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In terms of first-principles phonon calculations and quasiharmonic approach, the structural, 

vibrational, and thermodynamic properties have been investigated for the ordered and disordered 

Ni1-xPtx alloys with the main focus being on the disordered Ni0.5Pt0.5. To gain insight into the 

disordered alloys, we use special quasirandom structures (SQS’s) and demonstrate their 

capabilities in predicting (i) the bond length distributions, (ii) the phonon spectra, and (iii) the 

elastic stiffness constants of the disordered alloys. It is found that the Pt-Pt atomic pairs possess 

the longest bond lengths relative to the Ni-Pt and Ni-Ni ones in the disordered alloys, the 

predicted force constants indicate that the Pt-Pt bond is stiffer when compared to the Ni-Pt and 

the Ni-Ni ones for both the ordered and disordered alloys, and the phonon density of states of the 

disordered alloys are similar to the broadened versions of the ordered cases. Based on the results 

of the ordered and disordered alloys, a slightly positive deviation from Vegard’s law is found for 

the volume variation of Ni1-xPtx, and correspondingly, a negative deviation is predicted for the 

change of bulk modulus. With increasing Pt content, the bulk modulus derivative relative to 

pressure increases approximately linearly, whereas the magnetic moment decreases. In addition, 
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the SQS predicted relative energies (enthalpies of formation) for the disordered Ni1-xPtx are also 

compared to cluster expansion predictions. As an application of the finite temperature 

thermodynamic properties, the phase transition between the ordered L10 and the disordered 

Ni0.5Pt0.5 is predicted to be 755 ± 128 K, which agrees reasonably well with the measurement 

around 900 K, demonstrating that the driving force of the phase transition stems mainly from the 

configurational entropy rather than the vibrational entropy.  

 

PACS numbers: 63.50.Gh, 65.40.G-, 62.20.D-, 71.20.Be  
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I. INTRODUCTION 

Thermal barrier coating (TBC) systems are widely used to increase further the operating 

temperatures of gas turbine engines (increasing ~ 150 K, thereby improves the efficiency of 

energy conversion) and to protect metal components such as turbine blades and vanes from the 

hot combustion gases.1-2 It is believed that the life time of the TBC systems is ultimately limited 

by the failure of the bond coat within, i.e., the development of cracks caused by oxidation of the 

bond coat.3-4 The Ni-Pt system is crucial in the development of bond coat alloys, such as the Pt 

modified β-NiAl,1 and the one recently developed based on the two-phase mixture of γ-Ni +γ′-

Ni3Al in the Ni-Al-Pt based system by Gleeson et al.5-6 Besides the technologically important Ni-

Pt system for bond coat, Ni1-xPtx is a well studied disordered alloy both experimentally and 

theoretically due to its simple fcc structure over a wide composition range,7 and can be grown 

easily at nearly any concentration. In order to design novel bond coat for the TBC systems and in 

particular to probe the theoretical methodology for the disordered alloys, the present work 

investigates the structural, phonon, and thermodynamic properties of the ordered and disordered 

Ni1-xPtx alloys through first-principles calculations. 

 

Despite years of research efforts, structural/theoretical model of the substitutionally disordered 

(random) alloy still remains one of the least explored issues in first-principles community due to 

the uncertainty about atomic occupations, such as the positions of A and B atoms in a disordered 

A1-xBx alloy. Currently three approaches stand out among first-principles models for disordered 

alloys.8 Each has its own advantages and disadvantages. The first approach is the coherent 

potential approximation (CPA),9 where the average occupations of A and B atoms are assumed 

in a structureless uniform average medium.10 Therefore, local structural relaxations are excluded 
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in CPA, which contrasts with the experimental observations because distances between A-A, B-

B, and A-B atoms are generally different.11-12 The second approach is the cluster expansion 

method (CEM),13-15 which is driven from statistical lattice theory about the one-to-one 

correspondence between a given structure and a set of correlation functions. The configuration-

dependent properties of ordered and disordered alloys are determined from the correction 

functions of the phase of interest and the effective cluster interactions (ECI’s). It is worth 

mentioning that the ECI’s are estimated from a variety of ordered structures, but are useable for 

both ordered and disordered structures. Note that the truncated error in determining ECI’s is 

unavoidable (see the present Ni-Pt case below), and the local structural information of the 

disordered structure is also excluded in CEM. The third approach is the special quasirandom 

structure (SQS) proposed by Zunger et al.,10 which is driven from the same origin as in the CEM 

approach, i.e., a given structure can be characterized by a set of correlation functions. Essentially, 

