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We critically examine two nominally equivalent approaches for treating a random alloy: (1) 

using one very large supercell as a direct simulation of the alloy, and (2) performing 

configuration averaging over many smaller supercells; and the common practice using a 

virtual-crystal as the reference for analyzing the alloy band structure and discussing the 

electronic transport in the alloy. Specifically, (1) we show that in practice the size of the 

“very large” supercell depends on the particular property of interest, and the ideal of the 

configuration averaging is only useful for certain properties; (2) we examine the assumed 

equivalency by comparing the results of the two approaches in  bandgap energy, energy 

fluctuation, and inter-valley and intra-valley scatterings, and conclude that the two 

approaches often lead to non-equivalent physics; (3) by using a generalized moment method 

that is capable of computing the global electronic structure of a sufficiently large supercell 

(e.g., ~ 260,000 atoms), we are able to obtain the intrinsic broadening of a Γ-like electron 

state, caused by the “inelastic” intra-valley scattering, in a direct bandgap semiconductor 

alloy; (4) we demonstrate an efficient way to construct the effective dispersion curves of the 

alloy, with high accuracy for calculating effective masses and examining anisotropy and non-

parabolicity of the dispersion curve; and (5) finally, we discuss the limitation of using virtual 

crystal approximation as the reference for evaluating the alloy scattering and studying the 

transport property.  
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I. Introduction 

Disordered alloys have been traditionally treated by approximate methods such as virtual 

crystal approximation (VCA) or coherent potential approximation (CPA).[1, 2] However, there 

could be serious omissions in such approximate methods. In VCA, for an alloy AxB1-xC, the 

potentials of A and B substitutional atoms have been averaged to yield a simple periodic system 

over the primitive unit cell. In CPA, the energy dependent transfer matrix (t-matrix) of atoms A 

and B has been averaged. Correspondingly, an energy dependent coherent potential is introduced 

in the Hamiltonian, which again makes the potential periodic over the primitive unit cell, albeit 

the resulting Hamiltonian is non Hermitian. This periodic, but non-Hermitian Hamiltonian gives 

us a band structure with a finite width for each band state. However, the multiple scatterings 

between A and B have been ignored in such a treatment. In order to include all the scattering 

effects in a straightforward manner, another approach is to calculate directly a finite disordered 

system. One such method is the special quasi-random structure (SQS) method,[3] where a 

relatively small superlattice system is constructed to have the atom-atom correlation functions as 

close in the true random system as possible. But the SQS method has a major limitation, that is, a 

SQS has a well defined symmetry that has undesirable physics consequence (for instance, the 

splitting of the valence band that is supposed to be degenerate for a random alloy). With the 

increased computer power, it has become possible to use a very large supercell to represent the 

true random alloy. However, in the past, the use of a very large supercell (in the order of one 

million atoms), with the help of a folded spectrum method, typically allowed calculating only a 

few states near a selected energy level, such as the conduction band minimum or valance band 

maximum.[4] As demonstrated in the current paper, we can now use a supercell containing 

quarter million atoms (or more) to study the alloy electronic structure for practically any required 

energy spectral range, with the help of a more efficient computational technique. This opens up a 
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different avenue to investigate the electronic structure of either totally random or partially 

ordered alloys. In random systems, fluctuation and statistical averaging become the essential 

theme. The fluctuation in a finite size system, which is only available in the supercell approach, 

can in principle provide information that can be compared directly with the result of optical 

spectroscopy. In this paper, we will discuss the different statistical approaches, and the meanings 

of the differently averaged results. We will also show how the supercell approach can yield the 

alloy band structure and band width, and how they are related to the CPA band structure and the 

roles of inter-valley and intra-band scatterings when using the VCA as a reference.  

By definition, an alloy does not have translational symmetry. In principle, we need to deal 

with a quantum mechanical system with a large number of atoms in any macroscopic device 

involving the alloy. For instance, a cube of 100 nm size contains > 40 million atoms. If one is not 

constrained by the computational power, what would be the appropriate structure size to simulate 

the electronic structure of an alloy?  Intuitively, two approaches can be used to solve the 

quantum mechanical problem of the alloy:[1] (1) Constructing and solving one single sufficiently 

large structure as representative for the alloy; (2) Constructing many relatively small  size 

structures (but still containing many atoms, much larger than any typical SQS), then solving 

them individually followed by configuration averaging. It is generally believed that these two 

approaches should in principle lead to the same results if the “small” size system is large enough, 

because a macroscopically large crystal may be visualized as composed of many smaller but 

different pieces.[1] However, such equivalency has never been rigorously examined. Even 

though the CPA theory is generally formulated based on configuration averaging,[1, 2] because 

the single site approximation is typically used in a real calculation, the result becomes 

independent of the size and detail of the configurations. The supercell approach makes it feasible 
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to directly test these two approaches. However, when actually implementing either approach, one 

will encounter a few practical issues. For instance, what structure size can be considered as 

“sufficiently large” to be representative for the alloy and what size is appropriate to be used as 

the “small structure” for the purpose of configuration averaging? If the size is too small, will the 

averaged result deviate from that of the infinitely large supercell result? Does the fluctuation of 

the finite size results have any physical meaning? Perhaps the two most basic pieces of 

knowledge regarding the electronic structure of a semiconductor alloy are its fundamental 

bandgap and inhomogeneous broadening. Therefore, in this work, we will examine the two 

approaches focusing primarily on these two basic physical properties. We find that greatly 

different supercell sizes are required to address different alloy problems. For instance, one 

supercell size that is capable of yielding a satisfactory accuracy in the bandgap might be totally 

inadequate or result in misleading information on the alloy scattering. Thus, it is neither practical 

nor necessary to find one supercell size that suits all purposes. We will therefore discuss what the 

appropriate supercell size is for a particular property of interest.   

