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Due to the inherent disorder in local structures, anisotropy dispersion exists in almost all systems
that consist of multiple magnetic tunnel junctions (MTJs). Aided by micromagnetic simulations
based on the Stoner-Wohlfarth (S-W) model, we used a two-dimensional field sensing map to study
the effect of anisotropy dispersion in MTJ arrays. First, we recorded the field sensitivity value of an
MTJ array as a function of the easy- and hard-axis bias fields, and then extracted the anisotropy dis-
persion in the array by comparing the experimental sensitivity map to the simulated map. Through
a Mean-Square-Error based image processing technique, we found the best match for our experi-
mental data, and assigned a pair of dispersion numbers (anisotropy angle and anisotropy constant)
to the array. By varying each of the parameters once at a time, we were able to discover the depen-
dence of field sensitivity on magnetoresistance ratio, coercivity, and magnetic anisotropy dispersion.
Effects from possible edge domains are also discussed to account for a correction term in our analysis
of anisotropy angle distribution using the S-W model. We believe this model is a useful tool for
monitoring the formation and evolution of anisotropy dispersion in MTJ systems, and can facilitate
better design of MTJ-based devices.
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I. INTRODUCTION

Magnetic tunnel junctions (MTJs) with crystalline tunnel barriers have been extensively studied over the last
few years. A tunneling magnetoresistance ratio (TMR) in excess of 200% in such devices has made them excellent
candidates for applications in spin-based electronics1,2. One of the applications, a magnetoresistive field sensor, is
usually configured such that the magnetization of the free layer is perpendicular to that of the pinned layer (pinning
axis), either due to biasing magnetic fields3 or high shape anisotropy4. When subjected to a magnetic field along the
pinning axis, the magnetization of the free layer undergoes a coherent rotation, yielding an almost linear response on
the magnetoresistance. In hope to increase this linearity and to boost the sensor sensitivity to the picotesla scale,
several research groups have proposed a variety of techniques: using a single field applied at an angle between the
hard and easy axes, P. Pong et al.5 obtained a linear nonhysteretic response in Al2O3 based MTJs with a magnetic
field sensitivity as high as 13.8%/Oe. The introduction of a second antiferromagnetic thin film adjacent to the detec-
tion layer, as reported by Negulescu et al.6, allowed tuning both the sensitivity and the linear range of the MTJ sensor.

As demonstrated by rapidly growing amount of literatures on the subject, the magnetic properties of MTJ devices
can be characterized by using the acquired magneto-transport properties, thus revealing the micromagnetics of the
free layer, which is often in micron to submicron scales. For instance, Mazumdar et al.7 mapped the magnetic field
sensitivity and low-frequency 1/f voltage noise of an MTJ in orthogonal magnetic fields. The so-called noise map
uncovered the possible origin of intrinsic magnetic noise of MTJ devices. Safron et al.8 used a circle transfer curve
method to determine the magnetic parameters that govern the behavior of MTJ devices. By recording an MTJ device
resistance as a function of the applied field angle, information about the free layer’s anisotropy orientation can be
provided. Although Safron suggested that analysis of an MTJ’s remnant resistance curve may yield the dispersion of
the free layer anisotropy, they didn’t give a quantitative approach.

In Safron’s work, the Stoner and Wohlfarth (S-W)9,10 model was employed to yield theoretical estimations for
the anisotropy angle and the anisotropy constant for an MTJ’s free layer. The model describes the rotation of the
magnetic moment of a single-domain magnetic particle with an anisotropy easy-axis. The S-W model generates both
the reversible and irreversible changes in magnetization under a multi-dimensional magnetic field, taking into account
the arbitrary strength of magnetic anisotropy. A single MTJ element with a well-defined free layer having a uniaxial
anisotropy follows the S-W model relatively well. On the other hand, for an MTJ magnetic sensor array made up of
multiple elements, each sensing element has its own anisotropy due to inherent disorder in local structures or the pat-
terning process. The anisotropy parameters of the sensing elements, such as anisotropy-axis and anisotropy constant,
are not uniform, yet they satisfy certain statistical distribution. A series of tests have indicated that the dispersion in
this type of distribution often acts against achieving good sensitivity. Since the modeling of the magnetic behavior of
such a spintronic device is more complicated than what the simple S-W model can predict, developing a more com-
plete model is needed in order to understand the magnetic properties of such systems, and that is the aim of this study.

