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A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to
the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the
coherence length ξ and of width w much narrower than the Pearl length Λ ≫ w ≫ ξ. At high bias
currents, I∗ < I < Ic, the heat released by the crossing of a single vortex suffices to create a belt-like
normal-state region across the strip, resulting in a detectable voltage pulse. Here Ic is the critical
current at which the energy barrier vanishes for a single vortex crossing. The belt forms along the
vortex path and causes a transition of the entire strip into the normal state. We estimate I∗ to be
roughly Ic/3. Further, we argue that such “hot” vortex crossings are the origin of dark counts in
photon detectors, which operate in the regime of metastable superconductivity at currents between
I∗ and Ic. We estimate the rate of vortex crossings and compare it with recent experimental data
for dark counts. For currents below I∗, i.e., in the stable superconducting but resistive regime, we
estimate the amplitude and duration of voltage pulses induced by a single vortex crossing.

PACS numbers:

I. INTRODUCTION

Dissipation in superconducting wires thinner than the coherence length ξ have been thoroughly studied both
theoretically1,2 and experimentally.3 In these one-dimensional (1D) superconductors the dissipation arises due to 2π-
phase slips occurring in segments of length ξ of a wire that becomes temporarily normal. Langer and Ambegaokar1

treated the problem of dissipation in 1D wires with ring geometry within the theory of nucleation rates of current-
reducing fluctuations in a superconductor. The transition between states with different currents in a ring occurs via
the nonstationary state described by the saddle point solution of the Ginzburg-Landau (GL) functional. Langer and
Ambegaokar1 found such a solution and the corresponding free energy difference or barrier, U , between the original
metastable state with current and the saddle point state (see also Ref. 4). Later McCumber and Halperin derived the
attempt frequency Ω in the phase-slip rate, R = Ω exp(−U/T ), using time-dependent GL theory.2

The problem of dissipation in superconducting thin-film strips with the thickness d much smaller than the Lon-
don penetration depth λ, and of width w much smaller than the Pearl length, Λ = 2λ2/d ≫ w, has been exten-
sively discussed in the context of a possible Berezinsky-Kosterlitz-Thouless (BKT) transition in superconducting
films.5–7 The interest in current-carrying thin-film strips has been revived recently in search for quantum tunneling
of vortices,8–11 their dynamic behavior,12 and the observation of so-called “dark counts” in superconductor-based
photon detectors.13,14 The detector consists of a long and thin superconducting strip carrying currents slightly below
the critical value. Typically, in NbN photon detectors w is of the order of 100 nm or more and d ≈ 4 − 6 nm, while
the zero-temperature coherence length ξ(0) ≈ 4 nm. The low-temperature London penetration depth λ ≈ 350 nm so
that the Pearl length15 Λ ≈ 40 µm ≫ w.

When a photon interacts with the strip it induces a hot spot in the film that drives a belt-like region across the strip
in the normal state. Consequently, a voltage pulse caused by the current redistribution between the superconducting
strip and a parallel shunt resistor is detected. After the normal belt of the strip cools down, the strip returns to
superconducting state. Thus, single photons can be detected and counted by measuring voltage pulses. However,
similar pulses are recorded even without photons (dark counts). These voltage pulses have peak amplitudes similar to
photon-induced pulses.16 Therefore, one can conclude that dark counts are also caused by nucleation of normal belts
across the strip. In both cases and in the absence of a shunt, the entire strip undergoes transition into the normal
state due to heat released by the bias current in the normal belt region.

In fact, the observation of dark counts means that the superconducting strip, at bias currents slightly below the
critical current, is in a metastable state. Photons or fluctuations trigger the transition from this state to the normal
state. Thus, the central question is what kind of fluctuations trigger the transition in the case of dark counts. The
origin of dark counts is still debated (see Refs. 13,14). The problem of dark counts is related to the basic question
of dissipation in thin films and wires and is of technological relevance because fluctuations resulting in the formation
of normal belt across the strip limit the ability of superconducting circuits to carry supercurrents, in general, and
the accuracy of photon detectors, in particular. In the literature, dark counts are treated either within the formal
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framework of 1D phase slips in thin wires or within the picture of vortex-antivortex unbinding near the BKT transition
(see Refs. 13,14). Vortices crossing the strip were employed to explain dc current-voltage characteristics of thin-film
strips.11,17

In this paper we discuss three types of possible fluctuations in superconducting strips which result in dissipation.
Each one causes transition to the normal state from the metastable superconducting state when currents are close to
the critical value Ic:
(a) Spontaneous nucleation of a normal-state belt across the strip with 2π-phase slip as in thin wires.
(b) Spontaneous nucleation of a single vortex near the edge of the strip and its motion across to the opposite edge
accompanied by a voltage pulse.
(c) Spontaneous nucleation of vortex-antivortex pairs and their unbinding as they move across the strip to opposite
edges due to the Lorentz force, as well as the opposite process of nucleation of vortices and antivortices at the opposite
edges and their annihilation in the strip middle.