In the supercell simulation of the alloy, a practical issue is the selection of a boundary 

condition. There are three possible boundary conditions that can be applied in the calculation: (1) 

periodic repetition of the supercell, (2) an isolated supercell in vacuum, and (3) periodic 

repetition but with barriers inserted between the alloy structures. Unfortunately, none of them is 

a perfect choice. The option (1) will lead to the coupling among the supercell units, option (2) 

surface states, whereas option (3) the coupling between the alloy and the barrier material. Option 

(1) is the easiest way to implement, and one may hope that with the use of a large enough 

supercell the inter-supercell coupling becomes negligible. There is another potential advantage of 

choosing (1), that is, the periodic system allows the use of k points (although in a very small 
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Brillouin zone for a large supercell). As we will see later, the dispersion of the supercell can be 

connected with the alloy band structure in a seamless fashion for a large supercell. 

Firstly, the required supercell size depends on our convergence goal. A reasonable 

convergence goal for the electronic structure calculation of the semiconductor alloy is to achieve 

the accuracy obtainable by optical spectroscopy that is usually more accurate than other 

experimental techniques. For a semiconductor alloy that is well prepared and characterized (e.g., 

the composition is accurately known), the bandgap Eg can be determined with an accuracy of a 

few meV for a given composition x by optical spectroscopy, for instance, for the prototype 

system GaxIn1-xP to be examined in this work.[5] A benchmark testing has revealed that for 

GaxIn1-xP alloy, the bandgap converges to about 10 meV or about 1 meV by configuration 

averaging over 432-atom supercells or 3456-atom sueprcells, when comparing to the result of 

one 27648-atom supercell.[6] In this work, by applying a more efficient technique, generalized 

moment method (GMM), we are able to calculate an even larger supercell with 259200 atoms 

and further confirm the convergence of the configuration average of the 3456-atom supercell for 

the bandgap energy. Note that the use of the GMM does not affect the convergence of a 

particular material property with respect to the supercell but the efficiency to reach the desirable 

accuracy. Therefore, for the purpose of calculating the alloy bandgap, we have an established 

guideline for the supercell size for the two approaches: 3 – 4 thousand atoms for doing the 

configuration averaging or around 30 thousand atoms for using one representative configuration. 

Although this guideline is observed based on the work for GaxIn1-xP, it is likely valid for most 

conventional semiconductor alloys. For a linear scaling method like the GMM or the folded 

spectrum method, the fact that the supercell size differs by a factor less than 10 for the two 

approaches suggests that the configuration averaging approach does not necessarily require less 
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computational effort, considering the needs to calculate many configurations (typically 50-100 

configurations) for the small system to provide good statistics. Secondly, the required supercell 

size depends on the specific alloy property to be studied. For instance, to investigate the intrinsic 

spectral broadening of a band edge alloy state, the approach of using one very large supercell is 

necessary, although the statistical fluctuation of many smaller structures might have its own 

physical significance. 

One can compute directly a number of electronic and optical properties, such as bandgap, 

density of states, dielectric functions, for a semiconductor alloy without having to introduce a 

reference Hamiltonian. However, for the understanding of the spectral broadening due to the 

alloy fluctuation and closely related transport properties, it is useful  to introduce a reference 

Hamiltonian, typically the VCA, to provide the reference states free of alloy scatterings.[1, 2] A 

spectral function An(k,E)  can be defined as:  

2
,( , ) | | | ( )n i n ii

A E Eψ φ δ ε= −∑ kk                                                               (1) 

here ψi is the alloy eigen state with energy εi, and φnk is the VCA wavefunction at a k point of the 

primary cell Brillouin zone (BZ) with a band index n.  This spectral function describes how a 

VCA state is decomposed into different alloy states. In a way it is a k-resolved density of states 

of the alloy. If the alloy fluctuation does not introduce any coupling among the VCA states, the 

spectral function would be a single δ function in energy E for a given k. For a disordered system, 

the finite width of A(k,E) can be related to the quasi-particle life time. It is very similar to the 

finite energy width in the CPA theory, and also related to the scattering rate based on the VCA 

treatment. The spectral width for a general k point of the VCA band structure, high symmetry 

points of the BZ in particular, will be an important topic to be discussed in this paper. Note that 
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in the direct supercell calculation, the spectral width can be induced by elastic coupling (among 

degenerate k points) or inelastic coupling (among non-degenerate k points). In most CPA and 

VCA treatments, only the elastic coupling is considered, although the second order perturbation 

theory involving non-degenerate states is used to explain the band gap bowing effect based on 

the VCA.  As a result, the spectral width is simply proportional to ρ(E), the density of states of 

the unperturbed reference system (e.g., the VCA system). We will show that, in the full supercell 

treatment, this is not generally true.   

 A number of semiconductor alloys have been previously investigated for their spectral 

functions A(k,E). For III-V alloys with relatively small lattice and chemistry mismatch, such as 

AlxGa1-xAs and GaxIn1-xAs, using the CPA or Molecular-CPA theory,[7, 8] A(k,E) is found to be 

very sharp, practically a δ-function, in the direct bandgap composition region at k = 0 (the Γ 

point), because the elastic inter-valley scattering is not possible and the inelastic intra-valley 

scattering is very weak for the lowest conduction band state, which explains why the electronic 

transport in a direct bandgap alloy usually does not degrade drastically from a true crystalline 

structure. For the indirect bandgap alloy SixGe1-x, the spectral width of A(Γ,E) were found to 

vary from 1 meV at x = 0.1 to 0.2 eV at x = 0.5. Because the alloy bandgaps are indirect, the Γ-

like state is in resonance with other k points that are degenerate with the Γ state, leading to 

significant inter-valley coupling.[9] We have recently found that, by a direct calculation using 

the 27648-atom supercell, for GaxIn1-xP with x = 0.8 in the indirect bandgap region the A(Γ,E) 

spectrum shows barely a peak to allow for the identification of the Γ-like state in the alloy.[10] 

However, for x = 0.5 in the direct bandgap region, the 27648-atom supercell is far from adequate 

to reveal the intrinsic A(Γ,E) spectrum, because the alloy scattering to the Γ state is very weak. 