SQS is an ordered supercell with a few (e.g., 4~32) atoms that mimic the most relevant pair and 

multisite correlation functions of the disordered phase. In contrast to the global and nonstructural 

natures of CPA and CEM, SQS is a local structural model, giving one of the down-selected 

microstates of disordered phase. Regarding the first-principles research on the disordered Ni1-xPtx 

alloys, attempts have been made using CPA and the itinerant CPA methods to study the phonon 

properties.16-17 However, the CPA-type methods are excluded herein because they are incapable 

of capturing the intrinsic nature of disordered alloys. Instead, CEM and SQS method will be used 

in the present work with most of the focus on the SQS calculations. Previously, the SQS method 

was used extensively to study the electronic structures and thermodynamic properties of the 

disordered alloys (see such as Refs. 8, 10, 18-21). Using the SQS method, studies have also been 

performed to calculate the phonon properties of disordered alloys, e.g., Pd3V,22 Ni3Al,23 InxGa1-
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xN,24 and Ga0.5In0.5P.25 However, ≤ 8 random atoms were included in these SQS phonon 

calculations, and a detailed analysis of phonon properties was absent. In an effort to gain insight 

into the properties of the disordered Ni1-xPtx and to demonstrate the capabilities of the SQS 

method, the present work primarily uses the first-principles SQS method to predict (i) the bond 

length distributions, (ii) the phonon properties, and (iii) the elastic constants of the disordered 

Ni1-xPtx. Together with the results from the ordered alloys (compounds), the regularities of the 

structural, vibrational, and thermodynamic properties of the Ni1-xPtx alloys are investigated and 

compared with experimental data when possible.  

 

The remainder of this paper is organized as follows. In Sec. II, we present the ordered 

compounds and disordered SQS structures used for the fcc based Ni1-xPtx alloys and the details 

of the first-principles and phonon calculations. In Sec. III, we discuss the predicted properties of 

Ni1-xPtx alloys, including (i) the bond length distributions of the disordered Ni1-xPtx, (iii) the 

elastic constants of the disordered Ni0.5Pt0.5, (iii) the equilibrium structural properties including 

volume, bulk modulus, the pressure derivative of the bulk modulus, magnetic moment, and 

relative energy for ordered and disordered Ni1-xPtx, (iv) the phonon density of states and force 

constants of the ordered and disordered Ni0.5Pt0.5, and (v) the phase transition between the 

ordered L10 and the disordered Ni0.5Pt0.5 structures. Finally, in Sec. IV the conclusions of the 

present work are given.  

 

II. THEORY AND METHODOLOGY 

A. Disordered and ordered structures 
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As mentioned in Sec. I, there exists a one-to-one correspondence between a given structure and a 

set of correlation functions, which is the key for both the CEM and SQS methods.10, 13-15 In the 

case of a binary alloy, the correlation function Πk,l for a figure (cluster) f(k,l) with k vertices and 

separated by an lth neighbor distance is defined as follows,13    

Eq.  1                         ∑=Π
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,
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where σk is a spin-like variable which takes the value of +1 or -1 depending on whether the 

atomic site is occupied by an A or B atom. The sum is over all of the f(k,l) clusters with Nk,l 

being the total number of such clusters. For a disordered alloy of A1-xBx, Eq.  1 reduces to 

k
lk x )12(, −=Π . In order to generate the SQS for a given number of atoms, we need to find an 

ordered structure from all the possible structure configurations, where the obtained ordered 

structure (i.e., SQS) has the most relevant pair and multisite correlation functions of the 

disordered phase.10 Therefore, the essence of SQS is to use an ordered structure to mimic the 

properties of the corresponding disordered structure. For fcc based binary systems, the SQS’s 

have been reported for the 8-atom (SQS-8),20-21 16-atom (SQS-16),26 32-atom (SQS-32),8, 27 and 

even 48-atom (SQS-48)27 cases. We argue that the reported SQS-32 structures are in fact near-

SQS’s rather than SQS’s, since the authors8, 27 did not search all of the possible configurations 

(note that we did not check the reported SQS-48’s). For the near SQS-32’s with compositions x = 