This paper is arranged in the following manner: first we will determine the magnetic sensitivity by using a
two-dimensional field sensing map as described in reference7, and then we will present a model to account for the
anisotropy dispersion. Finally, we will talk about conclusions derived from this model, and its comparison to the
experimental work.

II. EXPERIMENTAL METHODS

We deposited MTJ multilayer films on thermally oxidized silicon wafers using a custom multi-target high-vacuum
magnetron sputtering system (base pressure of 2×10−8 Torr). The MTJ stack has the following structure(thicknesses
in angstroms):50Ta/300Ru/50Ta/20CoFe
/150IrMn/20CoFe/8Ru/30CoFeB/19MgO/30CoFeB/50Ta/100Ru. All layers except the MgO barrier were deposited
by DC sputtering at a constant Ar pressure of 2.05mTorr. The MgO barrier was deposited by radio frequency (RF)
magnetron sputtering at an Ar pressure of 1.1 mTorr. During the sputtering process, the substrates were rotated at a
constant speed to maximize uniformity throughout each wafer. Micron-size elliptical junctions were patterned using
standard photolithography and ion-beam milling process. A 150-nm-thick gold layer was deposited over the defined
junction area and patterned into low resistance top contact leads. The free layers of the junctions studied had lateral
dimensions of 50× 90µm2, and the MTJ arrays consisted of thirty-eight free layer elements connected in series with
the whole resistance about 2 KΩ.
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After deposition and patterning, high temperature magnetic annealing was used to define the intrinsic magnetic
axis and to achieve a high magnetoresistance ratio. Typically, the MTJs were annealed at 310◦C for 4 hours at
8× 10−8 Torr in an applied magnetic field of 4.5 KOe. The field was applied along the shorter axis of the free layer
oval. After annealing, the magnetic pinning direction of the pinned layer is always parallel to the shorter axis of
the free layer. The magnetic anisotropy of the free layer is predominantly due to the magnetocrystalline anisotropy
induced by the magnetic annealing. Because of this, the easy-axis of the free layer is in fact the shorter axis.

We performed magnetic sensitivity measurements in orthogonal magnetic fields applied along the easy- (HE) and
hard- (HB) axis of the MTJ elements. The four-terminal MTJ device was wire-bonded onto a DIP-SOIC (duel inline
package-small outline integrated circuit) adapter, and then mounted onto a printed circuit board (PCB) which was
connected for four-probe measurements. Two pairs of orthogonally placed electromagnets provided the easy- and
hard-axis fields. A pair of Helmholtz coils generated a small AC magnetic field (4H∼1 Oe) along the easy-axis
direction of the MTJ array. The voltage AC output from the MTJ (4V ), in response to 4H, was measured by using
a lock-in amplifier as a function of HE and HB . It is a common practice to express the field sensitivity s in terms of
the relative voltage change, i.e. s ≡ (1/V )(dV/dH) = (1/G)(dG/dH), where G is the electric conductance, and d is
the derivative symbol. By using this setup, we developed the so-called sensitivity map, a technique of mapping the
sensitivity value in a two-dimensional orthogonal magnetic field space, in order to extract the relevant sensing and
magnetic anisotropic properties of the free layer elements7.

III. COMPUTATIONAL METHODS

To understand the sensitivity map, we attempted to model a system consisting of a collection of S-W single-domain
magnetic particles, with each particle corresponding to one free layer element in our MTJ array. Each element or
particle is specified by its magnetic moment (ms), anisotropy constant (Ku), and easy-axis direction (α). Because of
the inherent disorder in local structures or due to the patterning process, these parameters are not uniform. However,
they satisfy certain statistical distributions. In this study, we ignored any magnetostatic interactions between the
neighboring magnetic particles (which can be justified in section IV). We only considered the magnetic energies of
these particles in a two-dimensional external magnetic field (H ), applied in the plane of these magnetic particles (thin
films). The magnetic moments can only rotate within the plane (i.e. only the in-plane anisotropy is considered).