The energy barrier for the nucleation of a temporary normal phase-slip belt is too high to be of importance because
the belt volume & dξw is large. We will show that such a barrier remains large at any current in the superconducting
state. Consequently, belt-like 2π-phase slips appear with extremely low probability. On the other hand, as proposed
in Refs. 11,17, thermally induced vortex crossings in current-carrying strips result in 2π-phase changes along the
strip just as in the 1D scenario and hence cause dissipation. For the case of quantum tunneling this mechanism of
dissipation was discussed in Refs. 8–11. The free energy barrier for vortex crossing is much lower than for belt-like
2π-phase slips, since the vortex core volume is dξ2 ≪ dξw. The energy cost of creating a vortex and moving it over
the barrier is w/ξ times smaller than for creating a belt-like phase slip. An important point is that such a barrier for
vortex crossing vanishes as the current approaches Ic, whereas the barrier for the belt-like phase slip remains nonzero
at any current. As to the vortex-antivortex process of the point (c), we show in the following that the corresponding
barrier is twice as high as for the single vortex process.

We evaluate the amplitude of a voltage pulse and its duration assuming that the belt-like area around the vortex
path remains superconducting. We call this process a “cold” pulse. This is not always the case, because vortex motion
excites quasiparticles along the vortex path and their energies depending on the bias current may suffice for creation
of a normal-state belt across the strip. This will result in redistribution of current from the superconducting strip to
the shunt with the accompanied voltage pulse much bigger than for “cold” pulses. Such a “hot” pulse will be similar
to the one induced by photons. In the following we will estimate at what minimum bias current I∗ a single vortex
crossing can trigger a “hot” voltage pulse and a corresponding dark count.

Thus, we argue that dissipation and corresponding voltage pulses in strips are caused predominantly by vortex
crossings. At high bias currents such crossings release energy sufficient for the formation of a normal belt along the
vortex trajectory, see Fig. 1(a). Such a belt triggers the transition of the whole strip into the normal state in the
absence of a shunt resistor, as well as the redistribution of the bias current into the shunt in the case of photon
detectors. Note that a similar process happens when a photon creates a normal “hot” spot on the strip. When this
spot is sufficiently large, it destroys the superconducting path for the transport current and the current redistribution
leads to a voltage pulse, the photon count. If the hot spot does not disrupt completely the superconducting path,
it will nevertheless lead to a decrease of the energy barrier for subsequent vortex crossings. At high bias currents, a
“hot” vortex crossing can happen directly, see Fig. 1(a), or through a hot spot area created by photon and forming a
normal belt, which will result in signal detection, see Fig. 1(b).

The layout of this paper is as follows: In Sec. II we discuss three energy barrier scenarios for vortex crossings.
In Sec. III we derive dc current-voltage characteristics and evaluate the magnitude of induced voltage pulses. The
concept of “cold” and “hot” vortex crossings is introduced in Sec. IV. In Sec. V we compare our results with data for
dark count rates in NbN films.18 We summarize our results in Sec. VI.

II. ENERGY BARRIERS AND VORTEX CROSSINGS

In this section we derive energy barriers for three dissipative processes mentioned within the GL theory. Consider
a thin-film strip of width w ≪ Λ and of length L ≫ w. We choose the coordinates so that 0 ≤ x ≤ w and
−L/2 ≤ y ≤ L/2. Since we are interested in bias currents which may approach depairing values, the suppression of
the superconducting order parameter must be taken into account. We use the standard GL functional with respect
to the order parameter Ψ(r) (normalized to its zero-field value in the absence of current) and the vector potential A:

F [Ψ(r), A] =
H2

c d

4π

∫
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FIG. 1: (Color online) Sketch of a segment of the strip in the presence of a bias current I . Panel (a): a single vortex (blue
circle) causes a “hot” crossing (pink belt). The width of the belt ℓ is of the order of superconducting coherence length. Panel
(b): a single photon creates a hotspot (red disc) and induces a subsequent “hot” vortex crossing (pink belt). Both processes
result in detectable voltage pulses in a superconducting nanowire single photon detector (SNSPD).

Here Φ0 is the flux quantum, r = (x, y) is a point on the film, ∇ is the 2D gradient, and Hc = Φ0/2
√

2πλξ is
the thermodynamic critical field. The order parameter in the presence of a uniform bias current I in zero applied
magnetic fields and with no vortices present, can be found by minimizing the GL functional and disregarding the
current self-field, as is done, e.g., in Ref. 2. As discussed in the next section, this is an accurate approximation for
w ≪ Λ. Thus we obtain the solution:

Ψκ(r) = (1 − κ2)1/2e−iκy/ξ+iϕ0 , (2)

I =
2w

πξ
I0κ(1 − κ2), I0 =

cΦ0

8πΛ
, (3)

where ϕ0 is an arbitrary constant phase. The parameter κ is proportional to the phase gradient and describes the
order parameter suppression due to bias current. As a function of κ the bias current in the superconducting state is
limited to the depairing current Imax = I0(4/3π

√
3)(w/ξ), corresponding to κmax = 1/

√
3, as for the case of the 1D

wire.

