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An analytical expression is obtained for the biexciton binding energy as a function of the inter-
exciton distance and binding energy of constituent quasi-one-dimensional excitons in carbon nano-
tubes. This allows one to trace biexciton energy variation and relevant non-linear absorption under
external conditions whereby the exciton binding energy varies. The non-linear absorption lineshapes
calculated exhibit characteristic asymmetric (Rabi) splitting as the exciton energy is tuned to the
nearest interband plasmon resonance. These results are useful for tunable optoelectronic device
applications of optically excited semiconducting carbon nanotubes, including the strong excitation
regime with optical non-linearities.
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Single-walled carbon nanotubes (CNs) — graphene
sheets rolled-up into cylinders of ∼1−10 nm in diameter
and ∼1µm up to ∼1 cm in length1,2 — are shown to be
very useful as miniaturized electromechanical and chemi-
cal devices3, scanning probe devices4, and nanomaterials
for macroscopic composites5. The area of their poten-
tial applications was recently expanded to nanophoton-
ics6,7 after the demonstration of controllable single-atom
incapsulation into single-walled CNs8, and even to quan-
tum cryptography since the experimental evidence was
reported for quantum correlations in the photolumines-
cence spectra of individual nanotubes9.

The true potential of CN-based optoelectronic device
applications lies in the ability to tune their properties in a
precisely controllable way. In particular, optical proper-
ties of semiconducting CNs originate from excitons, and
may be tuned by either electrostatic doping10, or via the
quantum confined Stark effect (QCSE) by means of an
electrostatic field applied perpendicular to the CN axis11.
In both cases the exciton properties are mediated by col-
lective plasmon excitations in CNs12. In the case of the
perpendicularly applied electrostatic field, in particular,
we have shown recently11 that the QCSE allows one to
control the exciton-interband-plasmon coupling in indi-
vidual undoped CNs and their (linear) optical absorption
properties, accordingly.

Here, I extend our studies to the strong (non-linear)
excitation regime whereby photogenerated biexcitonic
states may be formed in CNs (observed recently in single-
walled CNs by the femtosecond transient absorption
spectroscopy technique13). An analytical (universal) ex-
pression is obtained for the biexciton binding energy as
a function of the inter-exciton distance and the binding
energy of constituent excitons. The formula is consis-
tent with the numerical results reported earlier14,15, and
is advantageous in that it allows one to trace biexciton
energy variation and relevant non-linear absorption, ac-
cordingly, as the exciton energy is tuned to the nearest
interband plasmon resonance by means of the QCSE. The
non-linear absorption lineshapes are calculated close to
the first interband plasmon resonance for the semicon-
ducting (11,0) CN (chosen as an example) under resonant

pumping conditions16. They exhibit the characteristic
asymmetric splitting behavior similar to that reported
for the linear absorption regime11. This effect could help
identify the presence and study the properties of biexci-
tons in individual single-walled CNs, which is not an easy
task under non-linear excitation because of the strong
competing exciton-exciton annihilation process17–19.

