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We report a systematic study of the temperature dependence of the anomalous Hall and longi-
tudinal conductivities σxy and σxx and resistivities ρxy and ρxx in a series of metallic (Ga,Mn)As
samples. Two universal scaling relations are obtained: σxy ∝ σ1.5

xx , obtained from measurements
at a fixed low temperature (2.0 K) on a series of samples with different Mn concentrations; and
ρxy/m ∝ ρ2

xx, where m is normalized magnetization, obtained from the temperature variation of
ρxx and ρxy measured on each sample of the series. The former scaling relation is, however, found
to break down for highly conducting (Ga,Mn)As samples (σxx > 100 Ω−1cm−1). The latter scaling
relation leads to a magnetization-dependent anomalous Hall coefficient, which we attribute to the
emergence of magnetization fluctuations at high temperatures.
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I. INTRODUCTION

A. Background and motivation

The study of Hall resistivity ρxy of ferromagnetic metals and semiconductors, as well its linear and quadratic
dependence on the longitudinal resistivity ρxx (i.e., the scaling relation between ρxy and ρxx is one of most interesting
subjects in magnetotransport in ferromagnetic materials, since it can lead to an understanding of the mechanisms
that contribute to the anomalous Hall effect (AHE), including its relation to spin polarization and spin-orbit coupling
of charge carriers. It is usually assumed that AHE caused by magnetic moments embedded in a ferromagnetic metal1

may arise from extrinsic scattering processes involving spin-orbit coupling: specifically, skew scattering2 and/or side-
jump processes3. Recently, however, AHE has reemerged as an active area of both theoretical4–7 and experimental8–14

research, owing to the introduction of an additional intrinsic mechanism for AHE that involves the interaction of
carrier spins with the inherent spin-orbit-coupled Bloch bands5,15–19.

Despite extensive studies of this problem, the identification of the microscopic origins responsible for AHE in
magnetic materials obtained by analyzing the scaling relation between the anomalous Hall and the longitudinal
resistivities ρxy ∝ ρn

xx is still a challenging task. This is especially true in the case of ferromagnetic semiconductors
such as (Ga,Mn)As, where the exponent n = 2 reported in Refs. 9 and 19 applies to both intrinsic and side-jump
mechanisms, making it difficult to distinguish between the two processes; and also given the fact that Mn atoms in
these materials act simultaneously as the source of magnetic moments and as acceptors, which complicates the analysis
of scattering processes in this material. Furthermore, several recent studies of (Ga,Mn)As samples have reported a
universal empirical scaling relation between the anomalous Hall and the longitudinal conductivities σxy ∝ σγ

xx with γ
of about 1.6, which holds over a wide range of conductivities (between 0.01 and 100 Ω−1cm−1)13,14,20. By very simple
algebra (see Sec. I B) it can be readily shown that ρxy ∝ ρ2

xx and σxy ∝ σ1.6
xx cannot apply simultaneously under

conditions where AHE is dominant. It is therefore necessary to examine these two apparently contradictory scaling
relations carefully, in order to develop a clear and complete scheme for carrier transport in (Ga,Mn)As.

We note parenthetically that the determination of the hole concentration p in (Ga,Mn)As, while it is critically
important for our understanding of ferromagnetism in this material, is made difficult in practice precisely because the
ordinary Hall term in the Hall measurement is obscured by AHE. Thus a clear picture of the scaling characteristics
of the dominant AHE term in ρxy becomes additionally important for the process of extracting the value of p from
the Hall data.
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B. Formal description of AHE and relevant approximations

Since magneto-transport measurements directly provide the values of ρxy and ρxx, but in certain circumstances it
is more informative to discuss the results in term of σxy and σxx. In this section we briefly review the inverse relations
between the ρ and σ tensors. In ferromagnetic systems, the Hall resistivity is often described as a sum of two terms,

ρxy = R0B + RSM, (1)

an ordinary Hall contribution due to the Lorentz force, plus an anomalous Hall term that is proportional to the
magnetization M . In Eq. (1) B and M are components of the applied field and the magnetization perpendicular to
the current (i.e., in the case of thin films, normal to the film plane); and R0 and RS are the normal and anomalous
Hall coefficients, respectively. A similar separation as in Eq. (1) can be made in the Hall conductivity,

σxy = σ0µB + χSM, (2)

where σ0 is zero-field conductivity and µ is the carrier mobility. The first term in Eq. (2) corresponds to the ordinary
Hall effect related to carrier concentration, while the second term defines the anomalous Hall conductivity proportional
to magnetization, χS being a coefficient. Note that the electrical conductivity tensor σ is the inverse of the electrical
resistivity tensor ρ with the relations between the diagonal and off-diagonal components give by

σxx = ρxx/(ρ2
xx + ρ2

xy),
σxy = ρxy/(ρ2

xx + ρ2
xy).