A. Phase slip in the normal belt

When dealing with the situation of fixed uniform current I instead of vector potential A it is more suitable to work
with the Gibbs free energy functional rather than the free energy functional, Eq. (1). We perform the usual Legendre
transform (see Ref. 3) to obtain the corresponding free energy density:

fI{Ψ} =
H2

c

4π

[

−|Ψ|2 +
1

2
|Ψ|4 +

(

Iπξ

2wI0

)2

|Ψ|−2

]

. (4)

The equilibrium Gibbs free energy density for a given current is obtained by minimization with respect to Ψ. It jumps
at the maximum current Imax from fI(Imax) = −(2/9)(H2

c /8π) to zero at Imax as expected for a first order transition.
Hence, the free energy barrier U for creation of a belt-like normal-state area with volume V = ℓwd (ℓ is the width of
the belt along the y-axis) decreases from (H2

c /8π)V to (2/9)(H2
c /8π)V as the bias current increases from 0 to Imax.

The barrier never vanishes in this interval (“overheating” with respect to bias current is absent). Note that for w ≫ ξ
and ℓ & ξ the barrier remains very high in comparison with the temperature at all bias currents I < Ic resulting in
low probability for phase slips, except for temperatures close to Tc, where the barrier vanishes as (1 − T/Tc)

2.

B. Single vortex crossing

A vortex crossing from one strip edge to the opposite one induces a phase slip without creating a normal region across
the strip width. We will treat the vortex as a particle moving in the energy potential formed by the superconducting
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currents around vortex center inside the strip and by the Lorentz force induced by the bias current. We will derive the
energy potential and find the vortex crossings rate (phase slips and corresponding voltage pulses) in the framework
of Langevin equation for viscous vortex motion and invoke the known solution of the corresponding Fokker-Planck
equation.

In the presence of a vortex, the order parameter in the current-carrying strip, disregarding its suppression in the
vortex core, reads:

Ψ(r, rv) = µ exp{i[ϕ(r, rv) − κy/ξ + ϕ0]}, (5)

µ2 = 1 − κ2. (6)

In this approximation, the vortex affects mainly the phase ϕ(r, rv) of the order parameter. To describe voltage pulses
we need to know how the phase changes when the vortex moves across the strip. For simplicity we consider a vortex
at (xv, yv) = 0. As we ignore the change of the order parameter amplitude in the vortex core, the current distribution
is governed by the London equation (integrated over the film thickness):

hz + 2π(Λ/c) curlzg = Φ0 δ(r − rv), (7)

where g is the sheet current density.
For narrow strips, w ≪ Λ, the field is approximately hz ∼ g/c, whereas the term with derivatives is of the order

Λg/cw. Hence, in this limit, supercurrents can be found by neglecting hz and the corresponding vector potential of
the order w/Λ.19,20 Introducing the scalar stream function G(r) such that

g = curl(G ẑ) (8)

we reduce the problem to solving the Poisson equation:

∇2G = −(cΦ0/2πΛ)δ(r − rv) . (9)

Since the boundary condition at the strip edges requires vanishing normal components of the current, we have
G = 0 at x = 0, w. Therefore, the problem is equivalent to one in 2D electrostatics: a linear charge at rv between
two parallel grounded plates at x = 0, w with the known solution:21

G(r) =
I0µ

2

π
ln

coshY − cos(X + Xv)

coshY − cos(X − Xv)
,

where capitals stand for coordinates in units of w/π, i.e., x = X w/π, y = Y w/π.
The energy of a vortex at x = xv and y = 0 is:

ǫv =
Φ0

2c
G(xv , 0), (10)

with the standard cutoff ξ at the vortex core.19 In the presence of a uniform bias current the energy barrier reads:

U(Xv) = µ2ǫ0

[

ln

(

2w

πξ
sinXv

)

− I

µ2I0
Xv

]

, (11)

ǫ0 =
Φ2

0

8π2Λ
=

H2
c

8π
(4πξ2), (12)

where ǫ0 is the characteristic energy of a vortex in thin films. The vortex energy U(Xv) is maximum at Xs =
tan−1(µ2I0/I) and the energy barrier is given by

U
µ2ǫ0

= −1

2
ln

[

π2ξ2

4w2

(

1 +
I2

µ4I2
0

)]

− I

µ2I0
tan−1 µ2I0

I
. (13)

This barrier decreases with increasing current and turns zero at a critical value on the order of the depairing GL
current:

Ic =
2µ2

cwI0

πeξ
=

cΦ0µ
2
c

8π2eλ2ξ
wd, (14)

here e = 2.718. One can see that the critical current Ic is slightly smaller than Imax discussed above.
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Since the vortex mass is negligibly small, we use the equation of purely diffusive motion (only includes first order
time derivative) for describing the vortex propagation between x = 0 and x = w:

γ
dXv

dt
= −dU(Xv)

dXv
+ F (t), (15)

where γ = w2η/π2 and

η =
Φ2

0

2πξ2c2R�

, (16)

is the Bardeen-Stephen drag coefficient for film with R� = ρn/d being the film’s sheet resistance slightly above Tc.
F (t) is the Langevin random force obeying statistical averages 〈F (t)〉 = 0 and 〈F (t)F (t′)〉 = 2γT δ(t− t′).