Very recent extension of the similar analysis to more strongly mismatched alloys InxGa1-xN, 
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using the supercell method with size up to about 4,000 atom,[11] has yielded qualitatively the 

same observation as for the other simpler alloys.  By calculating A(k,E) throughout the BZ, one 

can construct an effective band structure for an alloy using a properly defined VCA reference 

band structure, which has been done for numeral semiconductor alloys: Hg1-xCdxTe,[12] SixGe1-

x,[9], Ga0.5In0,5As and ZnSe0.5Te0.5,[7] and the latest InxGa1-xN.[11] It turns out that the most 

challenging task is to accurately calculate A(Γ,E) for a direct bandgap material, which has never 

been explicitly calculated using a sufficiently large supercell, but is fundamentally important for 

the understanding of the alloying effect. 

In this work, we first in “Section II - Theoretical Methods” introduce the generalized 

moment method that can evaluate the spectral function A(k,E) far more efficiently than 

previously used approaches, particularly for very large supercells; then in “Section II – Results 

and Discussions”, we apply this method to the prototype alloy system GaxIn1-xP to investigate the 

intra-valley scattering of the Γ point or the inhomogeneous broadening of the single electron 

state (II-1), analyze the inter-valley and intra-valley scatterings at the L and X points and the 

alloy scattering induced spectral broadening for the general alloy states far away from the band 

edge, construct the effective dispersion curves and calculate the effective masses of the alloy 

bands (II-2), for x = 0.5 in the direct bandgap region; compare the spectral functions obtained by 

configuration averaging with moderate size supercells and one very large supercell for x = 0.8 in 

the indirect bandgap region (II-3); and discuss the limitations of studying alloy scattering within 

the framework of VCA. Finally, a summary is given in Section III.   

II. Theoretical methods 

 An empirical pseudopotential method (EPM),[13] which has been successfully applied to the 

study of the electronic structure of GaxIn1-xP alloys,[6, 10] is used in this work. The (reciprocal-
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space) empirical pseudopotential takes the form of )](1)[0,(),( εε Traqvqv s+= , where v(q,0) is 

the value at equilibrium lattice constant, and Tr(ε) is the trace of the local strain (approximated 

by the relative change of the tetrahedron volume).[13] The extra term associated with strain 

parameter as offers a significant improvement over the conventional EPM in the presence strain 

and lattice relaxation. Because the pseudopotentials for the common anion P are fit separately for 

GaP and InP, and thus non-identical, the P pseudopotential is taken as a weighted average in a 

combined system according to the number of Ga and In atoms on the four nearest-neighbor 

cation sites, in order to account for the difference in the local chemical environment.[13] The 

strain term is set to zero for the common anion P pseudopotentials. The pseudopotentials were 

obtained by fitting to experimentally determined or theoretically calculated electronic properties 

at their equilibrium conditions. These properties include energies, deformation potentials, 

effective masses at different critical points, and valence band offsets. The pseudopotentials can 

reproduce very well not only the binary band structures, but also the alloy band structure in the 

whole composition range with varying degree of order.[6, 14] A plane-wave basis is used to 

expand the electronic wavefunction, with a kinetic-energy cutoff of 7 Ry. 

    In the supercell calculation, if all the alloy eigenstates {ψi} need to be calculated to obtain the 

projection in Eq.(1), the calculation will be extremely expensive. In that case, one is either 

limited to analyze only a few special k points (Γ, X, L) while using a large supercell (e.g, 

~30,000 atoms) [10, 15] or forced to use smaller supercells (e.g., ~4,000 atoms or below) in 

order to get the full dispersion curves.[11] For instance, in our previous effort studying the band 

structure  of GaxIn1-xP with x = 0.8 using a 27648-atom supercell, even though the Γ-like state 

located at merely ~ 0.1 eV above the band edge, A(Γ,E) spreads over a large spectrum range, 

thus, we had to calculated 200 states over a 230 meV spectral range for this large supercell.[15] 
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Even with the use of a very efficient computational technique – the folded spectrum method,[16] 

which allowed us to compute only the states close to a selected reference energy, the 

computation effort was still a major undertaking. Furthermore, we had to analyze the projections 

of all the 200 computed states in order to obtain the spectrum function A(Γ,E) in the spectral 

window of interest, which  is also time consuming. Often, one cannot tell in priori where the 

peak of A(k,E) should appear and how many states to be calculated, if practically feasible to 

calculate the required number of states. In this work, we instead adopt the generalized moment 

method to calculate the spectral density function A(k, E). In this method, we first generate the 

VCA state φn(k,r) within the primary cell, then extend it over the whole supercell. Note that this 

procedure works for any arbitrary k point of the VCA BZ. If the k point does not folded to the Γ 

point of the supercell, then a corresponding k′ point of the supercell cell BZ needs to be used. 

