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We study bond energy correlation functions in an exactly solvable quantum spin model of Kitaev type on the

kagome lattice with stable Fermi surface of partons proposed recently by Chua et al., Ref. [arXiv:1010.1035].

Even though any spin correlations are ultra-short ranged, we find that the bond energy correlations have power

law behavior with a 1/|r|3 envelope and oscillations at incommensurate wavevectors. We determine the corre-

sponding singular surfaces in momentum space, which provide a gauge-invariant characterization of this gapless

spin liquid.

I. INTRODUCTION

In the last two decades, there has been dramatic theoret-

ical progress in our understanding of RVB ideas1 and spin

liquids.2–4 We now know that there are many different kinds

of spin liquids. Gapped topological spin liquids5–13 are best

understood and have been shown to exist in model systems.

Gapless spin liquids are also possible2,10,12 and recently real-

ized in experiments14–23, but are understood to a lesser degree,

particularly when both the emergent parton and gauge field

excitations are gapless.2,24–32

From the early days, slave particle approaches2 have played

an important role in studying such phases. The discovery by

Kitaev13 of an exactly solvable, interacting two-dimensional

spin-1/2 model on the honeycomb lattice with a spin liq-

uid phase paved an exciting road for the study of spin liq-

uids. Since then, there have been many studies of Kitaev-type

models.33–52. In the last year, several of them realized gapless

spin liquid phases with parton Fermi surfaces40,44,46,50 (and

gapped Z2 gauge fields). In this work, we want to directly de-

tect the presence of a surface of low-energy excitations. Note

that the parton Fermi surface itself is gauge-dependent and is

not accessible via local observables. However, there is a geo-

metric surface information that is physical and can be detected

using gauge-invariant local energy observables. We take up a

very recent model by Chua et al.50 to illustrate this point.

Chua et al.50 proposed an exactly solvable spin-3/2 model

on the kagome lattice and found a regime with a gapless spin

liquid with a stable Fermi surface. Motivated by such a spin

liquid phase and known techniques to characterize situations

with gapless partons,2,25,30–32 we propose to study gauge-

invariant operators such as bond energy operators. Our main

results show that, unlike any spin correlations which are ul-

tra short-ranged, the bond energy correlations have power-law

behaviors with 1/|r|3 envelope in real space and also oscil-

lations at incommensurate wavevectors which form what we

call singular surfaces2,25,30 in the momentum space. An in-

teresting aspect of the Chua et al.50 model is that there is no

“nesting” in the Cooper channel for the low-energy fermions

because of the absence of inversion symmetry and the broken

time-reversal. This gives a non-trivial kFR +kFL critical sur-

face in addition to more familiar kFR − kFL (a.k.a. “2kF ”)

surface in the local energy correlations.

In connection to experiments, the physics discussed here

can be conceptually related to the recent gapless spin

liquids in the organic compounds κ-(ET)2Cu2(CN)3and

EtMe3Sb[Pd(dmit)2]2,19–22 where much thinking focused

around the possibility of gapless Fermi surface of spinons. Al-

though the Kitaev-type theoretical models are not directly ap-

propriate for these materials, some of the qualitative physics

discussed here applies more generally to gapless spin liquids

and has practical implications. Thus, such 2kF physics infor-

mation can also be revealed by measuring RKKY interaction

between magnetic impurities52,53 or by measuring textures in

local spin susceptibility (Knight shift experiments) or other lo-

cal properties near a non-magnetic impurity.45,54 We will dis-

cuss further possible connections in the conclusion section.

We also mention that entanglement properties of a ground

state wavefunction can be used for characterizing a phase

of matter, especially for gapless spin liquids, in addition to

gauge-invariant observables with power law correlations. For

instance, a recent paper55 measured entanglement entropy in

the Gutzwiller-projected Fermi sea wavefunction on the trian-

gular lattice and found logarithmic violation of the area law,

which strongly suggests the existence of gapless Fermi surface

in the resulting spin liquid state. Other recent works56 used

the entanglement entropy to estimate the central charge in

DMRG studies of spin-1/2 Hamiltonians with ring exchanges

on multi-leg ladders, and found that the central charge in-

creases with the number of legs as expected in such gapless

spin liquids.

The paper is organized as follows. In Sec. II we start

from the Chua et al. Hamiltonian50 on the kagome lattice.