The vortex motion described by Eq. (15), takes place in the interval a < x < w − a, where a is of the order of ξ
(the energy of the system cannot be described by the potential (11) in the intervals w − a < x < w and 0 < x < a).
The most crucial interval for vortex motion is near the point xs = Xsw/π, where the vortex should overcome the
potential barrier. Thus xs should be inside the interval (a, w − a), i.e., the conditions ξ ≪ w and I < (e/2)Ic should
be fulfilled to consider the motion of vortex in the interval 0 < x < w. To compute the average velocity in the interval
0 < x < w, we consider the diffusion problem of a single particle that propagates in the interval −∞ < x < ∞ under
the effect of the periodic potential ǫv(x) = ǫv(x + w) and the Lorentz force. The average velocity is obtained from
the known stationary solution for this periodic model (see Ref. 22). This approach was previously used by Gurevich
and Viinokur17.

The corresponding Fokker-Planck equation (Smoluchowski equation) for the probability current in the case of the
periodic potential has a stationary solution with the statistical average vortex velocity v given by22

γv =
πTP

Z+(π)Z−(π) − P
∫ π

0 dxe−U(x)/T Z+(x)
, (17)

Z±(x) =

∫ x

0

du e±U(u)/T , P = 1 − e−πp (18)

where v ≡ Ẋ and p = νI/µ2I0. Except for temperatures close to Tc the parameter ν = µ2ǫ0/T ≫ 1 . At large ν
the function exp[U(x)/T ] has a sharp maximum between 0 and w, while the function exp[−U(x)/T ] has two sharp
maxima at the edges of this interval. Since the integral Z+(π) has the analytic solution23

∫ π

0

dx e−px sinν x =
π exp(−πp/2)Γ(ν + 1)

2ν|Γ(1 + ν/2 + ip/2)|2 , (19)

where Γ(x) is the Gamma-function and ν > −1, we obtain the asymptotic solution for ν ≫ 1:

Z+(π) ≈
(

2w

πξ

)ν
√

2π

ν

(

1 +
p2

ν2

)−
ν+1

2

e−p tan−1(ν/p). (20)

Evaluating Z−(π) we note that the main contribution comes from the regions near the edges, where we approximate
sin(x) = sin(π − x) ≈ x and replace the low integration limit by πξ/w and the upper one by π − πξ/w. We obtain
the asymptotic limit

Z−(π) ≈
(

2w

πξ

)−ν (

w

πξ

)ν−1
eπp + 1

ν − 1
. (21)

In the integral
∫ π

0 dxe−U(x)/T Z+(x), the function Z+(x) reaches maximum at x = π and is small at low x. Hence, the
main contribution to this integral comes from the region near x = π:

∫ π

0

dx e−U(x)/T Z+(x) ≈
(

2w

πξ

)−ν(
w

πξ

)ν−1
eπp

ν − 1
Z+(π). (22)

It then follows that the dependence of the average vortex velocity v on I at large p and ν is given by

γv ≈ T

(

πν3

2

)1/2 (

πξ

w

)ν−1

Y

(

I

µ2I0

)

, (23)

Y (z) = (1 + z2)(ν+1)/2 exp[νz tan−1(1/z)]. (24)
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Note the strong power-law dependence of v on the strip width w.
For large currents, I ≫ I0, this expression reduces to

γv ≈ T

(

πν3

2

)1/2 (

w

πξ

)2 (

I

Ic

)ν−1

, (25)

with Ic given by Eq. (14). Note that the average velocity changes drastically near the critical current Ic, where the
energy barrier vanishes. Such defined critical current is about 16% smaller than the standard depairing current Imax

defined for 1D wires (vanishing energy barrier for phase slips in wires, see Ref. 2).24

In the case of multiple simultaneous vortex crossings happening in different parts of the strip, we must account for
their interactions. The interaction of vortices situated at (X1, 0) and (X2, Y ) has been evaluated in Ref. 19:

ǫint = ǫ0 ln
coshY − cos(X1 + X2)

coshY − cos(X1 − X2)
. (26)

If vortices are separated by y > w along the strip, the interaction is exponentially weak and their crossings are
uncorrelated. Accounting for both vortex and antivortex crossings (which are equivalent by symmetry), we estimate
the rate for multiple vortex crossings at I < Ic as R ≈ (2L/πw)v.

Finally, we obtain the asymptotic estimate for the rate:

R ≈ 4Tc2R�L

Φ2
0w

(

πν3

2

)1/2 (

πξ

w

)ν+1

Y

(

I

µ2I0

)

. (27)

In obtaining this result we disregarded vortices crossing in the direction opposite to the Lorentz force, the corresponding
probability for such processes is ∝ e−2p ≪ 1. We note that Gurevich and Vinokur took L/ξ as the number of
statistically independent vortex crossings.17 It differs by a factor ξ/w ≪ 1 from our estimated number L/w of
independent crossings. Therefore, Ref. 17 overestimates the rate.

