevant for height corrugations such that S/L & 1/10. In the bending
regime, the condition depends on the total area of the corrugation: S/L2 & 1/20 Å−1. These obtained values for
possible depinning are comparable to measured corrugations in free standing graphene 9, and in graphene on SiO2
11,12. Hence, regions where graphene is detached from the substrate may be found in samples on SiO2, in agreement
with the observations reported in13. Although these conditions were obtained for the two limiting regimes, in real
life both effects are present. In general, corrugations of all scales are ubiquitous due to the intrinsic roughness of
the substrate, and both the bending rigidity and the in-plane strains of the graphene membrane will contribute to
its depinning. Random configurations of the substrate within a mean field model as presented in Section II could be
treated by adding noise to the system, considering the parameters in the Landau free energy Eq. (18) as random, in
the spirit of random mass theories.

The presence of corrugations in graphene, either intrinsic or substrate-induced, can lead to diverse experimental
consequences. Corrugations in graphene are associated with gauge fields that couple to the Dirac electrons10. These
gauge fields generate an effective magnetic field that can affect the transport properties of graphene. We have shown
however that, for graphene, the scale of the corrugations for which the bending rigidity is relevant is rather small. As
we saw in Section III, the BD to SD regime crossover length for graphene is �l ≈ 1 Åand hence depinning due to the
strain energy cost is to be expected. The effective magnetic field is related to the strain through the relation

B ∼ φ0
β

a

α

L
, (44)

where φ0 ≈ 10−15 Wb is the quantum of magnetic flux, a = 1.42 Å is the lattice parameter and β ≈ 2 gives the
change in the hopping parameter between nearest sites for a Dirac electron due to the deformation of the lattice.
The corrugation of the membrane determines L, the characteristic width of the corrugation, and the strain α, which
for simplicity we assume to be constant. We can roughly estimate the maximum magnetic field that the graphene
membrane can experience do to the corrugation of the substrate. The strain of a corrugation of height s and width
L scales as s2/L2 and hence, from Eq. (16), the maximum strain that graphene can support is αm ≈ 2%. As we
showed, beyond this point the membrane relaxes by depinning partially from the substrate and lowering the strain.
Taking a physically relevant corrugation width of L ≈ 100 nm, αm corresponds to a maximum effective magnetic field
of Bm ≈ 2 T. This order of magnitude indicates that, indeed, the magnetic field due to the induced corrugations can
have a sizeable effect in the transport properties of graphene 6,25. Our results indicate that rougher substrates could
in fact lead to flatter configurations of the graphene membrane after annealing, due to the impossibility of graphene
to conform to pronounced depressions or bumps. This could result, in a counterintuitive fashion, in greater mobilities
for graphene on top of very rough substrates, due to a decrease in impurity and phonon scattering7,8,26,27. On the
other hand, for these kind of substrates the graphene membrane would be almost suspended and therefore prone to



17

the excitation of flexural modes which contribute to the resistivity28,29. A more unexplored path is the possibility of
controlling the pinning or not of graphene to the substrate by tuning the different metastable states, which could be
realized by modulating the gate electric field or by applying external pressure. As we showed, the system can present
hysteresis and irreversibility. Our results can be also helpful to the understanding of the ubiquitous formation of
graphene bubbles on many types of substrates30–33.

To conclude, we list the limitations of our model. Our work is based on a continuum approach and hence it breaks
down for lengths of the order of the lattice spacing. However amplitudes of the order of the lattice spacing can still
be well described by the continuum model as shown in Ref. 22. As we pointed out, the phase diagram presented
in Figure 2 is valid for 3D profiles of the substrate. The crossover to 1D geometries would in principle imply the
disappearance of the linear critical line valid for the SD regime, since the BD results are exact for 1D. The same holds
for exact calculations of Section III and Section IV, which have been done for a isotropic perturbations. The effect of
the lack of radial symmetry remains to be explored. Lastly, it is possible that the interaction between the graphene
layer and the substrate is not uniform, due to the presence of charges and other defects within the substrate. The
modeling of this kind of potential goes beyond the scope of this paper.
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Appendix A: Full solution for a Gaussian bump: flexural modes