(3)

Since in most ferromagnets – including metallic (Ga,Mn)As – the Hall resistivity ρxy is at least one order of magnitude
smaller than the longitudinal resistivity ρxx, the Hall conductivity reduces to

σxy ≈ ρxy/ρ2
xx. (4)

Finally, when the carrier mobility satisfies the inequality µB ≪ 1, characteristic for (Ga,Mn)As for values of B used
in this study, we can write

σxx ≈ 1/ρxx. (5)

In (Ga,Mn)As with the Mn concentrations exceeding 0.5% (representing the samples used in this study) the contri-
bution of the ordinary Hall effect is typically much smaller than the AHE term, and can be neglected. Under these
conditions we have

ρxy ≈ RSM,
σxy ≈ χSM ≈ RSM/ρ2

xx,
(6)

yielding the relation between the anomalous Hall coefficients χS ≈ RS/ρ2
xx. From Eqs. (4)-(6) it follows directly that

– as already mentioned – the two scaling relations σxy ∝ σ1.5
xx and ρxy ∝ ρ2

xx are contradictory, and thus cannot hold
simultaneously. We will return to this issue in Sec. III D.

C. Outline

In this work we report a systematic magnetotransport study of the dependence of ρxy and ρxx on temperature
and Mn concentration observed in a series of metallic (Ga,Mn)As samples. Based on the obtained results, we then
establish the scaling relation between σxy and σxx using transport data taken on a series of samples with different
Mn concentrations at a fixed low temperature; and scaling relations between ρxy and ρxx using their temperature
variation obtained for each individual sample in the series. The two scaling relations found in this way are: σxy ∝ σγ

xx

with γ ∼ 1.5, and ρxy ∝ ρn
xx with n = 2. Surprisingly, these two distinct and apparently contradictory relations are

found to coexist in the intermediate conductivity regime, i.e., in (Ga,Mn)As where the hole concentration p ranges
from 2.8×1019 cm−3 to 1020 cm−3; and do not show a smooth progression from one conductivity regime to the other.
It is therefore especially important to examine these relationships explicitly as a function of p, and we will do this in
detail beginning with Sec. III A.

Moreover, we confirm the results reported in Ref. 14 that the scaling relation of σxy ∝ σ1.5
xx breaks down for highly

conducting (Ga,Mn)As samples (σxx > 100 Ω−1cm−1), while the relation of ρxy ∝ ρ2
xx exhibits a magnetization

dependent anomalous Hall coefficient. We attribute the latter behavior to the emergence of anomalous Hall effect
contributions induced by magnetization fluctuations at high temperatures, including temperatures above TC . The
interplay between these scaling relations will be addressed and discussed in terms of the Anderson-Mott metal-insulator
transition21 in Sec. III.
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II. SAMPLE FABRICATION AND EXPERIMENTAL PROCEDURE

All samples in this study were grown by molecular beam epitaxy (MBE) on “epi-ready” semi-insulating GaAs (001)
substrates. After thermal cleaning of the substrates, 100 nm thick GaAs buffer layers were first grown at 580◦C.
The substrate temperature Ts was then reduced to 250◦C, and a series of (Ga,Mn)As samples were grown at this
temperature as follows. A 2 nm thick GaAs buffer layer was deposited first, followed by the growth of Ga1−xMnxAs
layers of desired thicknesses between 10 nm and 100 nm. The Mn concentration in each sample was determined by
direct readings of the Mn flux in the MBE chamber, and confirmed after the growth by lattice constant measurements
by X-ray diffraction. Pieces of the samples were also annealed in the atmosphere of N2 gas at the temperature of
280◦C for 1.0 hour, and subsequently cooled by a rapid quench to room temperature. The samples (both as-grown and
annealed) described above were characterized by magneto-transport measurements using the six-probe Hall geometry
with indium ohmic contacts in a Janis continuous helium flow cryostat equipped with a superconducting magnet
system, allowing us to sweep the magnetic field up to 6 T at various temperatures between 2 and 300 K. The hole
concentration in the samples was determined from magneto-transport data obtained at low temperature (< 10 K)
using a method described in Ref. 20. The Curie temperatures of the samples were obtained from SQUID magnetization
data. A total of ten (Ga,Mn)As samples with Mn concentrations between 3.9% and 6.0% are studied in this work.
The characteristics of the samples used in this study are summarized in Table I. We have noticed that, although the
relation between the carrier concentration and the Curie temperature TC ≈ p1/3 introduced by Ku et al.22,23 provides
a good semi-quantitative guide for the behavior of TC , there can exist significant deviations from this trend in any
(Ga,Mn)As sample series owing to the complex competing effects between substitutional and interstitial Mn ions24,25,
and the fact that the relative concentrations of these two types of ion can strongly vary from sample to sample due
to differences in MBE growth conditions. In addition, it is relevant to note the effect of thickness in this context, i.e.,
annealing is much more efficient in thinner samples, leading to larger increase in both the effective Mn concentration
and in TC .