The total energy of a single S-W particle as shown in Fig. 1 is given by E = Ku sin2 θ1 −Hms cos(θ2 − θ1) , where
θ1 is the angle between the magnetization vector (ms) and the easy-axis of the particle, and θ2 is the angle between
the applied field vector (H ) and the easy-axis. In the S-W model, the equilibrium direction of ms of a single particle
is obtained by minimizing the total energy of the particle using the criteria ∂E/∂θ1 = 0, and ∂2E/∂2θ1 = 0. The
solutions of these two equations can be obtained by using the Newton-Raphson method11. A geometric construction,
known as the Asteroid Rule12–14 (see Fig. 1), is employed to visualize the determination of the equilibrium direction
of ms. According to the Asteroid Rule, the equilibrium direction is parallel to one of the lines tangent to the asteroid
and passing through the tip of magnetic field vector H . When H is inside the asteroid, four tangent lines (shown in
grey in Fig. 1) can be drawn and the two possible equilibrium directions are parallel to the two lines making smallest
angles with the easy-axis (labeled ms and m′s in Fig. 1). When H is outside the asteroid, two such tangent lines can
be drawn, and the equilibrium direction is parallel to the one making a smaller angle with respect to the easy-axis.
The equilibrium direction changes continuously when H crosses the asteroid curve passing from the inside to the
outside regions.

According to the magnetotunneling theory15, for an MTJ with a sufficiently thick barrier, the electrical conductance
(G) can be expressed as a linear function of the cosine of the angle (θ) between the magnetic moments of the free
and pinned layers: G = G0[1 + P 2 cos θ], where G0 is a constant, P is the spin polarization of tunneling electrons. If
the MR is known for this MTJ (in our case, MR=35%), the spin polarization P can be obtained using the relation:
MR≡ GP−GAP

GAP
= 2P 2

1−P 2 . Assuming that the magnetization of the pinned layer is fixed(0o), and that the equilibrium
direction of the magnetization of the free layer (θF ) is derived from the Asteroid Rule, we can compute the field
sensitivity by (d is the derivative symbol)

s ≡ 1
G
· dG
dH

=
1

G0[1 + P 2 cos θF ]
· G0P

2d(cos θF )
dH

=
P 2

[1 + P 2 cos θF ]
· d(cos θF )

dH
. (1)

Based on the definition of field sensing map described in the previous section, we calculated the sensitivity map of a
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FIG. 1. The Asteroid Rule of the Stoner-Wohlfarth model for a single-domain magnetic particle. Each particle is specified by
its magnetic moment ms, anisotropy constant Ku, and easy-axis direction α. θ1 is the angle between the magnetization vector
ms and the easy-axis of the particle, and θ2 is the angle between the applied field vector H and the easy-axis. The equilibrium
direction of ms (or m′s) is parallel to one of the lines tangent to the asteroid and passing through the tip of magnetic field
vector H (shown in grey).

FIG. 2. The simulated sensitivity map for a single-domain magnetic particle. The field sensitivity defined as s ≡ (1/G)(dG/dH)
is plotted as a function of easy- and hard-axis fields. The color bar shows the scale of values in the map, and the red spots
represent the most sensitive areas, with highest field sensitivity value being 1.91%/Oe. In this simulation, the coercive field is
28 Oe, MR is 35%, and offset from zero on the easy-axis is -13 Oe.