In the main text we have analyzed the stability of a membrane on top of a Gaussian bump, which is pinned at
the very top of the bump an re-attaches to the substrate at a radius L. This was an assumption based on energetic
arguments. The most general solution can have the membrane conforming to the substrate from the top up to a
finite depinning radius R, and then re-attaching at a radius L. In this case the general solution Eq. (20) is valid for
R < r < L and all the coefficients Hi, i = 0, ...3 can be finite. These can be found by imposing the continuity of the
solution and its first derivative both at R and L. Defining

H =
Gse

−L
2+R2

2σ2

σ2
[
(L2 −R2)2 − 4L2R2 (logL− logR)2

]
we have:
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The total bending energy can be calculated as in the main text taking into account that we now have three different
regions of integration. The result, measured from the totally pinned configuration, is given by:

Eκ = κπH (L2 −R2)
2σ2

[
−16e

L2+R2

2σ2 (L2R2 + (L2 +R2)σ2 + 2σ4)
]

+ κπH (L2 −R2)
2σ4

e
R2

σ2
[
L6 − 2σ4(R2 − 8σ2)− L4(R2 − 6S2) + 2L2σ2(R2 + 9S2)

]
+ κπH (L2 −R2)

2σ4
e
L2

σ2
[
R6 + 2σ2(3R4 + 9R2σ2 + 8σ4)− L2(R4 − 2R2σ2 + 2σ4)

]
+ 8κπHL

2R2(logL− logR)
σ2

e
L2+R2

2σ2 (L2 +R2 + 4σ2)

− 2κπHL
2R2(logL− logR)

σ4
e
R2

σ2
[
4σ2(L2 + 2σ2) + (L4 + 2L2σ2 + 2σ4) (logL− logR)

]
+ 2κπHL

2R2(logL− logR)
σ4

e
L2

σ2
[
−4σ2(R2 + 2σ2) + (R4 + 2R2σ2 + 2σ4) (logL− logR)

]
.

(A2)

This bending energy together with the contact energy cost gives the plot shown in Figure 10.

Appendix B: Solution for a Gaussian depression and bump: In-plane modes

1. Gaussian depression

We will call u<r and u>r the solutions of (38) for 0 ≤ r ≤ R and r > R respectively. For 0 ≤ r ≤ R (38) is
homogeneous and has a general solution of the kind:

A0

r
+A1r .

The constant A0 ≡ 0 for the solution to be regular at the origin, and A1 is determined by the boundary conditions.
For r > R the homogeneous solution is given by

C0

r
+ C1r .

but in this case we get C1 ≡ 0 by imposing that the displacements are 0 at infinity. C0 is determined by boundary
conditions. To obtain the general solution of (38) for r > R we have to add a particular solution. This can be obtained
by the ansatz solution:

ur =
∑
m

amr
me−

r2

σ2 . (B1)

Substituting (B1) into the second line of (38) and using (39) we obtain:∑
m

am

[
4
σ4
rm+2 − 4

σ2
(m+ 1)rm + (m2 − 1)rm−2

]
=
G2
s

σ6
r3 − G2

s

σ4

(λ+ 3µ)
(λ+ 2µ)

r . (B2)

From here we see that there is a possible solution with m = ±1. By substituting in (B2) we obtain:

a1 =
G2
s

4σ2
a−1 =

G2
s

4
(λ+ µ)
(λ+ 2µ)

. (B3)

The coefficients A1 and C0 are determined by imposing the continuity of the solution u>r (R) = u<r (R) and of the
in-plane stresses at R:

σrr = λ

[
∂rur +

ur
r

+
1
2

(∂rh)2
]