TABLE I: Parameters for the (Ga,Mn)As samples used in this study. Symbol @ stands for “annealed”. The exponent n
obtained for the scaling relation ρxy/m ∝ ρn

xx is also listed.

Sample t Mn p n TC Fig. 5
# (nm) (x) (1020cm−3) (T<10K) (K)

40216C 99 5.2% 1.75 1.82 60
40218A 97 6.7% 1.24 1.8 68
50522A 95 3.9% 0.93 1.8 60

50522A@ 95 3.9% 2.55 1.8 80
50522B 42 3.9% 0.36 1.8 60 a

50522B@ 42 3.9% 2.02 1.815 95 b
50523B 20 5.0% 0.74 1.78 60 c

50523B@ 20 5.0% 3.17 1.81 110 d
50824C 10 6.0% 0.54 1.41 70 e

50824C@ 10 6.0% 7.34 2 132 f

III. EXPERIMENTAL RESULTS

A. Scaling relations of σxy and σxx at low temperatures

All samples studied show metallic behavior, i.e., a finite conductivity σxx exists as temperature approaches zero.
It is instructive to examine the conductivity σxx as a function of the hole concentration p, since that is the quantity
that ultimately connects σxx, σxy, and – it should be emphasized – also the magnetization M . We begin with a
log-log plot of σxx vs. p shown in Fig. 1. While the plot does not indicate any power relation between σxx and p, it
clearly undergoes a dramatic change at pc ≈ 2.8× 1019 cm−3 (marked as pc in the figure). This point corresponds to
the metal-insulator (Anderson-Mott) transition, representing the lower limit of p at which (Ga,Mn)As shows metallic
behavior. Having established pc as the onset of the metallic range, it is logical to use this point as the origin when
discussing metallic (Ga,Mn)As, i.e., to use (p − pc) as the hole concentration variable for that range.

In Fig. 2 we summarize our data for longitudinal and transverse conductivities σxx and σxy (at T = 2 K) as a
function of the variable (p−pc). Clearly the conductivity σxx follows a power law as a function of (p−pc) in the form
σxx ∼ (p − pc)

s, where s ≈ 0.5. Such critical behavior, i.e., a power law behavior at the critical region, is commonly
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FIG. 1: (Color online) Longitudinal conductivity σxx vs. hole concentration p at 2 K. The red curve is a guide for the eye. pc

marked in the figure is the metal-insulator transition point.

observed in studies of the Anderson-Mott metal-insulator transition in doped semiconductor systems26,27. Although
one theoretically expects the exponent s to be ∼ 1.028,29, our best fit gives a significantly different result, s ≈ 0.5. A
possible explanation for this discrepancy is that the scaling theory applies to the immediate proximity of the critical
point p = pc, and our data lies too far outside that immediate for the scaling theory to apply30,31.

As shown in Fig. 2(b), we find that – in contrast to σxx – the anomalous Hall conductivity σxy vs. hole concentration
has two distinct ranges. For low hole concentration (p−pc < 1×1020 cm−3 in Fig. 1), σxy increases as p increases above
the critical point, which shows a similar critical behavior as for σxx, i.e., a power law relation of σxy ∼ (p − pc)

0.76.
As a result, despite the fact that particular samples may differ in magnetization values, we observe a universal scaling
relation σxy ∝ σγ

xx with γ ∼ 1.5 (or ρxy ∝ ρ0.5
xx based on Eq. (4))32 over low p range up to 1020 cm−3 (i.e., the

intermediate conductivity range, with σxx up to 100 Ω−1cm−1), in agreement with the value γ ∼ 1.5 reported by
Shen et al.20 and the value γ ∼ 1.6 reported by Glunk et al.13, and Chiba et al.14 It should be emphasized that such
scaling relation also extends to the localized regimes studied by Shen et al.20 (i.e., down to 0.5 Ω−1cm−1). However,
this scaling relation breaks down rather severely in the case of higher hole concentrations (i.e., higher conductivity,
σxx > 100 Ω−1cm−1), consistent with the recent experiments of Glunk et al.13 and Chiba et al.14 The above behavior
agrees with a unified theory of the AHE developed by Onoda et al.33,34, which predicts three regimes that depend on
the carrier scattering time: the “clean” regime, where ρxy ∝ ρxx (not achievable in (Ga,Mn)As); the “intermediate”
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FIG. 2: (Color online) The longitudinal and transverse conductivities σxx and σxy vs. hole concentration from metal-insulator
transition point, p − pc, at 2 K. The data from the as-grown samples are shown by full symbols, while the open symbols are
for the annealed samples. (a) The solid line represents the best power-law fit with s = 0.50±0.03. (b) The solid line represents
the best power-law fit with slope of 0.76±0.06. The dash line is a guide for the eye.