single free layer as shown in Fig. 2. The sharply-confined red spots represent the most sensitive areas of the map, and
also mark the boundary between the reversible and irreversible magnetic switchings. The horizontal distance between
the two edges of the asteroid (visible in Fig. 2) is twice the coercive force Hc. The centers of the high sensitivity spots
are shifted from zero on the easy-axis to about -13 Oe, which is chosen to be consistent with experimental results.
The sensitivity map contains rich information, which will be further discussed later.
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As mentioned earlier, our MTJ device being studied consists of a collection of magnetic particles, each to be
modeled as a single-domain with a unique easy-axis orientation α and anisotropy constant Ku. If we allow dispersions
in α and Ku, a composite sensitivity map of an entire MTJ array can be created as a result of the superposition of
all thirty-eight individual sensitivity maps. By comparing the simulated sensitivity map to the experimental map,
we can extract valuable information such as real coercivity, anisotropy field, and dispersions in α and Ku. In this
sense, we applied a Mean-Square-Error (MSE) based image processing method to quantitatively ascertain the degree
of similarity between the simulated and the experimental sensitivity maps. In MSE analysis, x = {xi|i = 1, 2, ..., N}
is the experimental map, and y = {yi|i = 1, 2, ..., N} is one of the many simulated maps with varying magnetic
parameters. N is the number of pixels, and xi and yi are the pixel intensity of the ith pixels in x and y, respectively.
The MSE between the two maps is defined as MSE(x, y) ≡ 1

N

∑
i(xi − yi)2 . We then minimized this MSE number

for the two maps, and found the optimal match. This optimization process provided us with the anisotropy dispersion
in practical MTJ devices.

IV. RESULTS AND DISCUSSION

We obtained the magnetoresistance ratios (MR) of an MTJ array as the external field, HE , was varied along the
easy-axis of the free layer. As shown in Fig. 3, in the absence of a hard-axis field, a square-shaped hysteresis loop was
observed with an MR of 35%. Under a large hard-axis field (60 Oe), the hysteresis loop evolved into a reversible and
non-hysteretic curve with an unsaturated MR of 23%. The simulated transfer curves are also plotted with a solid line
in the memory configuration (0 Oe), and a dashed line in the sensing configuration (60 Oe). Both of them show good
consistency with the experimental results. In the inset a), we showed an image of 38 MTJ junctions in a series array,
with adjacent MTJ junctions connected to each other alternately through the bottom or top electrical leads. A scale
of 100µm and the direction of easy-axis are also indicated. The magnetic field due to the magnetic dipole moment
of adjacent elements can be approximated by Hd = µ0

4π
2ms

r3 , where ms is the magnetization moment for each element
(≈10−14 emu), and µ0 is the permeability of free space, r is the distance between adjacent junctions (30∼90 µm).
The result shows Hd is in the order of 0.1 Oe, which is well below the applied magnetic field, thus it is reasonable
to assume that magnetic coupling between adjacent domains has a minimal effect on the results for large applied fields.

Because of this array configuration, junctions sharing the same bottom leads were measured together. For the 19
pairs of junctions in each device as seen in Fig. 4, left panel, a total of nineteen transfer-curve measurements were
carried out to yield the distributions of resistances (in parallel configurations), TMR ratios, coercivities, and offset
values from zero on the easy-axis. The resistance for device 1 is therefore about 2.02 KΩ (106.7 Ω×19).

Due to the deposition process, the resistances, as well as other characteristic parameters for MTJ devices, tend
to vary from batch to batch and show a certain degree of variation throughout the wafer surface. However, Fig. 4,
left panel shows small deviations for these parameters among the MTJ pillars for a single device, which justifies our
assumption that we can use statistical methods to study the magnetic anisotropy dispersion in CoFeB/MgO/CoFeB
MTJs. The following discussion is based on the result obtained for device 1, while the results for other devices are
qualitatively the same.

Certain defects, such as edge roughness, encourage the formation of edge domains along the boundary of a free layer
magnetic element16. At the saturated parallel state of an MTJ element, both magnetizations in the interior region of
the element (Mi) and the edge domains (Me) align with the external field. At the remnant state (excluding the effect
of Neel coupling), the magnetizations in the edge domains tend to orient themselves away from the magnetization in
the interior region depending on the local inhomogeneity, while Mi remains unchanged. This effect may cause the
average magnetization vector in the element to deviate slightly from the saturated state, leading to the minor curling
at the beginning of the magnetization reversal as evidenced in Fig. 4, right panel.

