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We present an exact expression for the entanglement entropy generated at a quantum point
contact between non-interacting electronic leads in terms of the full counting statistics of charge
fluctuations, which we illustrate with examples from both equilibrium and non-equilibrium trans-
port. The formula is also applicable to groundstate entanglement entropy in systems described by
non-interacting fermions in any dimension, which in one dimension includes the critical spin-1/2 XX
and Ising models where conformal field theory predictions for the entanglement entropy are repro-
duced from the full counting statistics. These results may play an important role in experimental
measurements of entanglement entropy in mesoscopic structures and cold atoms in optical lattices.
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Introduction.— Entanglement entropy is playing an
increasingly important role in describing quantum cor-
relations in many-body systems1. For a bipartite sys-
tem, Fig. 1a, the entanglement entropy of subsystem
A is defined as SA = −TrA{ρ̂A log ρ̂A}, where the re-
duced density matrix ρ̂A = TrB{ρ̂} is obtained from the
full density matrix ρ̂ by tracing out the degrees of free-
dom in the remainder B. For a pure state ρ̂ = |Ψ〉〈Ψ|,
SA = SB ≡ S. Entanglement entropy is currently be-
ing studied theoretically in a wide range of systems in-
cluding quantum critical systems in one2–4 and higher5

dimensions, topologically-ordered states6, and evolution
after a (local) quench7. Experimental progress, however,
has so far been hindered by the difficulty of measuring
the density matrix of a quantum many-body system and
the fact that the definition of entanglement entropy itself
does not refer to any directly measurable observables.

There has thus been a growing interest in relat-
ing entanglement entropy to experimentally accessi-
ble quantities, in particular fluctuations of charge and
magnetization8. (A completely different and promising
approach is taken in Ref.9.) An important step towards
this goal was taken by Klich and Levitov who suggested
an intimate connection between entanglement entropy
and current fluctuations for non-interacting fermions10.
They studied the entanglement entropy between two
electronic leads connected via a quantum point contact
(QPC), Fig. 1b, and found that it can be expressed as
a series in the cumulants of the current fluctuations.
Remarkably, for purely gaussian fluctuations with vari-
ance C2 their result S = (π2/3)C2 = (1/3) log(T /τ)
reproduces the conformal field theory (CFT) prediction
S = (c/3) log(L/ξ) with the spatial extent L replaced by
the temporal window T during which the QPC is open,
the spatial cut-off ξ replaced by the short-time cut-off τ ,
and the central charge equal to unity c = 12.

However, the series developed in Ref. 10 does not con-
verge in general for non-gaussian fluctuations. This con-
stitutes a major obstacle to further systematic study of
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FIG. 1: (color online). (a) The entanglement entropy charac-
terizes non-local quantum correlations between subsystem A

and the remainder B, such as (b) two electrodes upon opening
of a quantum point contact (QPC) and (c) strongly-repulsive
bosons hopping in a one-dimensional optical lattice.

entanglement entropy and its relation to fluctuations in
many-body systems. To illustrate the acuteness of this
problem, consider the simplest situation involving a QPC
where only a single charge is transmitted with probability
1/2: The series in Ref. 10 expresses the entanglement en-
tropy as an infinite sum over charge cumulants Cn, where
the coefficients for high-order cumulants asymptotically
go to a constant (∼ 2Cn for large orders n). A quick
calculation shows that for this simple process the Cn di-
verge as |Cn| ∼ 2(n − 1)!/πn, and indeed such factorial
divergences are typical for non-gaussian distributions11.
Briefly, the problematic step in Ref. 10 involves term-
by-term integration of the cumulant generating function
logχ(λ) =

∑∞

n=1[(iλ)
n/n!]Cn over values of λ that ex-

tend beyond its radius of convergence, since cumulant
generating functions in general have singularities in the
complex plane. Experimental determination of the en-
tanglement entropy from the cumulants using the results
of Ref. 10 therefore requires further resummation.