0.25 and 0.5 reported by Ghosh et al.,8 the pair correction functions are equal those of the 

disordered cases from the first to the forth-nearest neighbor only. For the near SQS-32 (x = 0.25) 

reported by Ruban et al.,27 only the first and second pair correction functions are equal to those 

of the disordered cases. Using the ATAT code (improved by present author YW),28 we search all 

the possible configurations and generate the fcc based 8-, 16-, and 32-atom SQS’s with the 
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compositions x = 0.25 and 0.5 (see Appendix for the structure details). In Table 1, the pair 

correction functions Π2,l (l up to the 11th nearest neighbor) of these fcc based SQS’s generated in 

the present work are reported. For SQS-32 with x = 0.25, the Π2,l’s mimic the disordered ones for 

l = 1~7; and l = 1~8 for SQS-32 with x = 0.5. Clearly, based on the criterion of pair correlation 

functions, the SQS-32 structures generated in the present work are closer to the disordered case 

than the ones previously reported in the literature.8, 27  

 

For the fcc based ordered structures, we employ all of the AmBn structures with m, n = 0, 1, …, 4, 

and m + n ≤ 4, with the total number of structures being 29. Note that these structures are 

generated by the ATAT code.28 In addition, we also choose 8 AmBn structures with 5 ≤ m+n ≤ 8, 

i.e., the mC10, D1a, D1/D7, and the ACS structure.29 The structure details and the commonly 

used names29-31 for these 37 structures are given in the Appendix. 

 

B. First-principles and phonon calculations  

In the present work the first-principles calculations are performed using the VASP code,32-33 with 

the ion-electron interaction described by the projector augmented wave (PAW) method.34 The 

selection of the PAW method rather than the ultrasoft pseudo-potential is due to the fact that the 

PAW method combines the accuracy of all-electron methods with the efficiency of pseudo-

potential.34-35 Regarding the exchange-correction functional, the generalized gradient 

approximation (GGA)36 is used instead of the local density approximation (LDA),37-38 since 

GGA describes Ni and Ni-based alloys well (see Sec. III for more details). In the VASP 

calculations, the samplings of k-points are at least 10,000 per reciprocal atom for ordered 

structures, and at least 5,000 for SQS structures employing the Monkhorst-Pack scheme.39 The 
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energy cutoff of the wave function is taken as 350 eV, which is 1.3 times higher than the highest 

default value. The energy convergence criterion of the electronic self-consistency is chosen as 

10-7 eV per atom for all the calculations. The reciprocal-space energy integration is performed by 

the Methfessel-Paxton technique40 for structure relaxations. For the final calculations of total 

energies, electronic densities of state (DOS’s), and stresses, we adopt the tetrahedron method 

incorporating a Blöchl correction.41 Due to the ferromagnetic (FM) nature of Ni, all the 

calculations are performed within the spin-polarized approximation except for fcc Pt. For the 

purpose of test, first-principles calculations are also performed for nonmagnetic (NM) structures 

of entries 1-29 (see Appendix).  

 

The phonon calculations are performed by the supercell method42 as implemented in the ATAT 

code,43 with VASP used as the computational engine. In the present work, supercells with at least 

32 atoms are used, and displacements of 0.1 Å are adopted for the independent atoms in the 

perturbed supercells. In the VASP calculations, we use at least 2,000 k points per reciprocal atom 

and the Methfessel-Paxton technique40 to calculate the forces acting on the atoms in the 

perturbed supercells. After the VASP calculations are complete, at least 4 Å is used as the cutoff 

range to fit the force constants and to get the phonon results by using ATAT. For more details of 

phonon calculations using the supercell method, see e.g. Refs. 44-46. 

 

In order to fit the first-principles calculated energy vs. volume (E-V) data points, we use the four-

parameter Birch-Murnaghan equation of state (EOS) in its linear form given by,46  

Eq.  2                           23/43/2)( −−− +++= dVcVbVaVE  
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where a, b, c, and d are fitting parameters. The equilibrium properties estimated from this EOS 

include the volume (V0), energy (E0), bulk modulus (B0) and its pressure derivative (B0’).46 

Conversely, based on the fitted equilibrium properties, the fitting parameters can be determined 

easily.46 In the present work, usually six data points are used for the EOS fitting of each structure. 

  

In order to estimate the finite temperature thermodynamic properties of a given phase of interest, 

we use the first-principles quasiharmonic approach to describe the Helmholtz free energy F(V,T) 

at volume V and temperature T,45-47 

Eq.  3                            ),(),()(),( TVFTVFVETVF vibele ++=   

where E(V) is the static energy at 0 K without the zero-point vibrational energy, i.e., Eq.  2.  