regime, where ρxy ∝ ρ2
xx; and the “dirty” regime, for which this theory predicts ρxy ∝ ρ0.4

xx .

B. Temperature dependence of σxx and σxy

We now address the scaling relation between longitudinal and transverse conductivities, σxx and σxy (and equiv-
alently, between ρxx and ρxy), obtained from temperature dependent measurements. In Figs. 3(a) and 3(b) we first
show ρxx and ρxy as function of temperature in the range 2 to 300 K for a typical metallic (Ga,Mn)As sample at
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several magnetic fields. As previously reported by several groups35,36, the temperature dependence of ρxx shows a
signature cusp at TC , which shifts to higher temperatures when a magnetic field is applied. From Fig. 3(a) one
can clearly see that the resistivity ρxx also shows an upturn at lower temperatures (< 10 K). In addition, strong
magneto-resistance is observed at temperatures corresponding to the ferromagnetic state, with a maximum around
TC . In contrast to ρxx, the transverse resistivity ρxy depends only weakly on temperature and magnetic field below
TC , but above TC drops rapidly with temperature and shows a pronounced field dependence. It should be especially
emphasized that there is a weak cusp in the temperature variation of ρxy around TC , which is commonly observed in
metallic (Ga,Mn)As samples, but not in insulating samples.

For an individual (Ga,Mn)As sample, the scaling relation between ρxx and ρxy can be obtained using the temper-
ature variation of transport data at low temperature and high field, where one can assume that the magnetization
is fully saturated20. However, the conspicuous difference in the temperature and field dependences of ρxx and ρxy

shown in Figs. 3(a) and 3(b) clearly suggests that this scaling relation between ρxx and ρxy (if it exists) will break
down at high temperature. In this regard, the scaling relation σxy ∝ σ1.5

xx (which is equivalent to ρxy ∝ ρ0.5
xx ) will be

only valid as the temperature approaches zero, but it should not be applicable at high temperatures.
For better understanding of mechanisms present in this process, it is helpful to examine the temperature variation

of σxx and σxy in addition to ρxx and ρxy. In Fig. 4(a), the σxx vs. temperature at field of 6 T is plotted as solid
black square symbols. Based on a scaling theory for strongly disordered ferromagnets, the temperature variation of
σxx can be understood in terms of the microscopic conductance g0(m) of a small coherent cube of size ∼ ξ0 and a
length scale parameter ξ(T )36, where m is the normalized magnetization, defined by

m(T, B) = M(T, B)/M0. (7)

In Fig. 4(a), for purposes of illustration we use a simplified model in which ξ(T ) is only a function of T−1/2 which
accounts for the electron-electron interaction37, but does not depend on m38. As a result, σxx can be decomposed
into three parts: a constant C, a magnetization dependent term A(m) related to scattering on spin disorder, and a
temperature dependent term B(T ), as follows

σxx = C + A(m) + B(T )

= const. + am2 + bT−1/2. (8)

where a and b are fitting parameters. Note that am2 also implicitly depends on T through the magnetization, and
that the temperature dependence of bT−1/2 arises through ξ(T ), independently of M . Unfortunately, in practice it
is difficult to directly measure m(T, B) for a (Ga,Mn)As film due to the diamagnetic background from the GaAs
substrate. Thus, in our analysis we have chosen to represent the magnetization at any given temperature and field by
the Brillouin function with J = 5/2, since this is generally accepted as a good approximation. In Fig. 4(a) we have
plotted the calculated am2 for B = 6 T (dashed curve) for comparison. Clearly, the magnetization calculated from
the Brillouin function is generally in good agreement with A(m) = σxx −C −B(T ) derived from Eq. (8) except that
it decreases slowly at intermediate temperature (between 10 K and TC) due to our inability to account for thermal
excitations of magnons in the calculation39.

