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Though the dependence of near–field radiative transfer on the gap between two planar objects
is well understood, that between curved objects is still unclear. We show unequivocally that the
surface polariton mediated radiative transfer between two spheres of equal radii R and minimum
gap d scales as R/d as the nondimensional gap d/R→ 0. We discuss the proximity approximation
form that is being used at present to compare with experimental observations and suggest a modified
form in order to satisfy continuity requirement between far–field and near–field radiative transfer
between the spheres.
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For more than a century, Planck’s theory of black-
body radiation and the radiative transfer theory (RTT)
have been successful at predicting radiative heat trans-
fer between objects when all length scales involved are
much larger than the characteristic thermal wavelength
λT given by Wien’s displacement law (λT ≈ 1.27~c/kBT ,
where 2π~ is the Planck’s constant, c is the speed of
light in vacuum, kB is the Boltzmann constant and T is
the absolute temperature). However, at shorter length
scales, radiative transfer between two objects can exceed
the predictions of Planck’s theory due to electromagnetic
near–field effects. Recent precision experiments1–3 for
measuring radiative heat transfer between a silica mi-
crosphere and a planar silica substrate have begun to
shed new light on the enhancement of radiative trans-
fer at nanoscale gaps due to surface phonon–polaritons.
While near–field enhancement between parallel surfaces
is well understood theoretically,4–8 that between curved
surfaces is still unclear. Though near–field radiative ex-
change between a nanosphere and a plane has been cal-
culated under different approximations,9,10 rigorous nu-
merical computation of near–field radiative transfer be-
tween a sphere of arbitrary diameter and a planar surface
has not yet been possible due to computational difficul-
ties. In order to understand the effect of curvature on
enhancement of radiative transfer at nanoscale gaps, we
investigate the near–field radiative transfer between two
spheres of equal radii by rigorous simulations based on
the dyadic Green’s function technique11 and fluctuation–
dissipation theorem.12

The problem of computing fluctuation–induced inter-
action between objects with curved surfaces is also en-
countered in literature on van der Waals and Casimir
forces. A frequently used strategy to obtain forces be-
tween spherical surfaces, when the force between two
parallel surfaces is known as a function of separation,
is to use the so–called proximity approximation (or Der-
jaguin approximation).13 While a rigorous proof for the
proximity approximation for forces is still lacking,14 it’s
accuracy in predicting Casimir force has been well in-
vestigated theoretically15–17 and is expected to be most
accurate when R � d, where R is a characteristic ra-
dius of the objects involved, and d is the minimum gap

between them. Experimental measurements of Casimir
force18,19 have confirmed the applicability of the proxim-
ity approximation when R� d.

A similar technique3 has been used to compute radia-
tive transfer. Measurements from the Chen group1,2 be-
tween a silica microsphere and a silica substrate in the
range 30 nm to 10 µm seemed to show better agreement
with theoretical predictions of heat transfer between two
spheres20 and did not agree with the proximity approx-
imation. Rousseau et al.,3 based on their measurements
between a silica microsphere and a silica substrate, con-
cluded that near–field radiative transfer agreed with the
proximity approximation in the range 30 nm to 2.5 µm.
There are no experiments between two silica spheres re-
ported in literature. Though the phenomena of van der
Waals force (including Casimir force) and near–field ra-
diative transfer are fluctuation–induced, there are im-
portant differences. Radiative transfer has contributions
from the infra–red (IR) portion of the electromagnetic
spectrum whereas forces have larger contributions from
the visible and higher frequencies. Dispersion forces obey
a power law behavior and decay rapidly to zero as gap
between the interacting bodies increases, while radiative
transfer has a finite value due to propagating waves at
large gaps too. Because of these differences, it is not
clear whether the proximity approximation, as it is used
to compute dispersion forces, can be used to predict near–
field radiative heat transfer between spherical surfaces.