The binding energy of the biexciton in a small-diameter
(∼1 nm) CN can be evaluated by the method pioneered
by Landau20, Gor’kov and Pitaevski21, Holstein and Her-
ring22 — from the analysis of the asymptotic exchange
coupling by perturbation on the configuration space wave
function of the two ground-state one-dimensional (1D)
excitons. Using the cylindrical coordinate system with
the z -axis along the CN axis and separating out cir-
cumferential and longitudinal degrees of freedom of each
of the excitons by transforming their longitudinal mo-
tion into their respective center-of-mass coordinates11,23,
one arrives at the biexciton Hamiltonian of the form [see
Fig. 1 (a)]
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Here, z1,2 = ze1,2 − zh1,2 are the relative electron-hole
motion coordinates of two 1D excitons separated by the
center-of-mass-to-center-of-mass distance ∆Z=Z2 − Z1,
z0 is the cut-off parameter of the effective (cusp-type)
longitudinal electron-hole Coulomb potential. Equal elec-
tron and hole effective masses me,h are assumed24 and
”atomic units” are used20–22, whereby distance and en-
ergy are measured in units of the exciton Bohr radius
and Rydberg energy, a∗B and Ry∗ = h̄2/(2µa∗2B ), respec-
tively, µ (≈me/2) is the exciton reduced mass. First two
lines in Eq. (1) represent two non-interacting 1D excitons
with their individual potentials symmetrized to account
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FIG. 1: (Color online) (a) Schematic of the exchange coupling
of two ground-state 1D excitons to form a biexcitonic state
(arb. units). Two collinear axes, z1 and z2, represent indepen-
dent relative electron-hole motions in the 1st and 2nd exciton,
have their origins shifted by ∆Z, the inter-exciton center-of-
mass separation. (b) The coupling occurs in the configuration
space of the two independent longitudinal relative electron-
hole motion coordinates, z1 and z2, of each of the excitons,
due to the tunneling of the system through the potential bar-
riers formed by the two single-exciton cusp-type potentials
[bottom, also in (a)], between equivalent states represented
by the isolated two-exciton wave functions shown on the top.

for the presence of the neighbor a distance ∆Z away,
as seen from the z1- and z2-coordinate systems treated
independently [Fig. 1 (a)]. Last two lines are the inter-
exciton exchange Coulomb interactions — electron-hole
and hole-hole + electron-electron, respectively25. Biexci-
ton binding energy is EXX = Eg − 2EX , where Eg is the
lowest eigenvalue of Eq. (1), EX = −Ry∗/ν2

0 is the single
exciton binding energy with ν0 being the lowest-bound-
state quantum number of the 1D exciton23. Negative
EXX indicates that the biexciton is stable with respect
to dissociation into two isolated excitons.

The Hamiltonian (1) is effectively two dimensional in
the configuration space of the two independent relative
motion coordinates, z1 and z2. Figure 1 (b), bottom,
shows schematically the potential energy surface of the
two closely spaced non-interacting 1D excitons [second
line of Eq. (1)] in the (z1, z2) space. The surface has four
symmetrical minima [representing isolated two-exciton
states shown in Fig. 1 (b), top], separated by the poten-
tial barriers responsible for the tunnel exchange coupling

between the two-exciton states in the configuration space.
The coordinate transformation x = (z1 − z2 − ∆Z)/

√
2,

y = (z1 + z2)/
√

2 places the origin of the new co-
ordinate system into the intersection of the two tun-
nel channels between the respective potential minima
[Fig. 1 (b)], whereby the exchange splitting formula of
Refs.20–22 takes the form

Eg,u(∆Z) − 2EX = ∓J(∆Z), (2)

where Eg,u are the ground-state and excited-state ener-
gies [eigenvalues of Eq. (1)] of the two coupled excitons as
functions of their center-of-mass-to-center-of-mass sepa-
ration, and
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is the tunnel exchange coupling integral, where ψ(x, y) is
the solution to the Schrödinger equation with the Hamil-
tonian (1) transformed to the (x, y) coordinates. The fac-
tor 2/3! comes from the fact that there are two equivalent
tunnel channels in the problem, mixing three equivalent
indistinguishable two-exciton states in the configuration
space [one state is given by the two minima on the x-axis,
and two more are represented by each of the minima on
the y-axis — compare Fig. 1 (a) and (b)].