Having established m(T, B) via Fig. 4(a), we now address the temperature dependence of σxy. In Fig. 4(b), we plot
σxy as a function of temperature for the same sample at 6 T, which shows only a magnetization-like curve, with no
cusp around TC , suggesting the absence of quantum corrections to the anomalous Hall conductivity σxy, consistent
with the results reported by Mitra et al.19 Additionally, by carefully comparing the anomalous Hall conductivity σxy

and magnetization m, we find that σxy drops much more slowly than m above TC , in contrast to the general belief
that σxy is simply proportional to the magnetization. For clarification, we plot σxy/m ≈ χSM0 (where M0 is the
value of M at low T , i.e., a fixed quantity for each sample) as a function of temperature in Fig. 4(b), which clearly
shows that the anomalous Hall coefficient χS is not a constant, but increases rapidly with T at temperatures above
TC . A possible explanation for this behavior can be found by introducing the Berry phase5, which has been shown to
exist in the closely related system (In,Mn)Sb40, into the present context. However, this requires further examination.

C. Temperature dependence of scaling relations

Since AHE may originate from either intrinsic or extrinsic mechanisms characterized by different exponential factors
n in the scaling relations between the anomalous Hall and longitudinal resistivities, it is informative to examine the
relation between ρxx and ρxy instead of σxx and σxy as the temperature varies, in order to determine these exponential
factors n. We therefore address the temperature variation of the transport data by examining the scaling relationship
of the form ρxy ∼ ρn

xx by considering the temperature dependence of the magnetization. Conventional theory predicts
the value of n = 2 for the intrinsic mechanism inherited from spin-orbit-coupled Bloch bands5; and for extrinsic
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FIG. 3: (Color online) (a) and (b), the temperature dependences of longitudinal and transverse resistivities ρxx and ρxy of a
typical 99 nm thick Ga0.948Mn0.052As sample at several magnetic fields.

mechanisms, n = 1 is predicted for skew scattering2 and n = 2 for the side jump process3. In recent experiments9, a
scaling factor of n = 2 has been reported for metallic (Ga,Mn)As samples at low temperatures. However, the origin
of this scaling – whether it comes about from side jump or from the intrinsic mechanism – is still under vigorous
discussion and requires further inquiry.
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of σxy (solid black squares), calculated m (dash-doted blue line) and σxx/m (open red circles) at 6 T.

1. Scaling relations for ρxy vs. ρxx from their temperature dependence

We first examine the relation between ρxy/m and ρxx for all samples by constructing a logarithmic plot of ρxy/m
vs. ρxx. Quite surprisingly, a universal behavior is observed in Fig. 5 – two linear ranges with approximately the same
slope are shown in the logarithmic plot, one at temperatures below 10 K, and the other for high temperatures, far
above TC . For easy identification, we have indicated the Curie temperature for each sample by the point shown on each
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curve, the locus of which is the line of demarcation between the low (T < TC) and high (T > TC) temperatures region.
Note that the latter region has not been carefully investigated before, but is in fact quite important for two reasons:
the fundamental interest of how the “residue” of ferromagnetism behaves above TC ; and for extracting the value of
hole concentration at high temperatures from Hall measurements, a process that is frequently used as a measurement
of p in (Ga,Mn)As. The linear fitting of our data for this region yields the exponential factor n of around 1.8 to 2.0
for most samples despite the fact that each sample has a different resistivity, Mn concentration, Curie temperature,
and magnetization, as shown in Table I. It should be emphasized that – although from the plots the scaling relation
cannot be extracted for the intermediate temperature range – we can attribute this to the temperature variation of
the anomalous Hall coefficient χS , which increases monotonically in this range as the temperature increases. This
conjecture is justified by the points indicating the Curie temperature in Fig. 5, which form a line with a similar slope
as the data at low temperature. Note that in a logarithmic plot of ρxy vs. ρxx the linear fit with n ∼ 2 can only be
obtained for low temperatures, but a well-defined relation between ρxy and ρxx cannot be found as the temperature
increases beyond some value specific for each sample. Our data therefore confirm that the scaling relation between
ρxy and ρxx (and therefore also between σxy and σxx) breaks down at high temperatures, but the scaling relation
of ρxy/m = χS(T )ρn

xxM0 with n = 2 does apply (including temperatures above TC), provided that we allow χS to
depend on temperature.