Fele(V, T) represents the thermal electronic contribution at V and T, which is particularly 

important for metal systems due to the non-zero electronic density at the Fermi level. Fvib(V, T) is 

the vibrational contribution determined by phonon calculations in the present work. For more 

details of the first-principles quasiharmonic approach, see e.g. Refs. 45-47.  

 

III. RESULTS AND DISCUSSIONS 

In this Section, we show firstly the reasons to choose the GGA potential instead of the LDA 

potential, and then the predicted properties for the disordered Ni1-xPtx, including the bond length 

distributions and elastic constants (see Sec. III A), the equilibrium properties calculated by EOS 

fittings for both ordered and disordered Ni1-xPtx (see Sec. III B), and the predicted phase 

transition temperature between the ordered L10 structure and the disordered Ni0.5Pt0.5 (see Sec. 

III C). Note that without special mention, the present work discusses only the properties of FM 

Ni1-xPtx alloys.  



10 

 

 

Table 2 summarizes the EOS predicted lattice parameters and bulk moduli for fcc Ni and fcc Pt 

in comparison with experiments.48-50 Clearly, the GGA (rather than LDA) describes the fcc Ni 

very well, but the LDA (instead of GGA) is better for describing fcc Pt albeit the LDA is still not 

a good choice for Pt. The GGA potential is selected since the main focus of the present work is 

Ni and Ni based alloys.  

 

A. Disordered Ni1-xPtx: Bond length distributions and elastic properties 

Since an SQS is an ordered structure with low symmetry (usually a monoclinic structure) 

designed to mimic the corresponding disordered structure, the relaxation of an SQS makes its 

cell shape and atomic positions deviate locally the ideal lattice. In order to examine the 

deviations of SQS’s from the ideal fcc structure (taking Ni0.5Pt0.5 as example), Fig. 1 plots the 

average radial distribution functions (RDF’s) for the fully relaxed SQS’s in comparison with the 

RDF of a pristine fcc structure, where the lattice parameter of the pristine fcc structure is 

calculated based on the average volume of SQS-8, SQS-16, and SQS-32. The RDF, used 

commonly to depict the liquid structure,51 describes how, on average, the atoms in a system are 

radially packed around each other. The RDF is defined by,  

Eq.  4                            )4/()()( 2 rrrnrg Δ= πρ   

where n(r) is the mean number of atoms in a shell of width Δr at distance r, and ρ the average 

density of atoms in the system. Fig. 1 shows that the RDF’s of SQS’s, especially the ones of 

SQS-16 and SQS-32, are similar with the normal fcc case, indicating the fully relaxed SQS’s for 

Ni0.5Pt0.5 accurately represent fcc-like structures. 
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In order to probe the fluctuations of atomic positions in the disordered Ni1-xPtx alloys, Fig. 2 

illustrates the bond length distributions in the first nearest neighbor region (2.7±0.3 Å) predicted 

by SQS’s with compositions x = 0.25, 0.5, and 0.75. Concerning the bond length distributions, 

there are no significant differences between SQS-8, SQS-16, and SQS-32, and a deviation up to 

0.25 Å away from the average bond length is shown for the disordered Ni1-xPtx alloys. With 

increasing Pt content, the average bond length increases due to Pt being a larger atom (see Table 

2). Within each SQS structure, the bond lengths of Ni-Ni, Ni-Pt, and Pt-Pt are distinctly different. 

Most of the SQS’s show that the Pt-Pt possesses largest average bond length, whereas the Ni-Ni 

has the smallest one, and the bond length of Ni-Pt is closer to Ni-Ni (the results from SQS-32’s 

are shown in Fig. 2). It should be mentioned that the distinct bond length distributions are given 

by the SQS-32’s instead of the SQS-16’s and especially the SQS-8’s.  

