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The bold diagrammatic Monte Carlo (BDMC) method performs an unbiased sampling of Feyn-
man’s diagrammatic series using skeleton diagrams. For lattice models the efficiency of BDMC
can be dramatically improved by incorporating dynamical mean-field theory (DMFT) solutions into
renormalized propagators. From the DMFT perspective, combining it with BDMC leads to an un-
biased method with well-defined accuracy. We illustrate the power of this approach by computing
the single-particle propagator (and thus the density of states) in the non-perturbative regime of
the Anderson localization problem, where a gain of the order of 104 is achieved with respect to
conventional BDMC in terms of convergence to the exact answer.

PACS numbers: 02.70.Ss, 05.10.Ln

A skeleton diagrammatic series is nothing but Feyn-
man’s diagrammatic expansion in terms of ‘dressed’ or
‘bold-line’ propagators, interaction lines, and vertices,
which account for the summation of certain subclasses
of diagrams. Its power lies in the fact that, even when
truncated to the lowest orders, it often captures the basic
physics of strongly correlated systems and yields quanti-
tatively accurate answers. Among its numerous successes
we mention screening effects, selfconsistent Hartree-Fock
schemes, the GW-approximation for simple metals, Bo-
goliubov and Gor’kov-Nambu equations, etc. Often, as,
e.g. in case of Kohn-Sham orbitals in density functional
theory, the diagrammatic structure is hidden in a set of
integral equations, whose implementation has been im-
proved to perfection. Physically, the lowest-order skele-
ton graphs embody the idea of incorporating some ‘mean-
field’ theory selfconsistently.

The main shortcoming of selfconsistent treatments
based on the lowest-order diagrams is lack of accuracy
and control: the error due to truncation can be estab-
lished only by reliably calculating contributions of higher-
order diagrams, which in the typical case of optimized
codes solving a set of selfconsistent integral equations
is nearly impossible. Moreover, in the absence of small
parameters order of magnitude estimates are essentially
meaningless. The recently developed bold diagrammatic
Monte Carlo (BDMC) method1 allows one to sample
skeleton Feynman expansions far beyond the mean-field
level. Given that even the diagrammatic Monte Carlo
method based on bare propagators can produce very ac-
curate results for correlated systems (say, for the repul-
sive fermionic Hubbard model2,3), BDMC emerges as a
powerful generic field-theoretical method. It has been
successfully applied to the fermi-polaron problem1, and,
very recently, determined the equation of state in a sys-
tem of resonant fermions4. The above examples deal with
continuous-space problems, but it is natural to expect
that working with the skeleton series will bring signifi-
cant advantages to lattice models as well.

Here, we show that, in addition to going from a bare to
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FIG. 1. Schematic representation of the BDMC+DMFT pro-
tocol (see text for the details).

a skeleton expansion, a dramatic increase in performance
can be reached by employing an exact series resumma-
tion procedure, which sums up all local contributions to
the selfenergy. This approach is tantamount to embed-
ding the dynamical mean-field theory (DMFT)5 solution
into an exact diagrammatic method and avoids any dou-
ble counting or other uncontrollable errors. The gain in
efficiency comes from two related observations: an im-
pressive success of DMFT applications5–7, and the fact
that the summation of local contributions can be done
separately by a variety of highly efficient methods. The
BDMC+DMFT approach thus involves two distinct but
cross-linked numerical processes: (i) a problem-specific
solver of the DMFT-type problem (to be referred to
as ‘impurity solver’, in accordance with terminology ac-
cepted in literature), and (ii) a generic BDMC scheme
simulating skeleton diagrams which cannot be reduced
to the purely local ones. The protocol is illustrated in
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Fig. 1.
Below we start with the precise formulation of the com-

bined scheme, and then proceed with its implementation
for finding a disorder-averaged single-particle propagator
(and thus the density of states) in the non-perturbative
regime of Anderson localization, which is well suited for
illustrating the idea because the efficiency gained by in-
corporating DMFT solutions within BDMC is about 104.
We stress that our goal in this article is to explain the new
method and illustrate its implementation, not to solve
the localization problem in its full complexity. In gen-
eral, the gain will be problem and parameter specific, and
will also depend on the efficiency of the impurity solver.
Nevertheless, there is a general argument why using the
DMFT-based method (or any other method more effi-
cient than DMFT) of summing the local diagrams must
yield an efficiency gain in cases when DMFT captures
the leading contribution: In view of the (asymptotically)
factorial complexity of BDMC, the computation time de-
pends dramatically on the desired error bar. A desired
error bar of 1% requires an order of magnitude longer
simulation time than a desired errorbar of 3%. Now
if, say, 90% of the answer is captured by some efficient
method which is compatible with diagrammatics8 and we
are aiming at, say, an accuracy of 1% in the final answer,
the BDMC simulation of the residual diagrammatic se-
ries (contributing only 10% of the answer) can be done
with a relative accuracy of 10%. We note that other re-
summation techniques, as for instance developed for the
non-linear sigma model in the large N limit9, may also
be worthwhile.