C. Vortex-antivortex pair scenario

The energy of a vortex-antivortex pair (vortex-antivortex interaction included) was derived in Ref. 19 and is

ǫp

µ2ǫ0
= ln

[

4W 2

π2ξ2
sin X1 sinX2

coshY − cos(X1 − X2)

coshY − cos(X1 + X2)

]

. (28)

This energy increases with increasing separation Y , so that one expects the lowest barriers for Y = 0:

ǫp

µ2ǫ0
= ln

[

4w2

π2ξ2
sin X1 sinX2

sin2[(X1 − X2)/2]

sin2[(X1 + X2)/2]

]

. (29)

One can show that if a pair is formed at X0 and the pair members are pushed apart a distance 2b, the lowest energy
increase (for a given b) corresponds to the initial position X0 = π/2 in the middle of the strip. The energy barrier
for such a pair, in the presence of bias current I, is obtained by setting X1,2 = π/2 ∓ b and adding the Lorentz force
contribution:

Up(b) = 2µ2ǫ0

(

ln
w sin(2b)

πξ
− Ib

µ2I0

)

. (30)

This energy is maximum if 2b = tan−1(2µ2I0/I) so that the energy barrier for vortex-antivortex pairs is given by

Up

µ2ǫ0
= − ln

[

π2ξ2

w2

(

1 +
I2

4µ2I2
0

)]

− I

µ2I0
tan−1 2µ2I0

I
. (31)

For I ≫ I0 this barrier is twice as large than that for a single vortex crossing, Eq. (13), and the ratio of these barriers
increases for smaller currents. Note also that the core contribution to the pair energy (neglected here) is at least twice
that for a single vortex.

Based on our estimates for the three different fluctuation scenarios presented here, we conclude that single vortex
crossings are the main source for dark counts.
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III. VOLTAGE INDUCED BY VORTEX CROSSING

Let us now find how the phase of the order parameter varies when a vortex crosses the strip. The current is expressed
either in terms of the gauge invariant phase ϕ or via the stream function G: g = −(cΦ0/4π2Λ)∇ϕ = curl[ Gẑ]. Written
in components, this gives the Cauchy-Riemann relations for functions [4π2Λ0/cΦ0µ

2]G(r) and ϕ(r). Hence they are
real and imaginary parts of an analytic function of complex argument z = x + iy:21

G(Z) = ln
sin[(Xv + Z)/2]

sin[(Xv − Z)/2]
(32)

(recall: the capitals are coordinates in units of w/π, so that 0 < X < π, etc.). We then obtain

ϕ(r, rv) = Im[G(Z)] (33)

= tan−1 sin Xv sinh(Y − Yv)

cosX − cosh(Y − Yv) cosXv
.

Note that the characteristic length of variations for ϕ in both x and y directions is w. For long strips of interest,
L ≫ w, and for distances |Y − Yv| ≫ 1, we have at the strip ends ϕ(±L/2) = ∓Xv. Hence, when the vortex moves
from the strip edge at Xv = 0 to the opposite edge at Xv = π and |L/2 − Yv| ≫ 1, the phase difference at the ends
of the strip changes by ϕ(L/2) − ϕ(−L/2) = 2Xv = 2π, i.e., a vortex crossing results in a global phase slip of 2π.

A. DC voltage

The motion of vortices causes the phase difference at the strip ends to vary in time. Using the Josephson relation
for the phase, we obtain the induced voltage due to a single vortex crossing

V (t) =
Φ0

2πc

d

dt
[ϕ(L/2) − ϕ(−L/2)] =

Φ0v(t)

cw
, (34)

where the vortex velocity is v(t) = dxv/dt = (w/π)dXv/dt and we used ϕ(L/2) − ϕ(−L/2) = 2Xv. A quasistatic
approach employed here is justified as long as the characteristic crossing time ∆t = w/v is large compared to L/c.
Note that for each crossing, i.e., for each voltage pulse between time t and t + ∆t the relation

∫ t+∆t

t

dt′ V (t′) =
Φ0

c
(35)

is satisfied as in the case of voltage pulses due to phase slips in 1D wires.2 Thus we obtain the average (dc) voltage

Vdc =
Φ0

c
R. (36)

This relation also follows directly from comparing the dissipated power VdcI with the work per unit time done by the
Lorentz force, (Φ0I/cw)wR. It is worth to remember that we have derived the crossing rate assuming an isothermal
strip. In continuous measurements of current-voltage characteristics at currents of the order of the critical one, the
strip temperature is certainly higher than that of the bath. In principle, this heating may be reduced using short bias
current pulses.