 

The RDF’s and the bond length distributions mostly give local information of the disordered 

alloys. In an effort to test the capability of SQS’s to predict the global properties, we calculate 

the elastic stiffness constants (cij’s) by using an efficient first-principles strain-stress method with 

strains of ±0.01 (see details in Refs. 49, 52-53). Table 3 shows that the predicted cij’s of Ni0.5Pt0.5 

from the SQS-8, SQS-16, and SQS-32 structures. The following mean values of the cij’s are 

reported: (i) c11 from the average of c11, c22, and c33, (ii) c44 from the average of c44, c55, and c66, 

and (iii) c12 from the average of cij’s with i≠ j, and i, j = 1, 2, and 3. The uncertainties, defined as 

the fluctuations of cij’s, are also given in Table 3 based on the calculations of the average cij’s. It 

is found that c11 has the largest uncertainty with respect to c12 and c44, especially for SQS-8. In 

comparison with the cij’s obtained from fcc Ni and fcc Pt according to Vegard’s law (the 

predicted cij’s of the pure elements were reported in Ref. 49), the calculated c11 directly from 
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SQS’s for the disordered Ni0.5Pt0.5 is similar with the one from the Vegard’s law. On the other 

hand, c12 (SQS) < c12 (Vegard), and c44 (SQS) > c44 (Vegard), with the differences around 10 GPa. 

The relationships between the aggregate properties of bulk modulus (B) and shear modulus (G) 

predicted from Voigt’s approach and cij’s are found to be BVoigt < BVegard and GVoigt > GVegard. The 

predicted BVoigt’s are slightly larger by ~ 1-4 GPa than the BEOS’s from EOS fittings, agreeing 

with the previous observations for these two kinds of methods (cij’s vs. EOS)52 and the trend is 

due to the cell shape relaxations included in the EOS fitting but not in the determinations of the 

cij’s. Based on the above analysis, we conclude that the SQS’s can be used to predict the elastic 

properties of the disordered alloys, and the uncertainties for the predicted elastic properties can 

be estimated.  

 

B. Equilibrium properties from EOS fittings  

Based on the ordered and disordered structures shown in the Appendix, the EOS (using Eq.  2) 

fitted properties for FM Ni1-xPtx are shown in Table 4, including V0, B0, B0’, ΔE0 (i.e., the relative 

enthalpy ΔH0 due to the zero external pressure used herein), and the magnetic moment (MM0).  

In Table 4, we also list the experimental data7, 17, 54-55 when available, and the pair correction 

functions for the disordered and ordered structures up to the fourth nearest neighbor. For the 

convenience of discussion, we plot these properties of FM alloys as a function of Pt content in 

Fig. 3. With increasing Pt concentration, Fig. 3 shows that both the equilibrium volume and the 

equilibrium bulk modulus increase. The variation of bulk modulus vs. volume is opposite to the 

common observation, i.e. the larger the volume the smaller the bulk modulus,49 due to the large 

volume and large bulk modulus of fcc Pt with respect to those of fcc Ni (see Table 2). From Fig. 

3, we find that the variation of volume shows a slight positive deviation from Vegard’s law for 
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Ni1-xPtx (e.g., the deviations of 0.13 ~ 0.37 Å3/atom for Ni0.5Pt0.5), and correspondingly, a 

negative deviation is predicted for the change of bulk modulus (e.g., the deviations of -5.3 ~ -

10.2 GPa for Ni0.5Pt0.5). Fig. 4 shows the variations of the derivative of bulk modulus relative to 

pressure (B0’) and the magnetic moment (MM0) for Ni1-xPtx. With increasing Pt content, B0’ 

increases roughly linearly in the range of 4.9 ~ 5.5, whereas the MM0 decreases with a shallower 

slope than experimental measurements,54 but agrees with previous first-principles predictions.56  

Regarding the values of V0, B0, B0’, and MM0 of the SQS’s, the properties are roughly located in 

the middle of the results for ordered structures (see Fig. 3 and Fig. 4).  

 

Fig. 5 shows the first-principles calculated relative energies of the ordered compounds and 

disordered (i.e., SQS’s) Ni1-xPtx alloys at 0 K in comparison with the experimental data at room 

temperature,55 with the reference states of fcc Ni and fcc Pt. The CEM predicted curve for the 

disordered phases are based on the results of ordered structures, and the predicted curve for the 

disordered phases by Redlich-Kister (R-K)57 polynomial are based on the SQS results. Regarding 

the CEM predictions, 34 distinct ECI’s according to cross-validation15 are used, including the 

constant and point terms that have no effect on the results, 25 pair interactions, and 7 triplet 

terms. The R-K polynomial, commonly used in the CALPHAD modeling,58 is given by, 

Eq.  5                          ( ))()( 10 jiji xxLLxxxE −+=  

where xi is the mole fraction of Pt, and xj = 1- xi the mole fraction of Ni. The two-parameter form 