2. Scaling relations for σxy vs. σxx from temperature-dependent measurements

To gain additional insight into AHE, we now attempt to interpret the scaling relation of ρxy/m = χS(T )ρn
xxM0 with

n = 2 in terms of the transverse and longitudinal conductivity. In Fig. 6(a), we plot σxy/m = χS(T )M0 as function
of m(T, B) for all studied samples at B = 6 T. Figure 6(a) clearly shows that χS is actually a more straightforward
function of m than of T , as seen by comparing it with the plot of σxy/m vs. T in Fig. 4(b). More evidently, if we
normalize each σxy/m curve by its zero-temperature value (i.e., its value at m = 1 on the graph), all curves except
those for the two samples with the smallest thicknesses (10 nm) collapse into nearly a single curve, as shown in Fig.
6(b). Considering the fact that m(T, B) calculated using the Brillouin function with J = 5/2 is systematically higher
than the actual magnetization in the intermediate temperature range (between 10 K and TC) – which is believed to
be the reason for the concave shape of σxy/m in Fig. 6 – suggests a linear relation,

χS(m) = χS(1) + βχS(1)(1 − m). (9)

Here β = [χS(0) − χS(1)]/χS(1) ≈ 1, so that the anomalous Hall conductivity varies as σxy ∝ M + βM(1 − m)
with β ≈ 1. A similar relation, σxy ∝ M(1 − αM), where α is a constant, has been predicted theoretically on the
basis of the Berry phase5, and confirmed in (In,Mn)Sb by studying the field dependent anomalous Hall effect40. Such
relationship was explained by assuming that as the field is varied, the relative position of the bands shifts linearly with
the absolute value of the magnetization (due to exchange splitting), thus resulting in the anomalous Hall coefficient
which will also be linear with M . Unfortunately we cannot confirm this explanation, since we did not observe the
field dependent anomalous Hall coefficient up to 6 T in this study directly.

A temperature dependent anomalous Hall coefficient χS(T ) is expected, since the absolute value of the magnetization
drops with increasing temperature, although to date this has never been carefully explored. Here it should be
emphasized that a universal value of β ≈ 1 obtained in this work is not expected in metallic (Ga,Mn)As, i.e., it is not
predicted by any existing theory of the AHE. Although we cannot rule out the possible explanation of temperature
dependent χS based on the Berry phase theory, here we propose – based on the behavior seen in Figs. 5 and 6 –
an alternative explanation, that there are two mechanisms contributing to anomalous Hall coefficient χS with the
same order of magnitude. One mechanism (corresponding to the convergence of the ρxy vs. ρxx plots in the lower
part of the panels in Fig. 5) has a weak temperature dependence and dominates at low temperatures, showing an
exponent n of about 2 in the relation ρxy ∝ ρn

xx (see Table I). We can ascribe this scaling relation as arising either
from intrinsic or from side-jump processes. The other (corresponding to the convergence of the plots in the upper
part of the panels) can probably be associated with magnetization fluctuations41. In the latter case, because of the
presence of fluctuations, we will naturally expect term such as M0 − M(T ) (i.e., M0(1 − m)) or M2

0 − M2(T ), which
emerges at higher temperatures.

It should be emphasized that, as shown in Fig. 6, we see that the temperature (or magnetization) dependences
of the normalized values of σxy/m behave similarly for all samples with thicknesses ranging from 20 nm to 100 nm
and Mn concentrations from 3.9% to 6.7%, (i.e, they collapse into an overlapping single group of curves), but the two
thinnest samples (the as-grown and annealed 10 nm samples) conspicuously deviate from the behavior of the thicker
specimens. We therefore believe that our conclusion is valid for bulk-like film, i.e., there is no effect of thickness and
Mn concentration on the temperature dependence of σxy in thick films. This suggests that the deviation seen in the
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FIG. 5: (Color online) Logarithmic plots of ρxy/m vs. ρxx at various temperatures (2 – 300 K) and magnetic fields (1 – 6 T)
for three as-grown samples, (a), (c), (e); and three annealed samples, (b), (d), (f). The shift of curves at low temperature with
varying magnetic field is attributed to the ordinary Hall effect. The points in the figure indicate the Curie temperature for
each sample.

case of the ultrathin samples (t < 10 nm) signals a process that is not accounted for in our analysis, and may be
associated with an emergence of surface effects or from a significant contribution of quantum confinement.

We note parenthetically that transport measurements are sensitive to local microscopic inhomogeneities. And from
our early neutron reflection measurements42, we were able to establish that there exists some magnetic inhomogeneity
along the growth direction, which is especially evident in as-grown samples. In that work it was also shown that low
temperature annealing dramatically reduces such inhomogeneity. Furthermore, this improvement of homogeneity in
annealed GaMnAs was demonstrated independently by the annealing-induced reduction of the resonance linewidth
in ferromagnetic resonance (FMR) measurements43. Since the behavior which we report in the present paper is
similar for both as-grown and annealed samples, this therefore leads us to believe that the observation of the two
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FIG. 6: (Color online) (a) σxy/m = χS(T )M0 vs. m(T,B) are plotted for all studied samples at B = 6 T. (b) σxy/m normalized
by its value at m = 1 vs. m(T, B) are plotted for all studied samples at B = 6 T. Two samples with the thinnest thickness are
marked in the figure.

contributions to AHE is not related to local microscopic inhomogeneities (or nonuniformity), but rather to thermal
magnetic fluctuations. Note that spin fluctuations at the phase transition, i.e., an increase of scattering (“de-phasing”)
due to spin disorder, were also reported as an increase of the FMR linewidth near the Curie temperature in (Ga,Mn)As
system43,44.