Assuming that the supercell Hamiltonian is H (which has been rescaled, so the minimum and 

maximum eigen energies are within [-1,1]), we can generate the following Chebyshev wave 

functions via a recursion method:[17] 

   oHφφ =1 ,                                                              (2) 

   1 2 02 ( )j j j jH T Hφ φ φ φ− −= − = .                             (3) 

Here φ0=φnk, and Tj(x) is the Chebyshev polynomial. Now, we can construct the j-th moment: 

2
0 | | ( ) | ( ) | ( ) | | |j j nk j nk nk i i j nk j i nk i

i i
I T H T H Tφ φ φ φ φ ψ ψ φ ε φ ψ= = = =∑ ∑ .     (4) 

Using the definition of Eq.(1), we have: 

1

1
( ) ( , )j j nI T E A E dE

−
= ∫ k .                                        (5) 

This is the Chebyshev moment of the spectral function An(k,E).  With many of such moments 

(up to m-th order), we can reconstruct the spectral function An(k,E) as: 
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2 1/ 2
,0

0,

2( , ) (1 ) ( ) (1 )n j j j
j m

A E E T E I δ
π

−

=

= − +∑k .        (6) 

The size of m determines the energy resolution of An(k,E). That m being a finite number leads to 

broadening each of the δ function in An(k, E) in Eq.(1) at E = Ei  into a Gaussian function: 

          

2( ' )

2
( ')

E Ei

f E e γ

−
−

= ,            (7) 

where 
2

max min max

max min

'4 1E E E E
m E E

γ
⎛ ⎞− −= − ⎜ ⎟−⎝ ⎠

 , Emax and Emin are, respectively, the maximum and 

minimum energy of the full spectrum that the alloy states span.  In the language of the optical 

spectroscopy, the parameter γ determines the spectral resolution with a full width at half 

maximum (FWHM) given by 2 2Ln γ , and m determines the step size given by Δ = (Emax – 

Emin)/m, typically about FWHM/6. To resolve the alloy states of a large supercell, a large m is 

desirable. For calculating A(k, E), we have used m = 200000 (FWHM ≈ 2.3 meV) for 27000-

atom supercells, and m = 300000 (FWHM ≈ 1.5 meV)  for the largest supercell of 259200 atoms, 

in an attempt to obtain A(Γ, E) for the condution band band edge state at x = 0.5.  For large m, 

Eq.(6) can be carried out via a fast Fourier transformation.[17] We note that in this moment 

method, the numerical error is not amplified through the recursive application of the 

Hamiltonian, rather a simple accumulation of those numerical errors from individual iterations. 

Even with the use of a large number of moments (e.g., m = 300000 or larger), because of the use 

of double precision, there is no problem for the numerical stability and accuracy. 

 In the configuration averaging approach, An(k, E) can be obtained by averaging over many 

configurations: 

confignn EkAEkA ),(),( = .                                                      (8) 
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In this work, we use Eq.(1) for supercell size > 27000 atoms, Eq.(8) for 3456-atom supercells by 

averaging over 50 randomly generated configurations.  In our previous work,[6, 10, 15] for 

convenience in studying the CuPt ordering, an orthorhombic supercell is adopted with three cell 

vectors a1, a2 and a3 along the x′ ~ [11 2 ], y′ ~ [ 1 10] and z′ ~ [111] direction of the zinc-blende 

(ZB) crystal, respectively. The supercell containing 27,648 atoms has aa 2/3121 = , 

aa 2122 = , and aa 383 = , where a is the lattice constant of the alloy that is assumed to 

follow the Vegard’s rule with aGaP = 5.447 Å and aInP = 5.8658 Å. Smaller supercells with a 

factor 2 and  4 reduction along all directions are also used with 3456 and 432 atoms, 

respectively. In this work, we also use two cubic supercells: with a1 = a2 = a3  = 15a or 27000 

atoms and a1 = 144 a, and a2 = a3 = 15a or 259200 atoms. A valence force field method is 

applied to relax all the atoms within the supercell to minimize the strain energy.[18] In the 

supercell, the total number of the cation atoms is enforced to satisfy the composition x and they 

randomly occupy the corresponding sub-lattice. Virtual crystal calculations are also performed, 

with the pseudopotential given by ),()1(),(),( εεε qvxqxvqv InPGaP −+= . 

III. Results and Discussions 

1. Intrinsic broadening due to alloying 

As pointed out in the introduction, for different purposes and convergence expectations, 

different supercell sizes are required. Figure 1 shows the histogram plots for the bandgaps of the 

disordered Ga0.5In0.5P calculated using two supercell sizes, Fig.1(a) for the 432-atom supercell 

and Fig.1(b) for the 3456-atom supercell, each with 100 configurations. When the size increases 

from 432 atoms to 3456 atoms, not only the energy fluctuation decreases but also the average 

bandgap increases from 1.971 to 1.980 eV. The latter is very close to the result of one even 

larger supercell – 27648-atom, 1.979 eV.[6] Therefore, for the purpose of determining the 
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bandgap, the configuration averaging using the 3456-atom supercell is considered adequate. The 

full width at half maximum for the histogram plot of Fig.1(b) is Δcf  = 8.3 meV,[19] which turn 

out to be similar to the excitonic linewidth Δex = 8 meV for this alloy measured by the excitonic 

emission at low temperature.[20] It is reasonable to expect there is some connection between Δcf 

and Δex, but we will leave this aspect for a future work. We only wish to point out here that Δcf is 

rather different from the most popularly considered mechanism for the excitonic linewidth in a 

semiconductor alloy where the width is caused by the energy variation as a result of composition 

fluctuation within the “exciton volume” from one area to the other.[21] In our case, the average 

composition within the supercell is kept the same and the bandgap fluctuation is purely due to 

the arrangement of the atoms in the microscopic scale. In this work, we instead focus on the 

difference between Δcf and the width of A(Γ,E), the intrinsic broadening of the band edge alloy 

state, to be investigated below. To determine A(Γ,E), not only the 3456-atom cell even the 

27648-atom cell is far from sufficient. 