(L0 and L1) is adopted in the present work with the fitted L0 = -185.09 and L1 = 23.56 in units of 

meV/atom. When x = 0.25, Fig. 5 shows that the ground state of Ni3Pt at 0 K is the 

ferromagnetic phase with D022 structure instead of the common belief of L12 structure (see the 

detailed analysis in Ref. 59). Regarding the CEM predicted adaptive crystal structure (ACS) of 
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NiPt7 by Sanati et al.,29 our calculation shows that its formation energy with respect to L12-NiPt3 

and fcc Pt is almost zero, indicating ACS-NiPt7 is not an energeticly favorable structure, in 

agreement with first-principles predictions and experimental measurements by Schonfeld et al.60 

In the lower Pt region, the formation energies are scattered and some structures have higher 

energies, e.g., α1, V1, and Z1 structures, making the CEM predicted energies for the disordered 

phases less accurate due to the truncated errors when determining ECI’s, and they are also higher 

than the predictions by the R-K polynomial. For instance, Fig. 5 indicates the CEM predicted 

energy are quite high for fcc Ni due to the truncated errors especially in the lower Pt region. The 

truncated error is one of the major issues of CEM, we therefore believe more the SQS 

predictions instead of CEM results for disordered phase, at least for the present Ni1-xPtx alloys. 

For the SQS predicted energies, the results are close to each other for SQS-16’s and SQS-32’s, 

but the result of SQS-8 is deviates from the results of SQS-16, SQS-32, the CEM predictions, 

and the R-K polynomial approximation. Note that there are nine 8-atom structures with pair 

correction functions for the first and the second nearest neighbors that match the disordered case, 

and in the present work we pick one of them as SQS-8 based on the pair correction function of 

the third nearest neighbor (see Table 1). The calculated relative energies for these 9 structures 

locate in a large range of -62 to -27 meV/atom. Based on the results shown in Fig. 5 and also Fig. 

1, we conclude that SQS-8 is less accurate to describe the energy of the disordered phase in 

comparison with SQS-16 and SQS-32. In principle, Fig. 5 also shows that the closer the 

correction functions to the disordered phase, the closer their energies relative to the disordered 

phases (e.g., β1 and Y2 structure), but we also find an exception with β2 (see Fig. 5 and Table 4). 

In addition, good agreement is also found between the predicted ground state line and the 

experimental data.55  
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As ancillary tests, the EOS fitted properties (V0, B0, B0’, and ΔE0) for NM Ni1-xPtx are also shown 

for entries 1-29 in Table 4. As expected, the NM phases of Ni1-xPtx have higher energies relative 

to the corresponding FM Ni1-xPtx with the differences of 7~54 meV/atom, indicating the FM 

states are ground states for Ni1-xPtx. Therefore, the results of FM Ni1-xPtx are presented mainly 

and discussed in the present work. Regarding the equilibrium volumes of Ni1-xPtx, the NM states 

possess smaller values in comparison with the corresponding FM ones with the differences 

around 0.1 Å3/atom due to the effect of magnetism. Accordingly, the NM states of Ni1-xPtx have 

larger bulk moduli with respect to the corresponding FM states. It is worth mentioning that the 

present predictions of V0, B0, and ΔE0 are in perfect agreement with the previous first-principles 

results, e.g., the work of Che et al.,61 for both FM and NM Ni1-xPtx. For example, the ΔE0’s of 

Ni3Pt (FM, L12), NiPt (L10, FM), and NiPt3 (FM, L12) are -69, -93, and -64 meV/atom, 

respectively (see Table 4), correspondingly the values from Che et al.61 are -71, -92, and -65 

meV/atom, respectively.  

 

C. Phonon and finite temperature thermodynamics 

In the present work, we calculate the phonon properties for all the structures listed in the 

Appendix of Ni0.5Pt0.5. As examples, Fig.  6 illustrates the phonon DOS’s for three low energy 

structures of L10, “40”, and W2, and two SQS structures of SQS-8 and SQS-16, as well as the 

generalized phonon DOS (GDOS) derived from incoherent inelastic scattering.62 Note that (i) all 

the phonon DOS’s have the same integral values compared to each other, and (ii) the 

experimental GDOS is only shown for reference, since there exists big difference between the 

normal phonon DOS and the GDOS. Here, the GDOS can be represented by 
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∑=
i

iii M pDOS)/(GDOS σ , where σi, Mi, and pDOSi are the atomic scattering cross section, 

the atomic mass, and the partial phonon DOS of atom i, respectively.63 The normal phonon 