The possible existence of active edge domains in the magnetic field range of interest (-100 Oe to 100 Oe) gives rise
to a model correction term to the magnetization dispersion. This term can be capped by analyzing the TMR curve
as shown in Fig. 4, right panel. Since the electrical conductance of an MTJ cell is G = G0(1 + P 2 × cos(θ)), θ is the
orientation of magnetization vector in the free layer cell relative to that of the pinned layer, we use the conductance
values at A and B (or C and D) to calculate the uncertainty in θ due to the edge domains, the result is about 0.4
degrees. Therefore, our simulation results have an uncertainty of about 0.4 degrees regarding the magnetization
dispersion as a result of edge domains. Note the above uncertainty is purely for a single free layer element, and it
should not be confused with the distribution of anisotropy axis orientation in multiple MTJ elements in one device
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FIG. 3. Magnetoresistance ratios of an MTJ device as the external field is varied along the easy-axis of the free layer. The
curve of circles is the experimental data with HB=0 Oe, and the curve of diamonds is the hysteresis-free response at HB=60
Oe. The simulated MR curves are also plotted. The inset a) shows an optical image of 38 MTJ sensors in a series array (device
1), with adjacent MTJ sensors connected to each other alternately through the bottom or top electrical leads. The inset b)
shows a cross-sectional TEM image of our sample.

(about 4.5 degrees) as will be discussed later.

The experimental sensitivity map plots the sensitivity value as a function of the easy-axis and hard-axis bias fields
as seen in Fig. 5. This technique enables us to locate the most sensitive region of an MTJ device by suitably choosing
the optimum biasing magnetic fields. There are two high sensitivity spots of around 1.2%/Oe (orange through dark
red) peaking at HB∼±30 Oe and HE∼-13 Oe. In the region between these spots, the sensitivity drops rapidly and
becomes almost zero for |HB | <10 Oe due to the hysteresis behavior of the MTJ. The centers of the high sensitivity
spots are shifted from zero on the easy-axis to about -13 Oe. This shift is a manifestation of the coupling between the
ferromagnetic (free and pinned) layers. Such a coupling is either due to the direct magnet dipolar coupling between
the free layer and pinned layer, or due to the coupling that results from the correlated roughness of the ferromagnetic
layers, called Neel or ”Orange-Peel” coupling18,19. Given that the synthetic-antiferromagnetic pinned layer reduces
the magnetostatic interaction between the layers, Neel coupling is thought to be the major source here7. This coupling
favors a parallel alignment of the layers and has to be overcome by the easy-axis field. It was further confirmed by an
analysis of the TEM cross-sectional image as seen in Fig. 3, inset b): using the method described in reference19, the
amplitude and wavelength of the interfacial roughness profile we obtained are about 5 Åand 100 Å, giving an offset
value of 12.3 Oe.

As we discussed earlier, the characteristics of a sensitivity map for an array system strongly depends on the following
parameters: 1) dispersions in anisotropy angles and anisotropy constants (α, Ku), 2) MR value, 3) coercivity (Hc),
and 4) offset from zero on the easy-axis field. To find the simulated sensitivity map for a system made up of multiple
MTJ elements, we created a gallery of images with varying parameters 1 through 4. The best matched simulated
map is presented in Fig. 6 with a minimized MSE number. In this simulation, the MR is 35%, and the coercive force
and offset value are 28 Oe and -13 Oe respectively, which is consistent with values obtained experimentally in Fig. 3.
The highest field sensitivity is 1.39%/Oe, which is almost identical to the experimental value. The anisotropy angle
α follows a Gaussian distribution with a mean value of 0 and a standard deviation of 0.08 rad (∼4.5 degrees). As
opposed to the qualitative approach used in Safron’s work8, where the angular dispersion of anisotropy is said to be
proportional to the normalized derivative of the remnant curve, the standard deviation we obtained here has more
practical meaning (0.08 rad). On the other hand, for each free layer element, the effective anisotropy constant Ku is
correlated with the magnetic moment ms and the coercive force Hc according to 2Ku

msHc
= 113. If we let ms and Hc be
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FIG. 4. Left panel: for a total of 5 MTJ devices, distributions of resistance values (parallel state), TMR ratios, coercivities,
and offset values are shown, represented by squares, circles, diamonds, and triangles, respectively. Because of the array
configuration, no fewer than two MTJ junctions could be measured together, thus each data point shows the mean value and
standard deviation for a total of 19 measurements per device. Right panel: TMR curves for a single MTJ element as the
applied field is varied along the easy-axis of the free layer in absence of hard axis (HB) magnetic fields.