In Sec. III we define bond energy correlation function. In

Sec. III A we provide a theoretical approach to describe the

long-distance behavior of the correlations. In Sec. III B we

present exact numerical calculations of the bond energy corre-

lations. We conclude with some speculations about similarity

with recent experiments in EtMe3Sb[Pd(dmit)2]2 in which a

gapless spin liquid has been realized.19–22

II. CHUA-YAO-FIETE KITAEV-TYPE HAMILTONIAN

We begin by formulating the Hamiltonian in the parton

language. The model is defined on the kagome lattice, see

Fig. 1. On each site i of the kagome lattice, there is a phys-

ical four-dimensional Hilbert space realized using six Majo-
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rana fermions ξ1
i , ξ2

i , ξ3
i , ξ4

i , ci, and di, with the constraint

Di ≡ −iξ1
i ξ2

i ξ3
i ξ4

i cidi = 1 (namely, for any physical state

|Φ〉phys, we require Di|Φ〉phys = |Φ〉phys). The Chua-Yao-

Fiete Kitaev-type Hamiltonian is

H = i
∑

〈ij〉
uij

[

Jijcicj + J ′
ijdidj

]

+ iJ5

∑

i

cidi (1)

−α
∑

7

W7 − β
∑

〈△,∇〉
W△W∇ , (2)

where 〈ij〉 represents nearest neighbor links and uij = −uji,

with uij ≡ −iξ1
i ξ2

j if 〈ij〉 ∈ △ and uij ≡ −iξ3
i ξ4

j if 〈ij〉 ∈ ∇
for bond directions chosen to go counter-clockwise around the

triangles. Placket operators Wp =
∏

〈ij〉∈p uij , with p =

△, ∇, 7, are gauge-invariant (i.e., act in the physical Hilbert

space) and are conserved by the Hamiltonian. The terms in

Eq. (2) with α > 0 and β > 0 are added to stabilize particular

ground states with W7 = 1, W△ = W∇ = ±1. Since in the

Kitaev-type model, [uij ,H] = [uij , ui′j′ ] = 0, we can treat

the Z2 gauge fields uij as static background and replace by

their eigenvalues ±1. We then have free Majorana fermions

c and d hopping on the lattice in the presence of “fluxes” φp

defined via e−iφp ≡∏〈ij〉∈p iuij .

Throughout, we work in the ground state with W7 = 1,

W△ = W∇ = 1 which breaks time reversal symmetry; this

translates to fluxes {φ7, φ△, φ∇} = {π, π/2, π/2} as shown

in Fig. 1. We fix the gauge by taking uij = 1 with bonds

i → j directed counter-clockwise around the triangles. There

are three physical sites per unit cell and six remaining Ma-

joranas per unit cell. We replace the labeling {ci, di} with

ΦM
I={r,a}, where r runs over the Bravais lattice of unit cells

of the kagome network and a runs over the six Majoranas in

each unit cell (three c Majoranas and three d Majoranas). The

Hamiltonian can be written in a concise form,

H =
∑

〈(r,a),(r′,a′)〉
ΨM

r,aAr,a; r′,a′ΨM
r′,a′ (3)

=
∑

〈IJ〉
ΨM

I AIJΨM
J . (4)

The Majorana field satisfies the usual anticommutation rela-

tion, {ΨM
r,a, Ψ

M
r′,a′} = 2δrr′δaa′ = 2δIJ . In the chosen

gauge, there is translational symmetry between different unit

cells; hence, Ar,a; r′,a′ = Aaa′(r − r′).
In order to give a concise long wavelength description, it

will be convenient to use familiar complex fermion fields. To

this end, we can proceed as follows. For a general Majo-

rana problem specified by matrix AIJ , we diagonalize AIJ

for spectra, but only half of the bands are needed while the

rest of the bands can be obtained by a specific relation and are

redundant. Explicitly, for a system with 2m bands, we can

divide them into two groups. The first group contains bands

from 1 to m with eigenvector-eigenenergy pairs {~vb,k, ǫb,k},

where b = 1, 2, . . . , m are band indices, and the second group

contains bands from m + 1 to 2m related to the first group,

{~vb′=m+b,k, ǫb′=m+b,k} = {~v∗b,−k,−ǫb,−k}.