DOS’s are presented in this work, since they can be used directly to predict thermodynamic 

properties. Fig.  6 indicates that the maximum frequencies from the predictions in this work are 

less than the measured one due to the fact that the GGA predicts weaker bonding than reality 

which is represented through a smaller bulk modulus (see Table 2). In general, the ordered 

structures have sharper peaks than the disordered ones (SQS’s), indicating that the disordered 

phonon DOS’s are similar to those of the ordered cases but with more spread in their peaks, 

agreeing roughly with the measured shape in high frequency region (see Fig.  6). To gain insight 

into the bonding nature of Ni0.5Pt0.5, Fig.  7 shows the stretching and bending force constants for 

all the structures at their equilibrium volumes (see Table 4), together with the force constants of 

fcc Ni and fcc Pt for comparison. It is found that all the Ni0.5Pt0.5 structures are stable or 

metastable ones except for the L11 structure due to its negative force constants in the second and 

especially third nearest neighbor regions (the structure instability caused by the negative force 

constants was reported in e.g. Refs. 44, 64-65). In general, the force constants for all the 

structures examined herein, including the pure elements, possess a similar regularity of bond 

length vs. bond stiffness. Fig.  7 indicates that the bonds in order of decreasing strength are the 

Pt-Pt, the Ni-Pt, and finally the Ni-Ni atomic pairs for both the ordered and disordered alloys. 

The main contributions of force constants are the ones in the first-nearest neighbor region 

(2.7±0.3 Å), with the exception being the unstable L11 structure.  
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As an application of the phonon DOS’s, the Helmholtz free energies of the L10 and SQS-16 

structures are predicted for Ni0.5Pt0.5 by using the quasiharmonic approach described in Eq.  3. In 

Fig.  8, we plot the relative thermodynamics properties of SQS-16 under external pressure P = 0 

with the L10 structure as the reference state. Regarding the configurational entropy of the 

disordered phase, we use the point approximation, also known as the Bragg-Williams 

approximation, 66  

Eq.  6                          [ ])1log()1(log)( xxxxkxS Bconf −−+−=  

where x is the mole fraction of Pt, and kB the Boltzmann constant. With the contribution of only 

the relative vibrational entropy (ΔSvib), the relative Helmholtz free energy (ΔF) decreases slowly 

due to the small contribution from ΔSvib (around 0.13 kB per atom from 200 ~ 1000 K). Note that 

the presently predicted ΔSvib of NiPt agrees well with the value between the ordered and 

disordered CuAu.67 With the contribution of only the relative configurational entropy (ΔSconf), ΔF 

decreases more quickly, resulting in a phase transition temperature of 905 K, that agrees with the 

experimental value around 900 K (the reported temperatures are 876 and 918 K with the latter 

one being more accurate7). With the contributions of both ΔSvib and ΔSconf, the predicted phase 

transition temperature is 755 K, which is much lower than the experimental value. It should be 

mentioned that the predicted order-disorder phase transition temperature is sensitive to the 

energy difference at 0 K. Table 4 (see also Fig. 5) shows that the relative energy (ΔE) of 

Ni0.5Pt0.5 between L10 and SQS-16 structures is 54.1 meV/atom without the zero-point 

vibrational energy. From consideration of the predicted ΔE’s of SQS-8 and SQS-32, the energy 

uncertainty is estimated to be ± 9.15 meV/atom, resulting in an uncertainty of ± 128 K for the 

phase transition temperature. Therefore, the predicted phase transition temperature between L10 
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and the disordered Ni0.5Pt0.5 is 755 ± 128 K with considerations from ΔSvib and ΔSconf. The 

temperature agrees reasonably well with the experimental value around 900 K,7 wherein the 

driving force of phase transition is mainly due to the configurational entropy instead of the 

vibrational entropy. It is worth mentioning that the less accurate phase transition temperature 

predicted in the present work may related to (i) the less accurate density functional theory, 

especially the exchange-correction functional for Pt (see Table 2), and (ii) the omission of 

magnetic phase transition in Ni1-xPtx alloys. We think the first is the major effect, while the later 

is the minor one, because we treat both the L10 and SQS structures on an equal footing by using 

the FM structures, the magnetic contributions to thermodynamics for both ordered and 

disordered phases therefore can be cancelled to some extent. Regarding the longstanding issue of 

magnetic contribution to finite temperature thermodynamics, it is beyond the scope of the present 

work and has not been resolved completely, although we are on the way to the solution by using 

first-principles partition function method.14, 68-70 It is also worth mentioning that the high 

temperature paramagnetic (PM) phase is not the simple NM phase, instead, PM is a disordered 

FM phase with the zero total magnetic moment. For the sake of simplicity, the complete 

consideration of magnetic phase transition in each phase is omitted in the present work.  