FIG. 5. The experimental sensitivity map of an MTJ array. The sensitivity value is plotted as a function of the easy-axis and
hard-axis fields. Two high sensitivity spots are located at HB∼±30 Oe, HE∼-13 Oe, with s as high as 1.38%/ Oe. In the
region between these spots the sensitivity drops rapidly and becomes almost zero for |HB | <10 Oe.

constant (Hc be the coercive force for the whole system), the variable 2Ku

msHc
in each element is no longer an identity,

but follows a Gaussian distribution. In our case, the distribution has a mean value of 1, and a standard deviation of
0.02.

Although the simulated and the experimental maps show a high degree of similarity, there exist minor differences
between them. First, the experimental map is slightly rotated, meaning the pinning direction of MTJ device is not
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FIG. 6. The simulated sensitivity map of a system made up of multiple magnetic tunnel junctions. The map is plotted as
superposition of multiple sensitivity maps, and the parameters used in this map are optimized in order to resemble most of the
experimental map. In our case, MR=35%, the coercive field Hc=28 Oe, the offset value=-13 Oe, for anisotropy angle: α =0,

σα =0.08 rad; for anisotropy constant 2Ku
msHc

=1, σ( 2Ku
msHc

) =0.02. Here Hc stands for the coercive force for the system, not for
each element.

FIG. 7. The field sensitivity (peak value) as a function of anisotropy dispersions: dispersion in anisotropy angle σα and
dispersion in anisotropy constant, σ( 2Ku

msHc
) . A contour is made by just varying anisotropy dispersions, with all the other

parameters kept the same as in Fig. 6. The field sensitivity always decreases with increased dispersions, and the experimental
work is indicated by a star.

perfectly aligned with the easy-axis field HE . Second, the red spots in the experimental map are less elongated than
those in the simulated map. This can be explained by the fact that the magnetization of the pinned layer is slightly
re-oriented in the presence of a large hard-axis field, causing field sensitivity s to drop more rapidly with an increasing
HB . This factor was not accounted for in our simulated model.

Since the parameters 1 to 4 depend on the thin film deposition and patterning processes, we studied how the
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FIG. 8. The field sensitivity (peak value) as functions of magnetoresistance ratio (indicated by the solid squares) and coercive
field (indicated by the empty circles). The curves are made with only MR or Hc varying, with all the other parameters
remaining the same as in Fig. 6. An increase in MR value can result in a greater sensitivity value, and an increase in Hc can
reduce the field sensitivity. The experimental work is marked by a star.

field sensitivity s changes as each of these parameters is varied independently. The purpose is to examine which
parameter is more critical to the sensitivity. We first studied the effect of statistical dispersions in anisotropy angles
and anisotropy constants. Fig. 7 shows the dependence of sensitivity on the standard deviations of α and Ku, with
all other parameters (e.g., MR and coercivity) kept the same as in Fig. 6. The experimental data point is marked by
a star on the contour in Fig. 7.

Since the system being studied consists of a collection of free layer elements, each of them has a unique easy-axis
orientation α and anisotropy energy constant Ku. The sensitivity map for the system can be viewed as a superposition
of multiple single-particle sensitivity maps. A positive change in α will result in a counter-clockwise rotation of a
sensitivity map (while a negative change will result in a clockwise rotation). Similarly, a positive change in Ku will
expand a sensitivity map (while a negative change will contract a sensitivity map). As the position of the most
sensitive area of a single-particle sensitivity map is not necessarily the same as in another map, the sensitive area of
the composite map will expand if there are sizeable dispersions of α and Ku in the whole system. Thus, the field
sensitivity always decreases with increased dispersions. Physically, a spintronic device often consists of many MTJ
elements working in unison, and the dispersions in them cause them to be less responsive to the external magnetic
field. To significantly reduce the dispersion, we may consider improving the uniformity throughout the wafers and
improving the magnetic annealing process. As shown in Fig. 7, the field sensitivity (peak value on a sensitivity
map) drops rapidly as the dispersion in α becomes larger, and less rapidly with an increasing dispersion in 2Ku

msHc
.