+ 2µ
[
∂rur +

1
2

(∂rh)2
]
, (B4)

and hence the full solution is given by (40) in the main text.
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2. Gaussian bump

As discussed in the main text, for a bump we approximate the membrane’s profile in the detached region by the
general solution given in the BD regime Eq. (20):

h(r) = Gs +
H2

2
r2 +H3r

2 log r (B5)

where we have set H0 = Gs and H1 = 0 as explained in Subsection III C. If we denote the re-attachment radius asL,
then the in-plane radial displacement ur is given by:

−(λ+ 2µ)
(
∂2
rur +

∂rur
r
− ur
r2

)
=
{

(λ+ 2µ)∂rh
(
∂2
rh
)

+ µ
r (∂rh)2 0 ≤ r ≤ L

(λ+ 2µ)∂rs
(
∂2
rs
)

+ µ
r (∂rs)

2
r > L

(B6)

together with the appropriate boundary conditions. The solutions for 0 ≤ r ≤ L and r > L are given respectively by:

u<r (r) =C1r −
r3
[
−2H1H2(λ+ µ) + 2H2

1 (λ+ 3µ) +H2
2 (λ+ µ)

]
16(λ+ 2µ)

+
r3H2 log (r) [H2(λ+ µ)− 2 (H1 +H2 log (r)) (λ+ 3µ)]

4(λ+ 2µ)

u>r (r) =
C0

r
+

G2
se
− r2

σ2

4(λ+ 2µ)r

[
(λ+ µ) + (λ+ 2µ)

r2

σ2

]
.

(B7)

The parameters H1, H2, C0 and C1 are fixed by the boundary conditions, continuity of the solution Eq. (B7) and its
first derivative at r = L and continuity of the in-plane stress Eq. (B4), plus continuity of the flexural field h(L) = s(L).
Imposing these result in two possible sets of solutions:

C0 =−
G2
se
−L2

σ2 (λ+ µ)
(
L4 + 4L2σ2 + 8σ4 − 8e

L2

2σ2 σ4 + 4e
L2

σ2 σ4
)

16(λ+ 2µ)σ4

C1 =
G2
se
−L2

σ2 µ
(
L4 + 5L2σ2 − 4e

L2

2σ2 L2σ2 + 8σ4 − 16e
L2

2σ2 σ4 + 8e
L2

σ2 σ4
)

4L2(λ+ 2µ)σ4

H1 =
2Gse−

L2

2σ2

(
−σ2 + e

L2

2σ2 σ2 − L2 log (L)− 2σ2 log (L) + 2e
L2

2σ2 σ2 log (L)
)

L2σ2

H2 =
Gse

− L2

2σ2

(
−L2 − 2σ2 + 2e

L2

2σ2 σ2
)

L2σ2

(B8)

C0 =−
G2
se
−L2

σ2 (λ+ µ)
(
L4 + 4L2σ2 + 8σ4 − 8e

L2

2σ2 σ4 + 4e
L2

σ2 σ4
)

16(λ+ 2µ)σ4

C1 =
G2
se
−L2

σ2 µ
(
L4 − 3L2σ2 + 4e

L2

2σ2 L2σ2 + 8σ4 − 16e
L2

2σ2 σ4 + 8e
L2

σ2 σ4
)

4L2(λ+ 2µ)σ4

H1 =
2Gse−

L2

2σ2

(
−σ2 + e

L2

2σ2 σ2 + L2 log (L)− 2σ2 log (L) + 2e
L2

2σ2 σ2 log (L)
)

L2σ2

H2 =
Gse

− L2

2σ2

(
L2 − 2σ2 + 2e

L2

2σ2 σ2
)

L2σ2

. (B9)

The total energy can be calculated from the general expression Eq. (37) by use of Eq. (B7) and Eq. (B8)-Eq. (B9),
resulting in the two energy profiles plotted in Figure 15.
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