Figure 2(a) shows A(Γ,E) for the conduction band minimum (CBM) calculated from one 

3456-atom and one-27648-atom supercell, with A(Γ,CBM) = 0.867 and 0.864, respectively. 

Although it appears the CBM has a large component of the VCA Γ  state, the results in fact 

represent the integrated VCA Γ components for all the alloy states within a spectral range of ~ 20 

or ~ 145 meV, respectively, for the two supercell sizes. The range is roughly given by the energy 

separation between the band edge state and the nearest alloy state, as shown in Fig.2(a), thus, 

depending on the size of the supercell. In order to be able to investigate the intrinsic broadening 

of the alloy CBM state in this direct bandgap semiconductor, one would need to use even much 

larger supercell. If we would like to examine the coupling of the CBM to other alloy states lying 

within 1-2 meV of the CBM, the supercell dimension needs to be increased by roughly a factor 
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of 10, assuming the effective mass is in the order of m* ~ 0.1. Therefore, we have tested two 

supercell sizes based on an 8-atom cubic cell with size 15x15x15 and 144x15x15, using the 

much more efficient GMM. The results are shown in Fig.2(b). Note that  in Fig.2(b), each peak 

represents one alloy state that has non-zero projection to the VCA CB Γ state, and is broadened 

by the lineshape function of Eq.(7). Again, the 27000-atom cell does not reveal any alloy state 

within the vicinity of the CBM, but the 259200-atom cell does give rise to four peaks within 25 

meV. These four peaks can be understood as resulting from alloying induced coupling among the 

folded VCA states (intra-valley coupling) with kx = j/144 (2π/a) and ky = kz  = 0, where a is the 

lattice constant of the VCA crystal and j = 0,1,2,3. Because the coupling to states of higher j 

values diminishes quickly, we cannot obtain the dispersion curve of the alloy states far away 

from the CBM. Nevertheless, we can have an estimate for the Γ valley effective mass of the 

alloy as m (Γ, x = 0.5) = 0.0994 m0, m0 is the free electron mass, which is very close to the VCA 

effective mass mVCA(Γ, x = 0.5) = 0.103 m0. Alternatively, one can use a smaller supercell, the 

27000-atom one for instance, to obtain the dispersion curve of the alloy by applying the GMM 

using VCA states at different k points, which will be illustrated later for the effort to explore the 

global electronic structure of the alloy. 

The result of Fig.2(b) allows us to estimate the intrinsic broadening at the CBM due to the 

intra-valley scattering within the Γ valley, which can be viewed as inelastic scatterings among 

the VCA states. The standard CPA theory for the alloy predicts in the weak scattering limit a 

Lorentzian lineshape for all the k states.[1] However, because the coupling to the states below 

the VCA (e.g., the valence band states) is very weak, the A(Γ,E)  spectrum is expected to be non-

Lorentzian and asymmetric. For E < 0, we can assume A(Γ,E) = 0 for most practical purposes. 

For E ≥ 0, a continuous spectrum of A(Γ,E), equivalent to extrapolating to an infinite size 
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supercell,  can be obtained by finding the envelop of the j = 0 – 3 peaks of Fig.2(b). Because of 

the missing of the folded states along the ky and kz direction, the intensities of the j = 1 – 3 

should be approximately 3 times as strong as those of Fig.2(b), if all three directions are 

included. We find that the spectral function can be described by a stretched exponential function: ܣሺΓ, ሻܧ ൌ  ݁ିఈாഁ,          (9)ܣ

with α = 1.162, β = 0.4842, and A0 = 0.5663 (meV)-1, where E is in meV. The integrated 

intensity is 0.857 for the range of 25 meV measured from the CBM. The width at the half 

maximum is ΔCB-Γ = 0.34 meV, which measures the alloying induced intrinsic broadening of the 

band edge state, as a result of the intra-valley coupling. Note that, in the standard VCA based 

scattering treatment, at the Γ point, there would be no alloy scattering. However, in our case, the 

spectral width at the Γ point is finite, although small, which will result in a finite quasi-particle 

life time at the Γ point. Clearly ΔCB-Γ is very different from Δcf in origin. We note that ΔCB-Γ 

corresponds to an infinitely large alloy, whereas the energy fluctuation in the length scale of 

other co-existing physical mechanisms, such as excitonic effect or electron-phonon scattering, 

are more relevant to the excitonic linewidth or transport in reality. 

We may use the formalism derived from the single site scattering theory to approximately 

describe the decay of the Γ-like state:[1] 

 
2

0
( , ) ( , )

iEt

I t dEe A E
∞ −

= ∫k k .          (10) 

Contrary to the ideal case,[1] the time dependence is non-exponential, as shown in Fig.3, but the 

1/e decay time, which may be considered as scattering time τs(k), is found to be 0.21 ps for the Γ 

point. One could understand this decay time as the lifetime of a VCA state that is viewed as a 

wave packet constructed by the alloy eigenstates within a small energy spread. After an average 
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under electron thermal distribution (at different k point near Γ), τs is often used to estimate the 

electron mobility μe, which is simply eτs/m* in Drude model. [2] Note that this scattering time, 

which is also known as “quasi-particle lifetime”,[1] is quite different from the real carrier 

lifetime due to either radiative recombination with a hole or relaxation to defect or impurity 

states below the CB band edge. Here, the electron is scattered into a different state (e.g., in 

Boltzmann equation), while for the real carrier lifetime, the carrier is eliminated. In fact, the real 

carrier lifetime is much longer in a high quality alloy sample. For instance, the electron lifetime 

measured by radiative decay of the photoluminescence at low temperature (e.g.1.5 K) is in the 

order of 200 ps for Ga0.5In0.5P alloy.[22]   

2. Alloy states far away from the band edge 

Next, we apply the GMM to calculate the electronic “dispersion” relations along two high 

symmetry lines Γ-X and Γ-L of the BZ. Figure 4 shows the alloy “dispersion” curves for 

Ga0.5In0.5P, comparing with the results of VCA with and without strain effect (i.e., the strain 

parameter as ≠0 or as = 0 in the atomic pseudopotential). The three curves appear to have a 

similar shape, but the difference between the alloy and VCA can be more than 0.5 eV and is non-

constant throughout the BZ. The energy state on the alloy curve for a given k is determined from 

the peak position of the spectral function A(k,E), using the 27000-atom supercell.      