B. Voltage pulses

In this section we consider the time evolution of the voltage pulse V (t) induced by single vortex crossing. Here we
use the equation of vortex motion, Eq. (15), for X > Xs and neglect random forces (thermal noise). Therefore the
velocity is

v ≡ ẋv =
πǫ0
ηw

(

I

I0
− µ2 cotX

)

. (37)

This can be written in the form

Ẋ = β (cotXs − cotX) , β =
π2ǫ0µ

2

ηw2
, (38)
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which is valid for X > Xs. It is worth noting that for currents of the order of Ic the saddle point is very close to the
strip edge,

Xs ≈ I0µ
2

I
=

eπ

2

µ2Ic

µ2
cI

ξ

w
≪ 1 . (39)

Integration of Eq. (38) results in an implicit solution for X(t):

X(t) cosXs + sinXs ln sin [X(t) − Xs] =
β (t − t0)

sin Xs
. (40)

We choose the constant t0 so that t = 0 corresponds to the vortex exit at X = π. Note that any instant for which
0 < X(t) < Xs is beyond this approximation, because in this early time interval the process is described by thermal
activation rather than by the equation of motion (37) with random force omitted. The instant for which X(t) = Xs

is also inappropriate as an initial moment, because at this point the velocity vanishes, Ẋ = 0. Thus Eq. (40) can be
written as

[X(t) − π] cos Xs + sin Xs ln
sin [X(t) − Xs]

sin Xs
=

β t

sin Xs
.

(41)

Clearly, X(0) = π and X(t → −∞) = Xs. Hence, formally, the motion from the saddle point Xs to the edge takes
infinite time because the velocity goes to zero as X → Xs. In reality, the dynamic viscous vortex motion starts at
some distance from the saddle point where the vortex is kicked by random force (an activation driven process) and the
total ”time-of-flight” is finite. To see this, consider the situation of large currents for which Xs is given by Eq. (39)
and

X(t) − π + Xs ln
sin [X(t) − Xs]

sin Xs
=

β t

Xs
. (42)

Denote as δX a small distance from the saddle at Xs and evaluate the time τ0 of motion from Xs + δX to the edge
X = π:

−β τ0

Xs
= Xs + δX − π + Xs ln

δX

Xs
.

Since both δX and Xs are small, all terms on the right hand side, except for π, are negligible and we obtain

τ0 ≈ πXs

β
=

cηw2

Φ0I
=

w2Φ0

2πξ2cR�I
, (43)

so that the time-of-flight τ0 does not depend on a particular choice of δX . In fact, this estimate coincides with the
time it takes a vortex to cross the strip being pushed solely by the Lorentz force.

Solving numerically Eq. (41) for X(t) and substituting the result in Eq. (38) we obtain v(t). The result is shown
in Fig. 2. For convenience, we use Xs/β as the unit of time. The dimensionless time τ = βt/Xs varies between
−π < τ < 0.

The divergence at the edge x = w must be cut off at distances of the order of ξ from the edge. We obtain from
Eq. (38) an estimate for the maximum velocity at the exit,

vmax ≈ φ0

cwη

(

I +
e Ic

2

)

, (44)

where the critical current is given by Eq. (14).
For large currents, Xs ≪ 1, we solve Eq. (42) perturbatively: X = X1 + δX with X1 = π + βt/Xs and δX ≪ X1:

X = π + τ − Xs ln
sin (Xs − τ)

sinXs
. (45)

Thus the velocity for Xs ≪ 1 is

dX

dτ
= 1 + Xs cot(Xs − τ) , (46)
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FIG. 2: (Color online) The dimensionless vortex velocity dX/dτ versus τ for parameters Xs = 0.1, 0.3, and 1.0. Note that
dX/dτ = v/v̄, where v is the velocity in common units and v̄ is the average velocity, which is identical to the one solely due to
the Lorentz force.

the unity corresponds to a constant velocity due to the Lorentz force, whereas the second term is caused by the vortex
potential.

The velocity v(t) is peaked near the edge x = w and it is of interest to estimate the width ∆τ of this peak in the
velocity and in the voltage V (t) ∝ v(t). The width ∆τ is definition dependent. For example, one can define it as the
time interval between instants when v = vmax and time τ1 when v = (vmax + v)/2, where v is the background velocity
due to the current I. In dimensionless units, v corresponds to dX/dτ = 1. Thus we obtain

τ1 ≈ −Xs
6wXs + πξ

3wXs − πξ
. (47)

with

πξ

wXs
=

2µ2
cI

eµ2Ic
< 1 , (48)

so that τ1 < 0. Since |τ1| ∼ Xs ≫ τm, we estimate the width of the velocity peak near the edge as ∆t ∼ ∆τXs/β ∼
X2

s /β, where the fraction of order unity in Eq. (47) has been neglected. Therefore, the ratio of this width relative to
the total crossing time τ0 of Eq. (43) is

∆t

τ0
≈ Xs

π
≪ 1 . (49)

IV. “COLD” AND “HOT” VORTEX CROSSINGS

A vortex moving from the saddle point x = xs to the strip edge x = w, during the time τ0 = w/v, excites quasi-
particles along its path by the mechanism described by Larkin and Ovchinnikov.25,26 This mechanism is appropriate
for dirty superconductors (for clean and intermediate clean regimes see Refs. 27,28). Since NbN films are inherently
dirty, we can safely disregard the latter mechanism. We estimate the total energy transferred to quasiparticles during
the time τ0 along the vortex path as