The configuration of the two spheres between which
radiative transfer is to be calculated is shown in Fig. 1
(top right corner). Radiative heat transfer between the
spheres is calculated using Rytov’s theory of fluctuational
electrodynamics.12 The Fourier component of the fluctu-
ating electric field E(r1, ω) and magnetic field H(r1, ω)
at any point r1 is given by11:

E(r1, ω) = iωµo

∫
V

d3rGe(r1, r, ω) · J(r, ω), (1)

H(r1, ω) =
∫

V

d3rGh(r1, r, ω) · J(r, ω), (2)

where Ge(r1, r, ω) and Gh(r1, r, ω) are the dyadic
Green’s functions for the electric and magnetic fields due
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to a point source at r and are related by Gh(r1, r, ω) =
∇ × Ge(r1, r, ω), J(r, ω) is the Fourier component of
the current density due to thermal fluctuations, and µo

is the permeability of vacuum. The integration is per-
formed over the entire volume V containing the source.

The ensemble average Poynting vector S = 1
2 Re〈E ×

H∗〉 depends on the cross spectral densities of the compo-
nents of the fluctuating current source, which are related
to temperature by the fluctuation–dissipation theorem.
Further details on the analysis can be found in Ref. 20.
Refinement of the numerical method has enabled us to
probe lower gaps and suggest better models for near–
field radiative transfer. While gaps upto d/R = 0.01
was investigated in the earlier paper,20 this paper ex-
tends the work to gaps of d/R = 0.003. The charac-
teristic behavior of conductance at such small gaps will
be discussed below. To investigate the effects of surface
phonon–polaritons on near–field radiative transfer, silica
has been the material of choice in experiments for two
reasons: (1) it can support surface phonon–polaritons in
the frequency ranges from 0.055 to 0.07 eV and 0.114 to
0.16 eV, and (2) silica microspheres are easily available.
Hence the heat transfer has been computed, using silica
as the material, for the frequency range 0.041 eV to 0.16
eV. The optical properties of silica are taken from Ref.
21. All numerical simulations have been conducted at
300 K.

The linearized thermal conductance G (WK−1) be-
tween the two spheres is defined as:

G = lim
T1→T2

Q(T1, T2)
T1 − T2

, (3)

where Q (T1, T2) is the rate of heat transfer between the
two spheres at temperatures T1 and T2. Numerical values
of conductance are plotted as a function of gap to radius
ratio d/R for different radii in Fig. 1. Only the points
which deviate significantly from RTT have been included
(see supplementary information, Section I, for further de-
tails). In Fig. 1, for every radius, two regions can be
observed: (1) a region where conductance varies loga-
rithmically (marked Region–A), and (2) a region where a
deviation from logarithmic behavior is observed (marked
Region–B). To gain a deeper insight into this behavior,
we compare the spectral variation of the conductance at
different gaps in the two regions. The gaps chosen are
d/R = 0.01, 0.03 and 0.05 for R = 20 µm (marked (a),
(b) and (c) in Fig. 1). The gaps corresponding to d/R =
0.03, 0.05 fall in Region–A of Fig. 1, while d/R = 0.01
falls in Region–B. From the spectral variation plotted in
Fig. 2, we note that most of the increase in the heat
transfer for d/R = 0.01 is due to the contributions from
surface phonon–polaritons alone. Hence we conclude that
the contribution from surface phonon–polaritons to the
conductance starts to become significant in Region–B.

We also analyzed the contributions of conductance
from the resonant and nonresonant frequencies sepa-
rately. The results are shown in Fig. 3. Remarkably,
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FIG. 1: Conductance between the two spheres shown in the
top right corner as a function of d/R for different radii. The
open circles denote the conductance values which show a loga-
rithmic variation with gap (marked Region–A) and the closed
circles denote the conductance values which show a deviation
from logarithmic behavior (marked Region–B). The spectral
variation of the conductance at gaps marked (a), (b) and (c)
for R = 20 µm spheres are shown in Fig. 2.