The spectral function A(k,E) at the band edge of a direct bandgap alloy has been shown to be 

very sharp, as illustrated in Fig.2(b). Figure 5 shows how A(k,E) evolves along Γ-X and Γ-L 

lines, computed by using the 27000-atom supercell and m = 200,000. For those k points very 

close to the Γ point, for instance k = 0.05 kL, the spectra show a single peak and its linewidth is 

dictated by the “spectral resolution” related to γ in Eq.(3). The peak position gives correctly the 
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energy level on the dispersion curve, though the peak height is affected by the inadequate 

supercell size. For those k points slightly further away from the Γ point, for instance k = 0.10 kL, 

the coupling to the adjacent k points are apparent, even in the linear plot, indicating enhancement 

in the “intra-valley scattering”. In general, the further away from the band edge is a VCA state, 

the broader the distribution of the VCA state is in the alloy energy spectrum. For the k points 

close to the highest energy point of the dispersion curve, for instance k = 0.40 kL, the k VCA 

state is found to disperse into alloy states in a spectral range more than 0.5 eV. The peak height 

has reduced from A0 ~ 566 eV-1 at Γ to A0 < 5 eV-1 at k= 0.4 kL, which means that the alloy state 

with the largest k component contains only less than 1% of the k component. In a spectroscopy 

measurement, such alloy effect will reflect in the reduction in the signal intensity and linewidth 

broadening. The detail depends on the type of measurement, which is beyond the scope of this 

work. 

It is of particular interest to examine A(k,E) at a critical point, because it provides more clear 

picture for the inter-valley and intra-valley scattering than at a general k point. Figure 6 shows 

the spectral functions for the X and L point, calculated for all the VCA states belonging to 

different degenerate valleys, X1 – X3 and L1 – L4. For the L-like alloy state at around 0.22 eV 

above the band edge, as shown in Fig.6(a), the alloying effect is dominant by the inter-valley 

scattering, as indicated by the four separated peaks spreading out in a range of ~ 10 meV and 

derived from the four L valleys. For the X-like state at around 0.37 eV above the band edge, as 

shown in Fig.6(b), there are apparently more alloy states involved, spreading out in a range 

greater than 40 meV, and one could not unambiguously identify three X-like peaks. The larger 

number of peaks for the X-like state, contrasting to the L-like state, could be understood as more 

significant intra-valley scattering, because on the one hand, the X-like state is further away from 
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the band edge; on the other hand, in VCA, as shown in Fig.4(a), the X point is not the local 

minimum along the  Γ-X line, which leads to large number of states that are energetically 

degenerate with the X point with their k vectors close to that of the X point. 

  From the alloy dispersion curves shown in Fig.4, we can calculate the effective masses near 

the Γ point along both the Γ-X and Γ-L lines, and even examine the possible anisotropy and non-

parabolicity of the dispersion, which would not be possible before. As references, we find the 

VCA effective masses to be 0.103 and 0.106, respectively, for the [0,0,1] and [1,1,1] directions, 

and the non-parabolicity starts at around 5% kX or kL. The masses for the alloy are practically the 

same as the VCA results: 0.103 ± 0.001 and 0.106 ± 0.001 for the [0,0,1] and [1,1,1] directions, 

which means that the alloy band dispersion near the BZ center is very close to that of the VCA 

and nearly isotropy, but with a rigid shift in energy from the VCA dispersion curves. Also note 

that the [0,0,1] effective mass agrees well with that estimated from the spectral function of the Γ 

point. We expect that the proper supercell size for computing the effective mass should be the 

similar to that for the bandgap, because the states at different k points experience the same alloy 

configuration, thus the energy difference between close by k points is not as sensitive to the alloy 

configuration fluctuation as the bandgap itself. . In general, the higher lying states tend to require 

larger supercells for achieving the same convergence as the band edge state. However, one might 

not need to achieve the same convergence in practice, because the higher lying alloy states tend 

to suffer more alloy broadening, as is evidenced in optical spectroscopy measurements.   

3. Indirect band-gap alloy 

Above we have discussed the intra- and inter-valley scatterings when the conduction band X- 

and L-like states are away from the lowest band edge. We now investigate the alloying effects 

for the composition region that resembles an indirect bandgap semiconductor, using xGa = 0.8 as 
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an example and focusing on the conduction band. The band structures have been calculated in 

three ways: (1) averaging over 50 configurations of the 3456-atom supercell, (2) average of two 

27648-atom supercells, and (3) one 27000-atom supercell. The lowest CB state energies are 

found to differ by less than 4 meV (-3.7225, -3.7187, -3.7205 eV) among the three results, which 

suggests that they are adequately converged. The first three CB states are found all having 

A(kX,Ei) ~ 0.9 (summing over the three X valleys). Thus, they can be understood as split X1-like 

states due to the inter-valley scattering. However, the splittings are significantly larger for the 