In the present case, 2m = 6 and therefore three bands are

sufficient to give us a full solution of the Majorana problem.
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FIG. 1. Kagome lattice with three sites (labelled as 1, 2, and 3) per

unit cell. We consider Chua et al.50 model with the ground state flux

configuration as shown, {φ7, φ△, φ∇} = {π, π/2, π/2}. We fix

the gauge by taking iuij = i with bonds directed counter-clockwise

around the triangles. We also show the bond energy operator B12c

whose correlations are presented in this paper, while other bond en-

ergy operators have qualitatively similar correlations.

For an illustration of how all 2m = 6 bands vary with mo-

mentum k, we show the six bands in Fig. 2 along a cut with

ky = 0. We label the bands from top to bottom as 1 to 6,

and only bands 1 to 3 are used for the solution of the Majo-

rana problem. Specifically, we write the original Majoranas in

terms of usual complex fermions as

ΨM
I =

3
∑

b=1

∑

k∈B.Z.

√
2
[

Vb,k(I)fb(k) + V ∗
b,k(I)f †

b (k)
]

=

√

2

Nuc

3
∑

b=1

∑

k∈B.Z.

[

eik·rvb,k(a)fb(k) + H.c.
]

, (5)

where we used Vb,k(I ={r, a}) = 1√
Nuc

vb,k(a)eik·r , (Nuc is

the number of unit cells), and the complex fermion field f sat-

isfies the usual anti-commutaion relation, {f †
b (k), fb(k

′)} =
δbb′δkk′ . In terms of the complex fermion fields, the Hamilto-

nian becomes

H =

3
∑

b=1

∑

k∈B.Z.

ǫb,k

[

2f †
b (k)fb(k) − 1

]

. (6)

Considering the model parameters from Chua et al.50 real-

izing the spin liquid with stable Fermi sea, we find that among

these three bands, only ǫ3,k crosses the zero energy. Hence,

as far as the long-distance properties are concerned, we can

retain only band 3 and its Fermi surface is shown in Fig. 3.

III. BOND ENERGY CORRELATORS

In this paper, we focus on the bond energy correlation func-

tions. There are several distinct bond energy operators one

can consider. However, all of them have similar long-distance
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FIG. 2. Illustration of the energy spectra of the 2m = 6 bands

along a cut with ky = 0. Here we take the same parameters as

in Chua et al.,50 {J△, J∇, J ′

△, J ′

∇, J5} = {1.0, 0.3, 0.8, 0.5, 1.4}.

Solving the AIJ matrix in Eq. (4), there are 2m = 6 bands which we

label from top to bottom as 1 to 6. Only half of the bands – e.g., 1, 2,

and 3 – are used to solve the Majorana problem, as long as the others

– 4, 5, and 6 – can be obtained via the relation between eigenvector-

eigenenergy pairs such as {~v4,k , ǫ4,k} = {~v∗

3,−k ,−ǫ3,−k}.

-Π 0 Π 2 Π

-Π

0

Π

k x

k
y

FIG. 3. Illustration of the Fermi pocket for true complex fermion

f3 in Eqs. (5),(6). The parameters are the same as in Fig. 2 The

hexagon is the Brillouin zone boundary. Note that there is only one

Fermi pocket for this set of parameters and the three pockets shown

are related by a reciprocal lattice vector and are thus equivalent.

behavior, so we present correlations for the bond energy op-

erator corresponding to J△ term in the Hamiltonian between

sites 1 and 2 as indicated in Fig. 1 and defined as

B12c(r) ≡ iJ△uijcicj = iJ△cr,1cr,2 = iJ△ΨM
r,1Ψ

M
r,2,(7)

where from the first to second equation we specified to the

working gauge. We will study bond energy correlator defined

as

GB(r) ≡ 〈B12c(0)B12c(r)〉 − 〈B12c(0)〉〈B12c(r)〉 . (8)

Power-law correlations in real space correspond to singulari-

ties in momentum space, which we can study by considering

the structure factor

SB(q) =
∑

r

GB(r)e−iq·r . (9)

We will present exact numerical calculation of the bond en-

ergy correlations in Sec. III B using the definitions in Eqs. (7)-

(9). Before showing the numerical data, we present a long

wavelength analysis of such correlations due to the gapless

Fermi sea of partons.

A. Long wavelength analysis

Focusing on the long distance behavior and therefore re-

taining only the contribution from band-3, the bond operator,

Eq. (7), can be written approximately as

B12c(r) ≃
∑

k,k′∈B.Z.

{

[

Mkk′f3(k)f3(k
′)ei(k+k′)·r + H.c.