D. The connection between scaling relations and the metal-insulator transition

We now summarize and discuss the magneto-transport results obtained in metallic (Ga,Mn)As. At near zero tem-
perature, despite the fact that the particular samples may differ in magnetization values and/or hole concentrations,
we find that a surprisingly universal empirical scaling relation exists between the Hall and longitudinal conductivities
σxy ∝ σ1.5

xx (i.e., ρxy ∝ ρ0.5
xx ) in the range of low hole concentration (p up to 1020 cm−3), i.e., near the Anderson-Mott

metal-insulator transition point. However, such scaling relation is broken as p increases, revealed by the very different
behaviors of σxy and σxx in Figs. 1(a) and 1(b) when p exceeds 1020 cm−3. On the other hand, from the temperature
dependences of σxy and σxx observed in individual samples, we find that another scaling relation exists for each
sample, ρxy ∝ ρ2

xx (i.e., σxy = ρxy/ρ2
xx ≈ χSM , with no direct relation to σxx) in the very low temperature range, but

quickly breaks down with increasing temperature. However, by introducing a normalized magnetization parameter
m(T, B) calculated from the Brillouin function, we are able to establish a new scaling relation: ρxy/m = χS(m)ρ2

xxM0,
which leads to a magnetization-dependent anomalous Hall coefficient χS(m) = χS(1) + βχS(1)(1 − m), where β ≈ 1.
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Clearly these two scaling relations for low temperatures – one obtained from all samples at a fixed temperature, and
the other from temperature-dependent magnetotransport measured on individual samples – coexist and disagree with
each other in the low p range (up to 1020 cm−3). This incongruity cannot be explained by the model provided by
Onoda et al.33,34, in which three scaling relations are predicted in different conductivity regimes depending on the
carrier scattering time.

As an “ad hoc” attempt, however, this disagreement can be resolved to some extent by introducing the relation
M0 ∝ σ1.5

xx – which, based on the power-law relation between σxx ∝ (p−pc)
0.5 shown in Fig. 2(a), automatically implies

the interesting result that M0 ∝ (p − pc)
0.75. We will return to this point below. Consequently, we now have a new

scaling relation ρxy/(p−pc)
0.75 ∝ ρ2

xx for (Ga,Mn)As in the intermediate conductivity range (30 Ω−1cm−1 < σxx < 100

Ω−1cm−1) at near zero temperature, which is very similar to the relation ρxy/p2/3 ∝ ρ2
xx predicted and confirmed by

either the Berry phase9 or the side jump19 models. However, this scaling relation fails in both the localized (p < pc)
and the highly conducting regimes (σxx > 100 Ω−1cm−1)14.

The results presented above show that the physics of conductivity, AHE and magnetization are dominated by the
nature of the Anderson-Mott metal-insulator transition. Close to the critical hole concentration pc, in the conducting
regime, σxx, σxy, and M0 all have the power law form (p−pc)

s where, based on a simplified 3-dimensional localization
model, s is expected to be of order of unity for all these three physical quantities σxx, σxy, and M0. If the exponent
s is the same for all three quantities, this leads to two relations: σxy ∝ σxx and σxy ∝ M0. The former relation is
incompatible with our observations, while the latter contains a natural explanation for a scaling relation ρxy/M0 ∝ ρ2

xx.
In fact, our results suggests that the exponent s is different for σxy and σxx near the critical regime (e.g., s ≈ 0.76 for
σxy, and 0.5 for σxx), leading to a universal scaling relation σxy ∝ σγ

xx with γ ∼ 1.5 6= 1 for intermediately conductivity
(Ga,Mn)As samples (σxx < 100 Ω−1cm−1). To some extent the above conjecture agrees with the theoretical model
based on the Keldysh formalism, recently developed for multiband ferromagnetic metals by Onoda et al.33,34 However,
future theoretical investigations in connection with the Anderson-Mott localization model are required to justify our
conjecture, M0 ∝ (p−pc)

0.75, for resolving the issue of coexistence of the two apparently contradictory scaling relations
in the region below p − pc = 1 × 1020 cm−3.