Q ≈ (Φ0I/c) ≈ 8π

e

H2
c

8π

I

Ic
wξd. (50)

This is, in fact, the work done by the Lorentz force on the vortex path of the length w−xs. This energy is distributed
near uniformly along the path at currents close to the critical current, because the vortex velocity varies weakly for
most of the crossing, see Fig. 1. In a belt of width ℓ along the y-axis with the volume Vb = ℓwd, the energy increase
per unit volume is (8πξ/eℓ)(H2

c /8π)(I/Ic).
We now estimate the time τ0. For a strip with resistivity ρ(Tc) = 240 µΩ cm, w = 120 nm, d = 4 nm, Λ = 45 µm,

and a bias current of the order Ic, the crossing time is roughly τ0 ∼ 10 ps and corresponding vortex speed is 12
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km/s. This time is too short for any significant transfer of the electronic excitation energy into the substrate and
surrounding strip area. Indeed, the phonon escape time was estimated as 160 ps in a strip of thickness d = 20 nm,
whereas the electron-phonon relaxation time is about 17 ps.29 During the time τ0 quasiparticles diffuse away from
the vortex path by a short distance (Dτ0)

1/2 ≈ 8 nm as estimated from the electronic specific heat Ce = 2.2 kJ/m3K
and the normal-state resistivity at 10 K.30

Hence quasiparticles remain practically within the belt of volume Vb = ℓwd along the vortex path. The quasiparticle
energy density within the belt is (8πξ/eℓ)(H2

c /8π)(I/Ic). Taking ℓ ≈ 3ξ, we see that for I > I∗ ≈ Ic/3 such an energy
is sufficient to turn the belt normal causing a dark count in the photon detector. We call this process at high currents
I > I∗ a “hot” vortex crossing.

Therefore, we conclude that the superconducting strip with a bias current in the interval I∗ < I < Ic is unstable
with respect to the transition into the normal state, that can be triggered by a vortex overcoming the barrier. Clearly,
photons can trigger such a transition as well. The photon efficiency increases as I approaches Ic and so does the rate
of dark counts.

In fact, the true critical current of a strip, below which the strip remains superconducting, is I∗. At currents below
I∗, the superconducting state is stable, but remains resistive due to the presence of quasiparticles in normal cores of
vortices crossing the strip. In this scenario a single vortex crossing leaves the strip in the superconducting state and
thus we call this process a “cold” vortex crossing.

V. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 3 experimental dark count rates are shown for three different NbN samples of SNSPDs.18 We fit the data
using Eqs. (27) and (24) by writing

ln(R/L) = ln(a) + ln[Y (Φ0I/πνcT )], (51)

a =
4Tc2R�

Φ2
0w

(

πν3

2

)1/2 (

πξ

w

)ν+1

. (52)

The dimensions of samples 1, 2, and 3 are d = 6 nm, w = 53.4, 82.9, 170.6 nm, L = 73.9, 145.1, 141.4 µm, respectively.
The sheet resistance R� = 445, 393, 431 Ω, and data were taken at T = 5.5 K. According to Bartolf et al., at low
currents the data was dominated by electronic noise in the measurement circuit.18 The data for samples 1 and 2 agree
well with the theoretical results for high currents, while the data for sample 3 yield an unreasonably large exponent
ν.

For sample 1 with fit parameter ν = Φ2
0/8π2Λ, we extract the Pearl length Λ(5.5K) = 57.1 µm, and from ln(a/L)

we estimate the coherence length ξ(5.5K) = 3.9 nm. The authors of Ref. 18 estimated ξ(0) = 4nm from independent
measurements of the upper critical field. They also estimated the Pearl length for NbN films of thickness d = 6 nm,
Λ(0) = 65.1 µm, from known resistivity ρn and the superconducting gap ∆(0) ∼ 2 − 3 meV.31 By using Eq. (14), we
find the critical current Ic = 20.1 µA defined as the current at which the energy barrier vanishes for vortex crossings.
The authors of Ref. 18 defined the “critical” current IV = 14.5 µA using the 1% voltage criterion (current at which
resistance is 1% of the normal one). We see that the critical current defined through such a voltage criterion is less
than the critical current defined by the current at which the energy barrier vanishes, IV ≈ 0.72 Ic.

For the sample 2, we find the coherence length ξ(5.5K) = 4.33 nm and Λ(5.5K) = 51 µm. Independent estimates
given in Ref. 18 are ξ(0) = 4.2 nm and Λ(0) = 59.2 µm; the critical current Ic = 31.5 µA, while IV = 0.77 Ic.