Sensitivity is almost halved if both dispersions undergo a ten-fold increase.

By keeping the dispersions the same as in Fig. 6, we proceed by varying the MR and coercive force of the array
system being studied. Fig. 8 shows the effects of varying MR and coercivity on the field sensitivity (peak value on
a sensitivity map). Intuitively, a larger MR value can result in a greater sensitivity value and this can be proved by
using the definition of s. Since s ≡ (1/R)(dR/dH), an increase in MR usually leads to an increase in dR/dH over the
dynamic range, thus greater field sensitivity is achieved. Precisely speaking, in equation (1), field sensitivity is in pos-
itive correlation with the spin polarization P . While P is determined by TMR according to TMR≡ GP−GAP

GAP
= 2P 2

1−P 2 ,

or P =
√

TMR
2+TMR . Thus, the relation between MR and s presented in Fig. 8 is well expected. An eight-fold increase

in MR can result in a five-fold increase in field sensitivity. The experimental data is marked by a star along the curve
for reference.

As for coercivity, the horizontal length of the asteroid in a sensitivity map is twice the coercive force 2Hc; therefore,
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the larger the coercivity, the larger the size of the asteroid. Assuming a unit of easy-axis magnetic field can induce
a conductance change (4G) at peak spot A (with the highest s value) of an MTJ sensitivity map with the original
asteroid, the new sensitivity map, with the coercivity and the size of the asteroid doubled, now requires two units of
HE to make the same conductance change (4G) at peak spot A. In other words, dG/dH becomes smaller. Physically,
it means that the magnetization of the MTJ device is more rigid, and less responsive to the external magnetic field.
This explains the downward trend of the sensitivity as Hc is increased, as shown in Fig. 8. The experimental data is
shown by a star along the curve.

Finally, we want to stress that the magnetic field sensitivity is inherently related to the magnetic susceptibility (χ)
of an MTJ system. According to the equation (1), the magnetic field sensitivity (s) of an MTJ can be expressed as
s = P 2

[1+P 2 cos θF ] ·
d(cos θF )
dH , where d is the derivative symbol, P is the polarization of the spin current, θF is the angle

between the external magnetic field and the magnetization vector of the free layer, and the pinned layer magnetization
is parallel to the external magnetic field applied. Usually the most sensitive use of an MTJ requires that θF ≈ π

2 ,
thus s ≈ P 2

ms
· d(ms cos θF )

dH = P 2

ms
· χ, here ms is the saturated magnetic moment. If we know the polarization of spin

current and the magnetic moment, we can derive χ from the experimentally obtained field sensitivity. The sensitivity
map is therefore directly related to the magnetic susceptibility map. In this sense, an investigation into the sensitivity
map of MTJ devices can reveal some fundamental physical behaviors (magnetic dynamics, spin polarization, etc.) of
the underlying magnetic elements in micro- to nano-scale.

V. CONCLUSIONS AND SUMMARY

A vector hysteresis modeling method based on the Stoner-Wohlfarth model was developed to account for the
anisotropy dispersion in the sensitivity maps of magnetic tunnel junction arrays. We considered the system to be
composed of non-interesting single-domain magnetic particles, with each having its own easy-axis and anisotropy
constant. By superposing the sensitivity maps of those magnetic particles, we extracted the anisotropy dispersions
of practical MTJ arrays by comparing their experimental sensitivity maps to the optimized simulated maps. In
addition, we studied the dependence of the field sensitivity value s on magnetoresistance ratio, coercive field, and
statistical dispersions of anisotropy parameters. It can be shown that the field sensitivity always decreases with
increased dispersions, increases with greater MR value, and decreases with an increasing Hc. It is estimated that
the edge domains contribute about 8% (0.4 out of 4.5 degrees) to the magnetization dispersion. We believe that this
model is a useful tool for monitoring the formation and evolution of anisotropy dispersion in MTJ arrays, and can
facilitate better design of MTJ-based devices.
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