The function ψ(x, y) in Eq. (3) is sought in the form

ψ(x, y) = ψ0(x, y) exp[−S(x, y)] , (4)

where ψ0 = ν−1
0 exp[−(|z1(x, y,∆Z)|+|z2(x, y,∆Z)|)/ν0]

is the product of two single-exciton wave functions26 rep-
resenting the isolated two-exciton state centered at the
minimum z1 = z2 = 0 (or x = −∆Z/

√
2, y = 0) of the

configuration space potential [Fig. 1 (b)], and S(x, y) is
a slowly varying function to take into account the devia-
tion of ψ from ψ0 due to the tunnel exchange coupling to
another equivalent isolated two-exciton state centered at
z1 = ∆Z, z2 =−∆Z (or x=∆Z/

√
2, y=0). Substituting

Eq. (4) into the Schrödinger equation with the Hamilto-
nian (1) pre-transformed to the (x, y) coordinates, one
obtains in the region of interest (z0 dropped26)
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up to negligible terms of the order of the inter-exciton van
der Waals energy and up to second derivatives of S. This
equation is to be solved with the boundary condition
S(−∆Z/

√
2, y)=0 originating from the natural require-
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After plugging Eqs. (5) and (4) into Eq. (3), and retain-
ing only the leading term of the integral series expansion
in powers of ν0 subject to ∆Z > 1, one obtains

J(∆Z) =
2

3ν3
0

(e

3

)2ν0

∆Z e−2∆Z/ν0 . (6)

The ground state energy Eg of two coupled 1D excitons
in Eq. (2) is now seen to go through the negative mini-
mum (biexcitonic state) as ∆Z increases. The minimum
occurs at ∆Z0 = ν0/2, whereby the biexciton binding
energy is EXX =−J(∆Z0)=−(1/9ν2

0)(e/3)2ν0−1. In ab-
solute units, expressing ν0 in terms of EX , one has

EXX = −1

9
|EX |

(e

3

)2
√

Ry∗/|EX | − 1

. (7)

The energy EXX can be affected by the QCSE as |EX |
decreases quadratically with the perpendicular electro-
static field applied11. The field dependence in Eq. (7)
mainly comes from the pre-exponential factor. So, |EXX |
will be decreasing quadratically with the field, as well, for
not too strong perpendicular fields. At the same time,
the equilibrium inter-exciton separation in the biexci-
ton, ∆Z0 = ν0/2 = 1/(2

√

|EX | ) (atomic units), will be
slowly increasing with the field, consistently with the low-
ering of |EXX |. In the zero field, assuming |EX | ∼ r−0.6

(r is the dimensionless CN radius) as reported earlier
from variational calculations27, one has |EXX | ∼ r−0.6 as
well, which is weaker than the r−1 dependence of Ref.14,
but agrees qualitatively with the recent advanced Monte-
Carlo simulations15. Interestingly, as r goes down, the
ratio |EXX/EX | in Eq. (7) slowly grows up approaching
the 1D limit 1/3e ≈ 0.12. This tendency can also be
traced in the Monte-Carlo data of Ref.15. Finally, ∆Z0

goes down with decreasing r, thus explaining experimen-
tal evidence for enhanced exciton-exciton annihilation in
small diameter CNs17–19.

Figure 2 shows the difference Eg(∆Z)−2EX =−J(∆Z)
calculated from Eqs. (2) and (6) for a specific example of
the coupled pair of the first bright excitons in the semi-
conducting (11,0) CN exposed to different perpendicular
electrostatic fields. The inset shows the field dependences
of EXX [as given by Eq. (7)] and of ∆Z0. All the curves
are calculated using Ry∗= 4.02 eV, |EX | = 0.76 eV, and
the field dependence of EX reported earlier in Ref.11.
They exhibit typical behaviors discussed above.

Now consider the exciton absorption lineshape under
controlled (e.g., by the QCSE) variable exciton-interband
-plasmon coupling11. In the linear (longitudinal) excita-
tion regime, one has for the exciton with the energy ε
close to a plasmon resonance the lineshape of the form

I(x) =
I0(ε) [(x− ε)2 + ∆x2

p]

[(x− ε)2 −X2/4]2 + (x − ε)2(∆x2
p + ∆ε2)

, (8)

where I0 =Γ(ε)/2π, Γ is the spontaneous decay rate into
plasmons, X =

√

4π∆xp I0, ∆xp is the half-width-at-
half-maximum of the plasmon resonance with the en-