The protocol of reformulating skeleton series to ac-
count for all local contributions to selfenergy is concep-
tually straightforward. The Dyson equation relates the
Green’s function, G, to the selfenergy, Σ (for clarity, we
suppress below the frequency variable):

G(p) =
1

G−10 (p)− Σ(p)
, (1)

with G0 standing for the non-perturbed Green’s function.
The local propagator Gloc is defined by integrating over
the Brillouin zone ‘BZ’

Gloc =

∫
BZ

G(p)
dp

(2π)d
. (2)

We now separate contributions to the selfenergy into two
parts

Σ(p) = Σloc + Σ′(p) , (3)

where Σloc is given by irreducible skeleton diagrams
which involve exclusively Gloc propagators. In other
words, this local propagator has only purely momentum
independent building blocks, while all the rest is put in
Σ′.

Numerically, one calculates the selfenergy using cur-
rent knowledge of the Green’s function and then uses it

to permanently improve the knowledge of G within the
selfconsistent process. This involves two steps. First, the
current knowledge of Gloc serves as an input for the cal-
culation of Σloc ≡ Σloc[Gloc] achieved by the impurity
solver, and G(p) is used for the BDMC simulation of the
remaining skeleton graphs. Second, selfenergies Σloc and
Σ′ are combined into the total selfenergy, Eq. (3), which
is then used to find the updated G by Eq. (1). This is
illustrated in Fig. 1.

Technically, the crucial advantage of separating local
contributions to the selfenergy is that the correspond-
ing momentum independent problem admits a variety of
techniques for solving it very efficiently10. Treating the
local physics non-perturbatively is very appealing from
the physical viewpoint. In typical problems such as the
Hubbard model, the diagrammatic technique expands
around the non-interacting limit which is dominated by
large hopping processes. The competing phase with large
on-site interactions tends on the contrary to localize the
particles. Hence, building diagrams on top of the solution
capturing essential physics of the competing phase may
be better suited for describing the difficult intermediate
regime as well. Local physics is also dominant at high
temperatures which can easily be understood in terms of
Feynman’s path integrals.

From Eqs. (1)-(2) it is explicitly seen that the
BDMC+DMFT process builds an exact solution of the
problem on top of the DMFT answer, which is crucial not
only for improving the quality of the final result but also
for obtaining reliable estimates of corrections to mean-
field results.

One of the solvers for obtaining Σloc in terms of Gloc

widely used in the standard DMFT approach is based
on an implicit formulation of the problem in terms of
the single-site (or impurity) effective action with a cer-
tain auxiliary (to be determined) ‘bare’ propagator g̃0.
The advantage of this formulation is in the flexibility of
designing efficient tools (impurity solvers)10 for evaluat-
ing Q[g̃0], where Q stands for the operator converting the
bare propagator into the corresponding Green’s function.
The process of obtaining Σloc[Gloc] amounts then to find-
ing g̃0 satisfying the equation

Q[g̃0] = Gloc (4)

(this can be done by appropriately iterating g̃0) and using
Σloc = g̃−10 − G−1loc. Solvers based on the effective action
approach play a crucial part when the diagrammatic ex-
pansion of Σloc[Gloc] cannot be used because of technical
or convergence problems.

We illustrate the introduced concepts for Anderson’s
model of particle localization on a disordered three-
dimensional cubic lattice. We consider delta-correlated
gaussian disorder in the chemical potential, for which the
standard diagrammatic technique can be formulated11.
The Hamiltonian, in standard lattice notation, reads

H = −J
∑
〈i,j〉

ĉ†i ĉj +
∑
i

εi n̂i . (5)
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The random on-site potential εi is distributed with the
gaussian probability density

P (ε) =
e−ε

2/2V 2

√
2πV 2

, (6)

with the dispersion V characterizing the strength of dis-
order. We choose J as an energy unit. We work in the
real-space and real-time representation where the Green
function is defined as G(r, t′−t) = −i 〈 T c(0, t) c†(r, t′) 〉,
and consider a lattice of size 12 × 12 × 12 for checking
against the exact diagonalization results, see Refs. 12 13.
Just like in conventional DMFT larger lattices pose no
problem at all; in fact, they would suppress revivals and
hence make the simulations faster. The (local) density
of states is given by the imaginary part of the Fourier
transform DOS(ω) = −π−1ImG(r = 0, ω).

Evaluating the sum of all skeleton diagrams involving
local propagators only (i.e., the DMFT part14) simpli-
fies for Anderson localization since disorder lines have no
time dependence. For a single-site problem, before aver-
aging over disorder, the Green’s function in the frequency
representation equals to 1/[1/g̃0(ω)− iε]. Averaging over
disorder amounts to performing a simple one-dimensional
integral:

Gloc(ω) =
g̃0(ω)√
2πV 2

∫
e−ε

2/2V 2

1− iεg̃0(ω)
dε . (7)

The local selfenergy then follows from Σloc(ω) =
g̃−10 (ω) − G−1loc(ω) which accounts for the implicit (para-
metric) complex-number relation Σloc[Gloc], i.e. the goal
is achieved by the semi-analytic exact solution. In prac-
tice this is done by a parametrization of the above inte-
gral equation through g̃0[Gloc] (inversion), and iterating
until selfconsistency is reached, which works fine because
the interaction lines carry no time dependence. In Fig. 2
we show for various disorder strengths the local selfenergy
obtained for Σ′ = 0 after convergence, i.e. the answer as
predicted by the conventional DMFT approach.