In this Rapid Communication we present an exact and
convergent series for the entanglement entropy in terms
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of the charge fluctuations. The formula is applicable
to non-interacting many-body systems, which we illus-
trate with examples of entanglement entropy generation
in a QPC, Fig. 1b, and the groundstate entanglement en-
tropy of systems described by non-interacting fermions in
any dimension. In one dimension the latter includes the
equivalent, and experimentally relevant, case of strongly-
repulsive bosons in an optical lattice, Fig. 1c, as well as
the spin-1/2 XX and Ising models. Our formula paves the
way to an improved understanding of fluctuations and
entanglement entropy in many-body systems and may
facilitate experimental investigations of entanglement en-
tropy in mesoscopic structures where the measurement of
high-order current correlators is becoming possible12.
Main result.— We begin by considering the QPC de-

picted in Fig. 1b, but we will see below that the result
applies to a much larger class of problems. Charge fluc-
tuations in one of the leads of the QPC (the right lead,
for concreteness) are characterized by the probability Pn

of transmitting n charges from the left to the right lead.
The main result of this work relates the entanglement
entropy to the charge statistics as

S = lim
K→∞

K+1
∑

n=1

αn(K)Cn, (1)

where Cn = (−i∂λ)
n logχ(λ)|λ=0 are the cumulants of n

and χ(λ) =
∑

n Pne
iλn is the generating function. The

cutoff-dependent coefficients αn(K) are

αn(K) =

{

2
∑K

k=n−1
S1(k,n−1)

k!k for n even,

0 for n odd,
(2)

where S1(n,m) are the unsigned Stirling numbers of the
first kind. A beautiful property of the series (1) is that
only even-order cumulants contribute, reflecting the re-
quirement that the entanglement entropy for a pure state
be symmetric between the left and right leads: Since
charge conservation implies that the number of electrons
n collected in the right lead is equal to −n charges col-
lected in the left, only even-order cumulants are sym-
metric in the two leads. Moreover, αn(∞) = 2ζ(n) for
even n where ζ(n) is the Riemann zeta function, so that
for purely gaussian fluctuations where only the first and
second cumulants are nonzero we reproduce the CFT re-
sult S = (π2/3)C2

10. In general, however, the number
of cumulants included fixes the cutoff K. As K grows
the series becomes an increasingly sharper estimate of S
from below. This feature of the series is important from
a practical point of view, since it ensures that including
more terms always improves the estimate, cf. Figs. 2, 3.
Derivation.— To derive Eq. (1) we begin with the ex-

pression for the entanglement entropy10

S = −Tr {M logM + (1−M) log(1 −M)}, (3)

where M = PRnUPR is the correlation matrix projected
onto the modes in the right lead by PR, and we as-
sume that M is either finite or can be regularized such

that the operations below are well-defined13. Here n is
the Fermi-Dirac distribution before the evolution, and
nU = UnU † represents the state of the total system af-
ter evolution U of the single particle modes. We first
expand the logarithms in Eq. (3) around M = 0, 1 to
obtain S =

∑∞
n=1 An/n with

An = Tr {M(1−M)n +Mn(1−M)}. (4)

To relate the coefficients An to measurable quantities, we
next use the Levitov–Lesovik determinant formula14 for
the generating function of the charge transport statistics
written as

χ(λ) = det[(1−M +Meiλ)e−iλUnPRU†

]. (5)

For such a generalized binomial distribution it is
useful to consider the factorial cumulants Fn =
∂n
λ logχ(−i logλ)|λ=1, since for n ≥ 1 they are related

in a simple way to Tr {Mn} as Fn = (−1)n−1(n −
1)!(Tr {Mn} − Tr {UnPRU

†})15. Solving for Tr {Mn}
and substituting into Eq. (4) then gives

S =

∞
∑

n=1

{

(−1)n−1

n

[

Fn

(n− 1)!
+

Fn+1

n!

]

+

n
∑

k=0

(

n

k

)

Fk+1

k!n

}

.

(6)
To write the sum in terms of ordinary cumulants, a cutoff

K is introduced so that S = limK→∞

∑K
n=1 An/n. Using

the relation Fn =
∑n

k=1(−1)n−kS1(n, k)Ck between fac-
torial and ordinary cumulants, we finally arrive at Eqs.
(1) and (2) after some algebra.
Convergence.— The convergence of the series (1) for

any M is most conveniently shown with the equivalent
form (6). The counting statistics for non-interacting
electron transport through a two-terminal conductor is
always generalized binomial16, such that the generat-
ing function can be factored into a product of bino-
mial events with individual probabilities 0 ≤ pi ≤ 1.
This is equivalent to evaluating Eq. (4) in the eigen-
basis of M . Then S =