3456-atom supercell than for the larger supercells, for instance 7.1 meV vs. 1.7 meV between the 

first two states, as shown in Fig.7. This is another example showing the non-equivalency of the 

two approaches. One can envision that the inter-valley splitting will diminish if the supercell size 

is increased further, indicating a macroscopic alloy should have in average the zinc-blende 

symmetry. However, the observed supercell size dependence of the inter-valley splitting suggests 

that the impact of the alloy scattering depends on the spatial extension of a physical property that 

is used for probing. For instance, an excitonic state in a semiconductor alloy could be viewed as 

a probe for the alloy fluctuation with an approximate probe size of the Bohr radius of the exciton 

that is about the size of the 27000 atom supercell;[21] whereas a defect or an isoelectronic 

impurity state could be sensitive to the alloy fluctuation in a substantially small scale, for 

instance, a N impurity in GaxIn1-xP can sense the Ga and In coordination change in its first 

nearest neighbors.[23] 

The additional peaks (calculated by GMM) shown in Fig.7 at the higher energy side of the 

X1-like alloy states are alloy states corresponding to the VCA states with k vectors such as 

(±14/15,0,0), coupling with the X1 states through the intra-valley scattering. There are total six of 

them in this group (although not all of them are resolved in this plot), spanning an interval of 
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about 9 meV. Compared to Fig.6(b) where the X1-like states are away from the band edge in the 

direct composition region, now in the case of indirect composition region, for the alloys states 

near the CBM the alloy scattering is significantly weaker (i.e., only those energetically close by 

k points are involved). However, the A(kX,E) spectra shown in Fig.7 indicate that the intra-valley 

scattering is in fact comparable with the inter-valley scattering.   

4. Discussions 

4.1 Alloy scattering theories within the framework of VCA 

For an alloy AxB1-xC, the perturbation potential is ΔV = V – V0, where V and V0 are 

respectively the total alloy and VCA potential. Assumed no lattice relaxation, the perturbation 

matrix element is often given as 

2 2| | (1 ) (AB' V Nx x V ', )δ< Δ > ≈ −k k k k
,                                                                (11) 

where δVAB = VA – VB (VA and VB are atomic potentials for atom A and B), and the matrix 

element δVAB(k′,k) = <k′|δVAB|k>. Note that Eq.(11) is valid only for k′ ≠ k, under the 

assumption that the two-body terms involving two atoms on different sites (A-A, B-B, and A-B) 

are all negligible.[24] The diagonal matrix element <k|ΔV|k> = 0  (although <k|δVAB|k> ≠ 0), 

because <k|ΔV|k> is simply the average of the potential fluctuation with respect to V0, which 

perhaps provides the base for the common use of an elastic scattering theory. 

We first consider the theory for no lattice relaxation. In the context of the elastic scattering 

theory (within the first Born approximation), the matrix element square given by Eq.(11) is often 

related to the alloy scattering rate 1/τ or scattering induced spectral broadening Δ.[8]  Using this 

approach, because of the constrain to elastic scattering, the linewidth Δ is zero for the non-

degenerate Γ valley, and only the inter-valley scatterings among degenerate valleys can yield 
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non-zero Δ.[8] Apparently, in this approach, the effect of inelastic intra-valley scatterings is not 

present. However, it has been shown above that the inelastic intra-valley scattering is actually 

quite significant for an indirect bandgap alloy (Fig.7), and in a direct bandgap alloy it is the intra-

valley scattering that generates the finite linewidth ΔCB-Γ  for the Γ point (Fig.2). We would like 

to mention that in the literature for the weak potential fluctuation the spectral width of an alloy 

state is also given as Δ(k) = πx(1-x)|<k|δVAB|k>|2ρ(E), from the Green’s function theory, where 

ρ(E) is the density of states.[2, 8] Because ρ(E) approaches zero for the Γ point, Δ(Γ) approaches 

zero too,[2] although one could obtain a non-zero Δ(Γ) by introducing an imaginary part into E 

(termed as “band tailing”).[8] Note that ΔCB-Γ and Δ(Γ) are very different in nature. The former is 

the result of inelastic scattering, and the latter of elastic scattering. Also note that in the alloy 

scattering discussion, the “elastic” and “inelastic” scatterings are not actually associated with the 

energy change of an alloy state, but the coupling among the VCA states, either degenerate or 

non-degenerate, induced by the potential fluctuation.    

With lattice relaxation, the diagonal term <k|ΔV|k> becomes non-zero, typically a few 

hundred meV.[15] For the indirect bandgap case considered above with x = 0.8, we have found 

that the diagonal and off-diagonal matrix elements among the X1 states in fact have the same 

order of magnitude, |<k′|ΔV|k>| ~ 0.1 - 0.2 eV. These results indicate that the conventional 

approach inappropriately neglects the inelastic scattering that is present even for the alloy 

without lattice relaxation, and the treatment becomes more problematic when the lattice 

relaxation is present. 

4.2 An alloy transport theory not relying on a reference system?  

Until now, we have followed the common practice in the literature to discuss the alloy 

scattering in the framework of the VCA. We next point out a more fundamental issue of the 
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electronic transport theory within the framework of the VCA. Because of the use of the virtual 

crystal structure as the reference, any deviation from the VCA will lead to non-zero scatterings 

among the VCA states, thus, implying a reduction in carrier mobility. Obviously, an extreme 

example of non-random distribution would be a structure with long-range order, for instance, a 

semiconductor superlattice.[25] For this case, it is not really meaningful to discuss the “alloy 

scattering”. A more subtle situation is the well studied partial long-range ordering that has often 

been observed in III-V semiconductor alloys, GaxIn1-xP in particular.[26] To some extent, it is 

still useful to use the VCA states to characterize the alloy state in a partially ordered 

structure.[15] However, it would be a non-trivial task to separate the effects of long-range 

ordering and alloy fluctuation, if one attempts to calculate the scattering rate and further the 

carrier mobility, using the scattering matrix element based on the VCA. For a superlattice  

structure with imperfections such as atom inter-diffusion, it would be more nature to use the 

ideal superlattice as the reference rather than the VCA. There is apparently some arbitrariness 

and non-uniqueness using either reference for evaluating the transport property. And there is a 

disparity between the electronic transport and the electromagnetic wave propagation. For the 

latter, the energy propagation can be calculated without relying on any reference system whether 

or not the medium is disordered or ordered. Therefore, there is a need to develop a theory that is 

independent of any reference system for the electronic transport in a non-periodic structure.   The 

large supercell direct calculation performed in this work can play an important role in this regard.   