]

+
[

Nkk′f †
3 (k)f3(k

′)e−i(k−k′)·r + H.c.
]

}

,(10)

where Mkk′ = 2iJ△v3,k(1)v3,k′(2)/Nuc, Nkk′ =
2iJ△v∗3,k(1)v3,k′(2)/Nuc.

In order to determine long-distance behavior at separation

r, we focus on patches near the Fermi surface of band 3 where

the group velocity is parallel or antiparallel to the observation

direction n̂ = r/|r|, because at long distance |r| ≫ k−1
F , the

main contributions to the bond energy correlations come pre-

cisely from such patches. Specifically, we introduce Right(R)

and Left(L) Fermi patch fields and the corresponding energies

f
(n̂)
P (δk) = f3(k

(n̂)
FP + δk) , (11)

ǫ
(n̂)
P (δk) = |v(n̂)

FP |
(

Pδk‖ +
α

(n̂)
P

2
δk2

⊥

)

, (12)

where the superscript (n̂) refers to the observation direction

and P = R/L = +/−; v
(n̂)
FP is the corresponding group ve-

locity (parallel to n̂ for the Right patch and anti-parallel for

the Left patch); αP=R/L is the curvature of the Fermi surface

at the Right/Left patch; δk‖ and δk⊥ are respectively compo-

nents of δk parallel and perpendicular to n̂. It is convenient

to define slowly varying fields in real space

f
(n̂)
P (r) ∼

∑

δk∈Fermi Patch

f
(n̂)
P (δk)eiδk·r , (13)

which vary slowly on the scale of the lattice spacing [and from

now on we will drop the superscript (n̂)]. Therefore, in this
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long wavelength analysis, the relevant terms in the bond oper-

ator are

B12c(r) ∼
[

(NRR + N∗
RR) f †

R(r)fR(r) + (R → L)
]

(14)

+
[

(NLR + N∗
RL) f †

L(r)fR(r)ei(kF R−kF L)·r + H.c.
]

(15)

+
[

(MRL − MLR) fR(r)fL(r)ei(kF R+kF L)·r + H.c.
]

, (16)

where we dropped terms such as fR(r)fR(r) due to Pauli

exclusion principle. The above long wavelength expression

for the bond energy operator implies that the corresponding

correlation function defined in Eq. (8) contains contributions

with q = 0, ±(kFR − kFL), and ±(kFR + kFL).
More explicitly, for a patch specified by ǫP (δk) above,

Eqs. (11)-(12), we can derive the Green’s function for the con-

tinuum complex fermion fields as

〈f †
R/L(0)fR/L(r)〉 =

exp[∓i 3π
4 ]

23/2π3/2α
1/2
R/L|r|3/2

. (17)

Using this and the long-wavelength expression for bond en-

ergy operators, we can obtain the bond energy correlation,

Eq. (8),

GB(r) ∼ − (NRR + N∗
RR)2

αR|r|3
− (NLL + N∗

LL)2

αL|r|3
(18)

+
2|NRL + N∗

LR|2 sin[(kFR − kFL) · r]

α
1/2
R α

1/2
L |r|3

(19)

+
2|MRL − MLR|2 cos[(kFR + kFL) · r]

α
1/2
R α

1/2
L |r|3

. (20)

Therefore, the above low energy description can be used

to analyze the numerical data we obtain by exact calculations.

Here we also note that the model does not have inversion sym-

metry (and the time reversal is broken in the ground state),

so the location of the corresponding R-L patches which are

parallel or antiparallel to the observation direction can not be

determined easily and need to be found numerically.

B. Exact numerical calculation

We calculate the bond energy correlations, Eq. (8), for any

real-space separation r and confirm that they have power law

envelope 1/|r|3. For an illustration, we show the bond en-

ergy correlations for r along a specific direction, e.g. x̂-axis,

calculated on a 300 × 300 lattice. In Fig. 4, the log-log plot

of |GB(r)| along the x̂-axis clearly shows the 1/|r|3 enve-

lope. In addition, the irregular behavior of the data is due to

oscillating components. For certain directions, the oscillating

parts are sufficiently strong that GB(r) also changes signs.

The wavevectors of the real-space oscillations form some sin-

gular surfaces in the momentum space, which we will analyze

next.