∑

i H2(pi), where H2(x) =
−x log x − (1 − x) log(1 − x) is the binary entropy func-
tion. Since M is assumed to be finite and H2(x) has the
convergent (absolutely, by the ratio test) series expan-
sion

∑∞

n=1 An/n with An =
∑

i[pi(1− pi)
n + pni (1− pi)],

the series (6) also converges to the correct value. (We
may also simply observe that the spectral radius σ of M ,
i.e., the maximum eigenvalue, satisfies σ ≤ 1.) Moreover,
since each term An/n is positive and decreasing for in-
creasing n, Eq. (6) yields an increasingly sharper lower
bound to the exact entanglement entropy. The same con-
clusion holds for the series expressed in terms of ordinary
cumulants, i.e., as the cutoff K is increased the sum (1)
converges from below to the exact entanglement entropy.
The rate of convergence generally depends on the dis-

tribution of eigenvalues pi; specifically, the expansion of
the logarithms in Eq. (3) implies that the presence of
eigenvalues of M near 0 or 1 will slow the rate of con-
vergence. As shown below, typically the first few terms
dominate the series, but full convergence may require the
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FIG. 2: (color online). Exact entanglement entropy (dashed)
and approximation by cumulants (solid) for a QPC with
transmission D for (a) zero bias voltage and (b) bias volt-
age V , scaled to the maximum value at D = 1 and D = 0.5,
respectively. The cutoff K for the number of cumulants in-
cluded, from bottom to top, is indicated in each plot.

inclusion of many terms. From a similar derivation, the
Rényi entropies can also be expressed as a series in the
cumulants of the charge fluctuations17.
Before illustrating the use of Eq. (1), we show that the

entanglement entropy can be expressed directly in terms
of the cumulant generating function itself. This can
be done by relating both the entanglement entropy and
the generating function to the spectral density µ(z) =
Tr δ(z −M) of M to obtain

S =
1

π

∫ ∞

−∞

du
u

cosh2 u
Im[logχ(π − 2iu)]. (7)

Although this result may not be useful in an actual ex-
periment where only a finite number of cumulants can
typically be measured, it allows us to obtain exact re-
sults for the entanglement entropy against which we can
benchmark Eq. (1) when only a finite number of cumu-
lants are included, Fig. 2.
Entanglement entropy in a QPC.— As our first appli-

cation of Eq. (1) we consider the generation of entangle-
ment entropy due to current fluctuations in a QPC. For
the equilibrium setup at zero bias and transmission D,
the generating function is given by18

χ(λ) = e−λ2

∗G/(2π2), sin
λ∗

2
=

√
D sin

λ

2
, (8)

with G = log{[hβ/(πτ)] sinh[πt/(hβ)]}, where t is the
time during which the QPC is open, τ a short-time cut-
off, and β = 1/(kBT ) the inverse temperature. Here
h and kB are the Planck and Boltzmann constants, re-
spectively. For imperfect transmission D < 1, the gener-
ating function (8) yields cumulants of all (even) orders,
while for D = 1 the statistics is gaussian. At short times
τ ≪ t ≪ hβ the zero-temperature behavior with loga-
rithmic growth of the entanglement entropy is observed,
while at long times t ≫ hβ the growth is linear. Thus
at any non-zero temperature the entropy production rate
eventually becomes constant. If a DC voltage bias V is

applied, the generating function at zero temperature (the
quantum shot noise regime) is found to be the binomial
distribution logχ(λ) = (eV t/h) log[1 + D(eiλ − 1)], for
which S = −(eV t/h)[D logD + (1 − D) log(1 − D)]10.
This is also the electron-hole entanglement predicted for
a biased tunnel junction19. The dependence of the entan-
glement entropy on the transmission D in the two cases
is shown in Fig. 2. The first few cumulants give a good
approximation to the exact result obtained from Eq. (7),
especially for the case of a bias voltage. This indicates
that the detection of entanglement entropy generation in
a QPC may be within experimental reach using currently
available noise measurement techniques12.
Groundstate entanglement in the XY model.—We next

consider a very different setup, namely the bipartite en-
tanglement entropy of the groundstates of systems de-
scribed by free fermions, such as the spin-1/2 XY model
in one dimension with Hamiltonian