IV. Summary 

We have compared two supposedly equivalent approaches for describing (semiconductor) 

alloys: (1) configuration averaging over many “appropriate size” supercells versus using one 

“very large size” representative supercell. We have found that the specific size for either 
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“appropriate size” or “very large size” depends on the problem of interest. For certain properties, 

such as bandgap, the two approaches are indeed capable of giving equivalent results. However, 

for others, such as properties related to alloy statistics, they are not at all equivalent. 

We have applied two techniques to analyze the global electronic structure of a semiconductor 

alloy system GaxIn1-xP. A generalized moment method (GMM) is used to directly calculate the 

spectral function A(k,E) of the alloy  in the whole spectral range without having to explicitly 

calculate any alloy state, and can deal with a very large system with > 100,000 atoms (up to a 

few million atoms). The results can yield bandgap, dispersion curves (by projecting alloy states 

into the VCA states), and intrinsic alloy broadening that naturally includes both elastic and 

inelastic scatterings. For a representative composition x = 0.5 in the direct bandgap region, we 

find that the intrinsic broadening for the Γ-like alloy state, the width of the spectral function 

A(Γ,E), is non-Lorentzian and asymmetric, with an estimated width ΔCB-Γ = 0.34 meV and a 

corresponding “quasi-particle” lifetime τs = 0.21 ps. However, the width of the spectral function 

in the middle point of the BZ could be more than 0.5 eV. The alloy dispersion curve near the Γ 

point is nearly a rigidly shifted one of the VCA with m* = 0.10 m0. We point out that the 

intrinsic alloy broadening ΔCB-Γ is fundamentally different from the energy fluctuation Δcf 

obtained by computing many “appropriate size” alloy configurations and Δ(Γ) discussed in the 

literature. For a representative composition x = 0.8 in the indirect bandgap region, we find that 

the “inelastic” intra-valley scattering, typically neglected in the conventional alloy transport 

theory, is in fact in the same order of magnitude as the “elastic” inter-valley scattering; and the 

inter-valley splittings obtained from configuration averaging over the “appropriate size” 

supercells (~3500 atoms) is substantially smaller than those from individual large supercells 

(~27000 atoms). It is satisfying to know that modern computation techniques like the one 
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demonstrated here can directly calculate a system with the size comparable to the extent of a 

physical interaction of interest (e.g., exciton). This capability can open the way for detailed 

comparisons between theory and experiment regarding the experimentally observed statistical 

fluctuations in an alloy system.  

We further discuss the need to develop an alloy transport theory that does not relying on the 

use of a reference system, for instance, the popular virtual-crystal. We argue that the large scale 

supercell calculation can play an important role in such development.  
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Figure captions 

Fig. 1. (color online) Histogram plots of the energy distributions of the band gap (Eg) for 
Ga0.5In0.5P alloy, calculated using two super-cell sizes. 
 

Fig.2. (color online) Spectral functions A(k = 0,E) near the conduction band minimum for 

Ga0.5In0.5P alloy: (a) obtained by projecting the alloy wavefunctions to the VCA state at k = 0; 

(b) calculated by applying the generalized moment method with the k = 0 VCA state as the 

reference. 

 

Fig.3. The time decay of the Γ-like alloy state in Ga0.5In0.5P alloy. 

 

Fig.4. (color online) The effective dispersion curves of Ga0.5In0.5P alloy along the Γ-X and Γ-L 

directions, calculated using the generalized moment method (calculated discrete points 

interpolated by solid lines). The dashed and dotted curves are the results of VCA with and 

without the inclusion of the strain term in the atomic pseudopotentials. 

 

Fig.5. (color online) Spectral functions at various k points in the VCA Brillouin zone calculated 

for Ga0.5In0.5P alloy: (a) for the (111) direction, (b) for the (100) direction. The energy reference 

is the conduction band minimum. A 27000-atom supercell is used. 

 

Fig.6. (color online) Spectral functions for Ga0.5In0.5P, calculated using the generalized moment 

method, corresponding to (a) four VCA L1 states, showing the coupling due to the inter-valley 

scatterings; and (b) three VCA X1 states, showing more extensive decompositions of the VCA 

X1 states among the alloy states centered around -3.66 eV. The positions of the X1-like alloy 
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states are estimated by performing weighted averaging over the alloy states. A 27000-atom 

supercell is used. 

 

Fig.7. (color online) The effect of inter- and intra-valley scatterings in Ga0.8In0.2P alloy. Left axis 

(discrete data points): the total X components of the three X1-like alloy states for 50 random 

configurations of the 3456-atom supercell. The solid vertical lines indicate their average 

energies, and the splitting are caused by the inter-valley scatterings. Right axis (continuous 

curves): spectral functions for the three VCA X1 states, calculated using the generalized moment 

method and the 27000-atom supercell. The dashed vertical lines indicate the positions of the 

three X1-like alloy states in the alloy with the splitting caused by the inter-valley scatterings. 

Additional peaks on the higher energy side are produced by the intra-valley scatterings. 

 




