The full calculation involves Monte Carlo sampling of
all skeleton diagrams except those contributing to Σloc

(which would otherwise dominate in the final answer al-

ready for V =
√

2). In the real-space representation this
means that only skeleton graphs which contain at least
two vertices with different site indices are accounted for
in Σ′. The simulation itself was done using standard
BDMC rules with the selfconsistency loop implemented
exactly as described in the introductory part. It turns out
that the diagrammatic series for Anderson localization
constitutes the ‘worst case scenario’ in terms of conver-
gence properties. Although for any finite time t the series
are convergent (allowing us to use Dyson’s equation and
Eq. (7)), the required expansion order increases dramati-
cally with time t. Realistically, we were able to deal with
skeleton graphs up to order nmax ∼ 50 which was limiting
the accessible times in the simulation of Σ′. We observe
that the values of Σ′r−r′ ≡ Σ′n turn out to be extremely
small, about two orders of magnitude smaller than Σloc

even in the intermediate coupling regime V =
√

2, see
Fig. 3. Since the complexity, and hence the relative error-
bar, of the BDMC simulation turns out to be roughly
the same for simulating Σ or Σ′, we conclude that the
BDMC+DMFT scheme produces results which are two
orders of magnitude more accurate for the same simula-
tion time (or a speedup of ∼ 104 for the same error bar).
This constitutes the proof of principle for the proposed
scheme. Final results for the density of states are indis-
tinguishable from the exact diagonalization data. Our
protocol allowed for calculations for V 2 = 0.5 up to time
t = 8 and for V 2 = 4 up to time t = 3 with similar ef-
fort and accuracy as for our demonstration parameters
V 2 = 2 up to time t = 3.
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FIG. 2. (Color online) Local selfenergy calculated with local
propagators (Σ′ = 0) for disorder strengths V = 1/

√
2,
√

2, 4
on a lattice of size 12× 12× 12.

In conclusion, we have introduced an approach that
uses DMFT as an integral part of performing simula-
tions of skeleton graphs in strongly interacting systems.
It combines the power of solving impurity problems ef-
ficiently with an unbiased and exact diagrammatic for-
malism. The very close agreement between DMFT and
diagrammatic Monte Carlo with bare propagators, which
was explicitly demonstrated for the Hubbard model at
U/J = 4 3, ensures that the present formalism will bring
radical speed up and accuracy gains to studies of the
Hubbard model and allow them to be performed at larger
values of U and lower temperatures, for which new meth-
ods are still clearly needed: although several extensions
to DMFT have been proposed6,7,10,15, controlled accu-
racy can, e.g. in the state-of-the-art case of cluster-
DMFT for the 3d Hubbard model, only be guaranteed
for roughly U < 12t and temperatures of the order of
the Néel temperature16 with a maximum cluster size of
about 100 17.

We would also like to mention several generalizations of
the simplest scheme introduced above. To begin with, the
definition of momentum-independent propagator allows
to use an arbitrary function f(p) in the definition of Gloc

such thatGloc =
∫
BZ

G(p)f(p) dp/(2π)d. The rest of the
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FIG. 3. (Color online) Correction to local selfenergy for V =√
2 on a lattice of size 12× 12× 12: Σ′

|n|=0(t) (red line) and

Σ′
|n|=1(t) (blue line). The noise in the curve is indicative of

the error bars. The sign problem and the high expansion
orders put a limit on the accessible times.

scheme remains intact: as before, diagrams exclusively
containing Gloc propagators are all summed up in the
local selfenergy, while Σ′ contains at least one line which
is based on G(p) − Gloc. The freedom of choosing f(p)
different from a constant may be used to optimize the
subtraction of leading terms.

In the generic many-body skeleton diagram, any renor-
malized line whether it is the single-particle propaga-
tor G(p), the interaction line W (q), or the two-particle
propagator Γ, can be split into momentum-independent
and momentum-dependent parts (with the same free-
dom of defining the local part as described in the previ-
ous paragraph). Next, all diagrams based exclusively on
momentum-independent lines can be dealt with using im-
purity solvers with BDMC accounting for the remaining
graphs. Since the summation of certain geometric series
such as ladder or screening diagrams can be done analyt-
ically, one can go even beyond the purely local physics.

Our final remark is that nothing prevents one
from extending the idea of subtracting diagrams with
momentum-independent lines (and compensating them
separately by impurity solvers) to subtracting diagrams
with specific momentum-dependence and structure, (and
compensating them by impurity solvers dealing with
a few sites, similar to the ideas behind cluster-DMFT
schemes). The diagrams to be summed up by the impu-
rity solver are those with the connections of a compact
cluster of sites. Similar extensions for real-space clusters
are also possible.
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