0

20

40

60

80

100

120

140

0.04 0.06 0.08 0.1 0.12 0.14 0.16

(a)
(b)
(c)

S
pe

ct
ra

l c
on

du
ct

an
ce

 (
nW

K
-1

eV
-1

)

Frequency(eV)

Resonant frequencies

Nonresonant frequencies

FIG. 2: The spectral variation of conductance for R = 20µm
for the different gaps (a), (b) and (c) marked in Fig. 1. The
frequency regions marked “Resonant frequencies” (“Nonres-
onant frequencies”) are where surface phonon–polaritons are
present (absent).
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FIG. 3: For different radii, the spectral conductance at a
resonant frequency (0.061 eV) as a function of d/R. The
conductance values for all radii attain a slope of −1 at low
gaps. Inset: The spectral conductance at a nonresonant fre-
quency (0.1005 eV) as a function of d/R (axes labels remain
the same).

the analysis for the spectral conductance at a resonant
frequency (0.061 eV) suggests that at gaps d/R . 0.01,
the conductance is dependent only on the ratio d/R and
is independent of the particular values of d and R. Fur-
thermore, the slope of the data points being ≈ −1 sug-
gests a (R/d) behavior at such gaps. A similar analysis
for a nonresonant frequency (0.1005 eV), shown in the
inset of Fig. 3, suggests that for d/R . 0.01 the rate of
change of spectral conductance with gap is significantly
lower than that for resonant frequencies. Based on the
behavior of resonant radiative transfer at small gaps and
the observation of logarithmic behavior for larger gaps
in Fig. 1, we have found that the numerical values of
conductance can be modeled by a function of the form
C1 (R/d) + C2 ln (R/d) + C3, where C1, C2 and C3 are
radius–dependent constants. C1, C2 and C3 are obtained
by minimizing the square of error between the function
and the numerical values of conductance. The fitted
curves are shown in Fig. 1. (For details on the variation
of C1, C2 and C3 with R see supplementary material,
Section II).

As has been mentioned earlier, conductance between
curved surfaces can also be estimated from the known
solutions for near–field radiative transfer between paral-
lel surfaces using the proximity approximation. The heat
transfer coefficient h(z) for two flat silica surfaces is plot-
ted as a function of gap z in Fig. 4(a). h(z) can be split
as follows:

h (z) = hnf (z) + h∞, (4)

where h∞ is the contribution from propagating waves,
which attains a constant value for z � λT , and hnf con-
tains contributions from all other effects. As can be seen
from Fig. 4(a), hnf falls off rapidly to zero as z increases
beyond λT .

Rousseau et al.3 integrated the radiative heat transfer
coefficient h (z) using the proximity approximation form
to compute the theoretical conductance between a sphere
and a flat surface. Applying the same form of proximity
approximation for finding the conductance between two
spheres, we get:

G(d, T ) =
∫ R

0

h(z)2πr dr, (5)

where z = d+ 2R − 2
√
R2 − r2 is the local gap between

the two spheres as shown in Fig. 4(b) and h(z) is the
heat transfer coefficient between two parallel surfaces at
that gap. h(z) has contributions from both the near–field
effects and from propagating waves, as indicated in Eq.
4 and thus includes all contributions to radiative heat
transfer. From Fig. 4(a), we observe that hnf >> h∞
for gaps z . 400 nm. However, for sizes of spheres
currently used in experiments (R & 5 µm) there will
be significant contribution from the propagating waves
at the outer regions of the spheres where z & λT even
when the minimum gap d << λT . This suggests that
for gaps under consideration in Region–B of Fig. 1 there
are contributions to radiative transfer from propagating
waves as well as near–field effects. While Eq. 5 might
provide a reasonable approximation to the contribution
from near–field effects to the radiative transfer, it overes-
timates the contribution from propagating waves at the
outer regions of the spheres. To see this, consider the
large–gap limit where the heat transfer coefficient h(z)
from Eq. 4 attains a constant value, h∞. Eq. 5 pre-
dicts conductance between the spheres to be πR2h∞, ir-
respective of the gap and does not take into account the
variation of view factor22 between the two spheres with
distance. It must be pointed out, however, that for the
configuration adopted in Ref. 3 the view factor does not
change with gap between the sphere and the plane.