18 We
conclude that our model for vortex crossing rates describes satisfactory the dark count rates in samples 1 and 2.

Next we estimate the peak of the voltage pulse for I slightly below I∗:

Vpeak ≈ cΦ0ξR�

πeΛw
, (53)

and the duration of the pulse is τpeak < Φ0/cVpeak. For the sample 2 studied by Bartolf et al.18 we estimate Vpeak ≈ 0.8
mV, while τpeak ≈ 3 ps slightly below I∗. For comparison, dark counts are characterized by peak voltages of ≈ 1 mV
and by durations of several nanoseconds (FWHM ∼ 2.5 ns16). For dark counts the duration of pulses is caused by
the current redistribution and thus depends on the experimental setup used to detect the pulses. Note, that pulse
duration differs significantly from that caused by single vortex crossing without formation of normal belt.

The following experiment could, in principle, distinguish between regimes at I < I∗ and at I > I∗: One induces
a bias current in a thin-film ring and measures the magnetic flux in the ring as a function of time. For I > I∗, a
single vortex crossing destroys superconductivity and the flux vanishes. The lifetime of this persistent current is 1/R
and R is determined by Eq. (27). If I < I∗, the flux should decrease stepwise through multiple transitions between
quantized current states In, each transition corresponds to a single vortex crossing. In this case, the lifetime for the
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FIG. 3: (Color online) The dark count rates of three SNSPDs at 5.5 K by Bartolf et al.18 and fits based on Eqns. (27) and
(24). The current is in units IV = αIc, where α = 0.72, 0.77, 0.60 for samples 1, 2, and 3. Ic is the critical current defined
as the current at which the barrier for vortex crossings vanishes. At low currents electronic noise in the measurement setup
dominates over vortex crossings.

current In is 1/Rn where Rn is given by Eq. (27) with I = In. The total decay time of the initial current IN will be

τ =
∑N

n=1 R−1
n . For 1D wires similar behavior due to phase slips was described by McCumber and Halperin.2

In comparing theory and experiment, the issue of possible inhomogeneities of the thickness d and the width w is
often raised. We note that the model developed here is only valid for w ≪ Λ. Each vortex in a narrow strip has
mostly the kinetic energy of its supercurrents which are confined within an area of size ∼ w ×w. In other words, the
model is not sensitive to inhomogeneities of d and of the edge roughness on scales small relative to w.

Finally, it is worth mentioning that we assumed in this work that the strip temperature is equal to the bath
temperature of the substrate. This may not always be the case in measurements of dark counts in photon detectors.
After redistribution of the bias current, the normal belt induced by a crossing vortex cools down. The strip can carry
the superconducting current equal to the bias current I only if the temperature drops below the value T ∗ defined by
the condition I∗(T ∗) = I. Slightly below T ∗ vortices can cross the strip inside the warmer belt whose temperature is
close to T ∗ or inside the cooler areas whose temperature is that of the bath. The rate of vortex crossings is determined
by both processes and the latter dominates only in the limit of very large L. Again, we emphasize that the measured
rate is higher than the calculated rate, and the difference is larger for small currents because for them T ∗ is higher.
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VI. CONCLUSIONS

In summary, we have found that the most plausible mechanism for dark counts in photon detectors is due to thermal
fluctuations related to vortex crossings in the metastable current-carrying superconducting state, which is realized at
bias currents above some value I∗ ∼ Ic/3. We conclude by listing our main results:
(a) Vortices crossing the current-biased strip due to thermal fluctuations induce voltage pulses which can be detected
experimentally. The barrier for vortex crossings vanishes at the critical current defined by Eq. (14).
(b) In narrow and thin strips, the superconducting state is unstable in the current interval I∗ < I < Ic and a transition
into the normal state is triggered by vortices crossing the strip accompanied by energy (heat) release.
(c) We estimated the threshold for “hot” vortex crossings to be roughly I∗ ≈ Ic/3.
(d) Dark counts in current-biased superconducting strips reported in the literature were observed in the regime of
metastable superconducting state.
(e) At currents below I∗, vortex crossings do not induce transitions into the normal state, but still induce voltage
pulses and the superconducting state is resistive due to the quasiparticles inside vortex cores of crossing vortices. We
proposed a ring experiment, which allows to distinguish different decay processes of circular currents above and below
I∗.
(f) We estimated the amplitude and duration of “cold” voltage pulses which can be detected below I∗.

Clearly it is desirable to test our theory by measuring I-V characteristics with a pulsed current technique to avoid
heating. Further it will be interesting to study the rate and the shape of “cold” pulses at currents below I∗ at different
temperatures and see their evolution from thermally induced crossings to quantum tunneling.
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14 A. Engel, A.D. Semenov, H.-W. Hűbers, K. Il’in, M. Siegel, Physica C, 444, 12 (2006).
15 M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J. Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri,

Phys. Rev. Lett. 106, 047001 (2011).
16 J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Shouten, V. Zwiller, and R. Sobolewski, IEEE Trans. on Appl. Supercond. 19,

346 (2009).
17 A. Gurevich and V.M. Vinokur, Phys. Rev. Lett., 100, 227007 (2008).
18 H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hübers, and A. Semenov, Phys. Rev. B 81 024502 (2010).
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