Furthermore, we should emphasize that in the picture of localization the saturation magnetization at zero temper-
ature M0 (which was shown to obey a power law (p − pc)

0.75) becomes a function of disorder, and therefore ceases
to be simply proportional to the Mn concentration. This implies two important phenomena: First, our experiment
suggests that M0 has the same exponent s as σxy, which is around 0.76±0.06 in our samples in the intermediate
conducting regime (30 Ω−1cm−1 < σxx < 100 Ω−1cm−1), coincidentally close to the exponent of 2/3 used in previous
analyses9,19. However, both M0 and σxy deviate from this power-law form in highly conducting samples (σxx > 100
Ω−1cm−1), which leads to the unanticipated dependence of M0 and σxy on the hole concentration14. Second, near
the metal-insulator transition, M0 and σxy at zero temperature should decrease as p decreases toward pc, and should
eventually vanish in the localized regime, as predicted by the theory of AHE in ferromagnetic (Ga,Mn)As in the
regime where conduction is due to phonon-assisted hopping of holes between localized states in the impurity band45.
As a result, we speculate that there exists another phase transition as the temperature approaches zero in an insulat-
ing ferromagnetic (Ga,Mn)As sample. This provides special motivation to extend measurements of magnetization to
ultra-low temperatures.

Generally, electron localization might arise from disorder (Anderson transition) or from electron-electron interactions
(Mott-Hubbard transition)46. Therefore, the different temperature variations of σxx and σxy might indicate that
both features play a role in conductivity σxx, but the anomalous Hall conductivity σxy is only affected by the hole
concentration p, which is indirectly related to disorder46, i.e., the statistical distribution of dopant atoms in the
crystalline host. This might offer a natural explanation for the different exponents observed for σxx and σxy, which
leads to a universal empirical scaling relation σxy ∝ σγ

xx with γ ∼ 1.5 around the critical point.

IV. SUMMARY AND CONCLUSIONS

In this paper we carried out a systematic study of the dependences of the longitudinal (σxx) and transverse anoma-
lous Hall (σxy) conductivities on the hole concentration and temperature in a series of ten metallic (Ga,Mn)As samples
with different hole and Mn concentrations. The entire series covered the conductivity range of 30 Ω−1cm1 < σxx < 300
Ω−1cm−1 and hole concentration range 3.6 × 1019 cm−3 < p < 7.3 × 1020 cm−3. We summarize our results below.

Transport data taken near zero temperature on the entire series of the GaMnAs samples has allowed us to establish a
scaling relation – σxy ∝ σ1.5

xx – which holds in the conductivity range 30 Ω−1cm1 < σxx < 100 Ω−1cm−1 (corresponding
to 3.6 × 1019 cm−3 < p < 1.0 × 1020 cm−3), which we refer to as the “intermediate” conductivity range. However,
this relation was found to break down in the high conductivity limit (σxx > 100 Ω−1cm−1).

At the same time, a scaling relation – ρxy ∝ ρ2
xx – was established from the temperature variation of the transport

data observed at low temperatures (T < 10 K) individually on all samples of the series. This relation, however fails
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at high temperatures.
While the two relations, σxy ∝ σ1.5

xx and ρxy ∝ ρ2
xx, are found to hold in the same conductivity and temperature

range (30 Ω−1cm−1 < σxx < 100 Ω−1cm−1; T < 10 K), they are contradictory, and need to be reconciled.
In order to reconcile this inconsistency, we find that a universal scaling relationship ρxy/M0 ∝ ρ2

xx can be established
in connection with the Anderson-Mott metal-insulator transition. In accomplishing this, we find that both M0 and
σxy must obey the power law form of (p− pc)

s with the same exponent s in the intermediate conductivity regime (30
Ω−1cm−1 < σxx < 100 Ω−1cm−1, and p ranging from pc ≈ 2.8 × 1019 cm−3 to ∼ 1.0 × 1020 cm−3).

We emphasize that this “reconciliation” leads to the surprising result that M0 variation is determined by a power
of (p − pc).

In order to explain the observed temperature dependence of AHE up to high temperatures (including T > TC), we
also establish a scaling relationship ρxy/m ∝ ρn

xx, with n ≈ 2.0, where m = M(T, B)/M0. As a result, we find that the
anomalous Hall coefficient χS itself depends on the magnetization, which suggests that the temperature dependence
of σxy can be attributed to two contributions: a contribution from either intrinsic or side-jump process, which
dominates at low temperature; and another which emerges at high temperatures as the magnetization fluctuations
quickly escalate. It is still not certain which process (intrinsic or side-jump) is dominant at low temperatures.

It is interesting that the effect of two entirely different contributions to the anomalous Hall coefficient χS – that
arising from the intrinsic or side jump processes and that induced by magnetization fluctuation – have the same order
of magnitude. Resolving the reasons for this should lead to a better understanding of the physics of AHE in GaMnAs.
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