In order to preserve the continuity between the ra-
diative transfer in the large–gap limit and the smaller
gaps, we propose that the proximity approximation, in
the form that is used to determine Casimir or van der
Waals forces between spherical surfaces, be used to pre-
dict only the contribution to conductance from hnf . The
contribution from propagating waves to the conductance
is computed according to RTT by taking into account the
variation of view factor with distance between the two
spheres. This correction to the proximity approximation
formulation is not necessary while calculating Casimir or
van der Waals force, since they decay rapidly with dis-
tance (1/d4 and 1/d3 respectively). The modified form of
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FIG. 4: (a) Variation of h(z) and hnf (z) with gap between
two flat silica surfaces. (b) Proximity approximation – the
conductance between two spheres is calculated by summing
the local contributions of the heat transfer coefficient between
two parallel planes. (c) Comparison between the conductance
values obtained numerically and using proximity approxima-
tion. The open cirlces denote the numerical values while the
closed circles denote the proximity approximation predictions
using Eq. 6. Proximity approximation using Eq. 5 for R =
25 µm has been included for comparison.

proximity approximation to determine the conductance
is:

G (d, T ) =
∫ R

0

hnf (z)2πr dr + Gc(d, T ), (6)

where Gc(d, T ) can be approximated by the conductance
value from RTT when diffraction effects are negligible.
Gc(d, T ) for two objects of equal emissivity ε and surface

area A is given by22:

Gc(d, T ) =
4σAT 3

2(1− ε)/ε+ (1/F12)
, (7)

where F12 is the view factor between the two objects.
Conductance values computed using Eq. 6 and Eq. 7
are in greater agreement with the numerically computed
values than the prediction of Eq. 5 as shown in Fig. 4(c).
Since the conductance values have been computed for the
frequency range 0.041 eV to 0.164 eV, Gc(d, T ) has been
determined for this frequency range too (see supplemen-
tary material, Section I, for more details). Numerical
values of the gap dependent view factor between the two
spheres is taken from Ref. 23. We conclude that the mod-
ified form of the proximity approximation is necessary to
compute radiative transfer between finite objects (like
the two spheres considered here) where there is a strong
dependence of view factor on the distance between the
objects. While the modified form of the proximity ap-
proximation can also be used to predict the conductance
between a sphere and a flat surface, there are no rigorous
numerical simulations of near–field radiative transfer be-
tween a sphere and a flat surface to compare them with.
If this can be accomplished, the validity of this modified
proximity approximation for predicting the conductance
between sphere and a plane can be verified. Another
configuration that can be used to test the predictive ca-
pability of the modified proximity approximation is that
between two parallel cylinders.

In summary, radiative heat transfer between two
spheres that support surface polaritons has been ana-
lyzed in the near–field regime using flucutational elec-
trodynamics. We have shown that it varies as R/d as
d/R → 0 and as ln (R/d) for larger values of d/R up to
the far–field limit. We have also shown that the prox-
imity theorem, in the form that is used to compute dis-
persive forces, cannot be used to determine near–field
heat transfer between finite objects and a modification is
needed to take into account the dependence of radiative
conductance on the view factor. Further numerical sim-
ulations of near–field radiative transfer between curved
surfaces are necessary to test the predictive capability
of the modified proximity approximation in more gen-
eral configurations than the one considered here. Such
predictive capabilities will be useful in applications like
heat–assisted magnetic recording24 to approximate the
near–field radiative transfer between the curved surface
of the near–field transducer and the recording medium.
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