Ĥ = J
∑

i

[(1+γ)Ŝx
i Ŝ

x
i+1+(1−γ)Ŝy

i Ŝ
y
i+1]+b

∑

i

Ŝz
i . (9)

This Hamiltonian is equivalent to a problem of
free spinless fermions through the Jordan-Wigner
transformation20 and for γ = 0 also describes bosons in
a one-dimensional lattice with infinite on-site repulsion,
Fig. 1c. Here we are concerned with relating the entangle-
ment entropy to the fluctuations as a function of subsys-

tem size ℓ. The central quantity is M = (1 +
√
GTG)/2,

where Gij = 〈(â†i − âi)(â
†
j + âj)〉 with the indices i, j

restricted to the first ℓ sites of the chain and âi is the
Jordan-Wigner fermion annihilation operator on site i.
The entanglement entropy is then given by Eq. (3)3,
while the corresponding generating function is χ(λ, ℓ) =
det(1 − M + Meiλ) up to an irrelevant phase. For the
XX model at γ = 0 the generating function describes

fluctuations of Ŝz, i.e., χ(λ, ℓ) = 〈exp(iλ
∑ℓ

i=1 Ŝ
z
i )〉 =

〈exp(iλ∑ℓ
i=1(â

†
i âi − 1/2))〉, while for γ 6= 0 the fluc-

tuations must be interpreted as those of quasi-particles,
since total Ŝz is not a conserved quantity. The results
for both the critical XX model at zero magnetic field
(γ = 0, b = 0) and critical Ising model (γ = 1, b = J)
with periodic boundary conditions are shown in Fig. 3a.
Remarkably, the cumulants correctly reproduce the two
central charges c = 1 and c = 1/2 for the XX and Ising
models, respectively3. We also note that the random sin-
glet phase4 can be studied with this method by randomly
varying J and b across different sites.
More generally, the same formalism is applicable to

any quadratic fermionic Hamiltonian, regardless of di-
mension, and as such can also be used to determine the
entanglement entropy from the fluctuations in higher di-
mensions. On the L×L square lattice in two dimensions
with nearest-neighbor hopping, for example, we find that
the approximation by cumulants follows the predicted
S ∼ L logL scaling21 as shown in Fig. 3b with the sub-
system taken to be half the lattice.
Conclusions.— We have derived an exact series for the

entanglement entropy in terms of the statistics of charge
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FIG. 3: (color online). The exact entanglement entropy and
approximation by cumulants for (a) the critical spin-1/2 XX
chain (upper set of curves) and critical Ising chain in trans-
verse field (lower set of curves) with periodic boundary condi-
tions, L = 100, and (b) free fermions on L×L square lattices
with periodic boundary conditions, with the partition taken
to be half the lattice. Solid curves are the exact entangle-
ment entropy, while the cutoff number K for both figures is
2 (circles), 4 (squares), 8 (crosses), and 40 (plusses).

fluctuations. The expression is applicable to a wide range
of experimentally relevant many-body systems, for ex-
ample entanglement entropy produced in QPCs and the
groundstate entanglement entropy of systems described
by non-interacting fermions in any dimension. Our se-
ries was derived for non-interacting systems only, and
it would be interesting to investigate if a similar relation
could exist also for certain types of interacting systems22.
Examples of interacting systems where such a relation
does not hold are already known23.
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075432 (2011).

16 A. G. Abanov and D. A. Ivanov, Phys. Rev. Lett. 100,
086602 (2008), Phys. Rev. B 79, 205315 (2009).

17 H. F. Song et al., in preparation.
18 L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys.

37, 4845 (1996).
19 C. W. J. Beenakker, Proc. Int. School Phys. E. Fermi (IOS

Press, Amsterdam, 2006), Vol. 162.
20 E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407

(1961).
21 D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006);

M. M. Wolf, ibid. 96, 010404 (2006).
22 H. F. Song, S. Rachel, and K. Le Hur, Phys. Rev. B 82,

012405 (2010).
23 B. Hsu, E. Grosfeld, and E. Fradkin, Phys. Rev. B 80,

235412 (2009); S. Furukawa and Y. B. Kim Phys. Rev. B
83, 085112 (2011); H. F. Song, N. Laflorencie, S. Rachel,
and K. Le Hur, arXiv:1103.1636.