Shifting our focus on the structure factor SB(q) defined in

Eq. (9), we calculate the bond energy correlation at each site

2 5 10 20 50 100
x

10-10

10-8

10-6

10-4

È< B 12 cH0L B 12 cHxL>È

FIG. 4. Illustration of power-law behavior of bond energy correlation

function Eq. (8). We calculate GB(r) with r taken along the x̂-

axis for a system containing 300 × 300 unit cells. The log-log plot

clearly shows 1/x3 envelope (straight line in the figure). Here we

show the absolute values |GB(r)| and indicate the sign with open

square boxes for negative correlations and filled circles for positive

correlations. The irregular behavior is due to oscillating parts; these

appear to be rather weak, but if we change the observation direction,

the oscillating parts can be stronger.

within a 100× 100 lattice and numerically take Fourier trans-

formation. Figure 5(a) gives a three-dimensional (3D) view of

the structure factor. We can clearly see cone-shaped singular-

ity at q = 0, which is expected from Eq. (18),

SB(q ∼ 0) ∼ |q| . (21)

A closer look at the structure factor also reveals singular

surfaces at kFR − kFL and kFR + kFL, as expected from

Eqs. (19) and (20). In order to see the location of the singu-

lar surfaces more clearly and compare it with our long wave-

length analysis, we show top view of SB(q) in Fig. 5(b). We

also numerically calculate Q± = kFR±kFL (by first finding

corresponding Right and Left Fermi points with anti-parallel

group velocities) and superpose these lines on the figure. We

can see that the lines we get from the long wavelength anal-

ysis match the singular features in the exact structure factor.

Note that the singularities are expected to be one-sided,

SB(Q− + δq) ∼ |δq‖|3/2Θ(−δq‖) , (22)

SB(Q+ + δq) ∼ |δq‖|3/2Θ
[

−δq‖ sign(αR − αL)
]

. (23)

The first line is singular from the inner side of the “ring” in

Fig. 5(b) and the second line from the inner side of the “trian-

gles”.

IV. CONCLUSION

We studied bond energy correlation functions in the

Chua et al.50 Kitaev-type model with a parton Fermi surface.

Unlike spin correlations, we found that the local energy cor-

relations have power-law behavior in real space with an enve-

lope of 1/|r|3 and oscillations at incommensurate wavevec-

tors that form singular surfaces in momentum space. By
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(a)Three-dimensional view of the structure factor

(b)Top view of the structure factor

FIG. 5. (a) 3D view of the structure factor of the bond energy corre-

lation, SB(q), defined in Eq. (9). We can clearly see the singularity

SB(q) ∼ |q| at q = 0 and we also see weak singular lines, one

forming a closed ring, and additional lines near the corners of the

Brollouin zone. (b) These singular lines are brought out more clearly

when the structure factor is viewed from top. We also superposed

the locations of the singularities calculated using the Fermi surface

information: The inner red ring specifies the line at kF R − kF L and

the outer blue triangles specify kF R + kF L lines.

combining low-energy theoretical analysis and exact numer-

ical calculations, we determined the locations of the singular

surfaces. These bond energy correlations provide a gauge-

invariant characterization of such gapless spin liquid.

We conclude by speculating about some interesting simi-

larity with recent experiments in EtMe3Sb[Pd(dmit)2]2.20–22

While the thermal conductivity measurements22 are consis-

tent with the presence of a Fermi surface of fermionic exci-

tations down to the lowest temperatures, very recent NMR

experiments21 show a drastic reduction in spin relaxation be-

low temperature of the order 1 K, almost as if a spin gap is

opened. This reminds of the present situation where the spin

operators have short-range correlations, which occurs because

some of the constituent partons have a gap (here are ultra-

localized), while there remain partons that are metallic and

give rise to metal-like thermodynamics and manifestly gapless

properties such as the discussed local energy correlations. Of

course, the present model is on a different lattice and is very

differently motivated. However, in a recent paper57 working in

a setting closer to the EtMe3Sb[Pd(dmit)2]2 experiments, we

discussed the following scenario in magnetic Zeeman field:

Upon writing the spin operator as S+ = f †
↑f↓, we considered

a state where one spinon species (say, f↑) becomes gapped

due to pairing, while the other species retains the Fermi sur-

face. In this case, S+ spin correlations are short-range while

the thermodynamics is metal-like. Furthermore, just as in the

present paper, there are other properties that are manifestly

gapless, e.g., Sz spin correlations and transverse spin-2 cor-

relations. It would be interesting to explore such scenarios in

more realistic settings further.
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