FIG. 2: (Color online) Difference Eg(∆Z)− 2EX for the cou-
pled pair of the first bright excitons in the (11,0) CN as a
function of the center-of-mass-to-center-of-mass inter-exciton
separation ∆Z and perpendicular electrostatic field applied.
Inset: biexciton binding energy EXX and equilibrium inter-
exciton separation ∆Z0 (y- and x-coordinates, respectively,
of the minima in the main figure) as functions of the field.

ergy xp , and ∆ε is an additional exciton energy broad-
ening (normally attributed to the exciton-phonon scat-
tering with the relaxation time τph). All quantities in
Eq. (8) are dimensionless, i.e. normalized to 2γ0, where
γ0 =2.7 eV is the C-C overlap integral, and the condition
ε∼xp is assumed to hold.

The non-linear optical susceptibility is proportional
to the linear optical response function under resonant
pumping conditions16. This allows one to use Eq. (8)
to study the non-linear excitation regime with the pho-
toinduced biexciton formation as the exciton energy is
tuned to the nearest interband plasmon resonance. The
third-order longitudinal CN susceptibility is then of the
form14,16

χ(3)(x) = χ0 I(x)

[

1

x− ε+ i(Γ/2 + ∆ε)
(9)

− 1

x− (ε− |εXX |) + i(Γ/2 + ∆ε)

]

,

where εXX = EXX/2γ0 is the dimensionless binding en-
ergy of the biexciton composed of two (ground-internal-
state) excitons, and χ0 is the frequency-independent con-
stant. The first and second terms in the brackets repre-
sent bleaching due to the depopulation of the ground
state and photoinduced absorption due to exciton-to-
biexciton transitions, respectively.

Figure 3 compares the linear response lineshape (8)
with the imaginary part of Eq. (9) representing the non-
linear optical response function under resonant pump-
ing, both calculated for the first bright (ground-internal-
state) exciton in the (11,0) CN, as its energy is tuned to
the nearest interband plasmon resonance (vertical dashed
line in Fig. 3)11. In this calculation, EXX was taken to
be −0.059 eV as given by Eq. (7) in the zero field29.
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FIG. 3: (Color online) [(a), (b), and (c)] Linear (top) and non-
linear (bottom) response functions as given by Eq. (8) and by
the imaginary part of Eq. (9), respectively, for the first bright
exciton in the (11,0) CN as the exciton energy is tuned to the
nearest interband plasmon resonance (vertical dashed line).
Vertical lines marked as X and XX show the exciton energy
and biexciton binding energy, respectively. Dimensionless en-
ergy is defined as [Energy]/2γ0, where γ0 = 2.7 eV is the C-C
overlap integral.

(Weak field dependence of EXX does not play an essen-
tial role here as |EXX | ≪ |EX | = 0.76 eV regardless of the
field strength.) The phonon relaxation time τph = 30 fs
was used as reported in Ref.28, since this is the shortest
one out of possible exciton relaxation processes, including
exciton-exciton annihilation (τee∼1 ps17). Rabi splitting
∼0.1 eV is seen both in the linear and in non-linear exci-
tation regime, indicating the strong exciton-plasmon cou-
pling both in the single-exciton and in biexciton states,
almost unaffected by the phonon relaxation.

This effect can be used in tunable optoelectronic de-
vice applications of small-diameter semiconducting CNs
in areas such as nanophotonics, nanoplasmonics, and cav-
ity quantum electrodynamics, including the strong exci-
tation regime with optical non-linearities. In the latter
case, the experimental observation of the non-linear ab-
sorption line splitting predicted here would help iden-
tify the presence and study the properties of biexcitonic
states (including biexcitons formed by excitons of differ-
ent subbands13) in individual single-walled CNs, due to
the fact that when tuned close to a plasmon resonance
the exciton relaxes into plasmons at a rate much greater
than τ−1

ph (≫τ−1
ee ), totally ruling out the role of the com-

peting exciton-exciton annihilation process.
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