 

IV. CONCLUSIONS 

By using the first-principles and phonon calculations, we study the structural, vibrational, and 

thermodynamic properties of the ordered and disordered Ni1-xPtx alloys with the main focus on 

the disordered Ni0.5Pt0.5. In order to describe the disordered alloys, special quasirandom 

structures (SQS’s) are adopted, and we demonstrate their capabilities to predict local and global 

properties of disordered alloys including bond length distributions, phonon spectra, and elastic 
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stiffness constants. For both the ordered and disordered Ni1-xPtx alloys, it is found that (i) the Pt-

Pt bond is stronger than the Ni-Pt and the Ni-Ni bonds according to the force constants; (ii) a 

slight positive deviation from Vegard’s law is predicted for the volume variation of Ni1-xPtx, and 

correspondingly, a negative deviation is obtained for the change of bulk modulus; (iii) with 

increasing Pt content, the derivative of bulk modulus relative to pressure increases roughly 

linearly, while the magnetic moment decreases. For the disordered Ni1-xPtx alloys, the analysis of 

the bond length distributions is more accurate with greater number of atoms in the SQS, 

particularly the SQS-32 case, the Pt-Pt atomic pairs possess the longest bond lengths relative to 

the Ni-Pt and Ni-Ni ones in the disordered alloys, and the phonon density of states of the 

disordered alloys are like broadened-peak versions of the ordered cases. In addition, the SQS 

predicted enthalpies of formation (relative energies) for the disordered Ni1-xPtx are also compared 

with the predicted relative energies by the cluster expansion method. As an application of the 

finite temperature thermodynamic properties, the phase transition temperature is predicted to be 

755 ± 128 K between the ordered L10 and the disordered Ni0.5Pt0.5. The predicted transition 

temperature agrees reasonably well with the measurement around 900 K, and the driving force of 

phase transition is mainly due to the configurational entropy instead of the vibrational entropy.  
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APPENDIX  

See Table A1 and Table A2 for the fcc based ordered and disordered SQS structures used in the 
present work.   
 

Table  A1. 
Structural details for all independent, fcc based AmBn structures with m, n = 0, 1, …, 4, and m+n ≤ 4 
(entries 1-29) and a few fcc based structures with 8 ≥ m+n ≥ 5 (entries 30-37), where (i) the lattice 
parameter of fcc structure is set as unity, (ii) “Name” indicates the Strukturbericht designation or the 
commonly used one in the literature,29-31 and (iii) “SG” represents the space group.  
Entry Formula Name  SG Primitive vectors Atoms Atomic/Wyckoff sites 
1 (2) A 

(B) 
A1 mFm3  

(#225) 
(0, 1/2, 1/2) 
(1/2, 0, 1/2) 
(1/2, 1/2, 0) 

Aa (4a)b (0, 0, 0) 

3 AB L11 mR3  
(#166) 

(1, 1/2, 1/2) 
(1/2, 1, 1/2) 
(1/2, 1/2, 1) 

A (1a) 
B (1b) 
 

(0, 0, 0) 
(1/2, 1/2, 1/2) 

4 AB L10 /mmmP4  
(#123) 

(1/2, -1/2, 0) 
(1/2, 1/2, 0) 
(0, 0, 1) 

A (1a) 
B (1d) 

(0, 0, 0)  
(1/2, 1/2, 1/2) 

5 (6) A2B 
(AB2) 
 

α1 
(α2) 

13mP  
(#164) 

(-1/2, 0, -1/2) 
(0, -1/2, 1/2) 
(-1, 1, 1) 

A (1a) 
B (2d) 

(0, 0, 0)  
(1/3, 2/3, 1/3); (2/3, 1/3, 2/3) 

7 (8) A2B 
(AB2) 
 

γ1 
(γ2) 

Immm  
(#71) 

(-1/2, 1/2, -1) 
(-1, -1/2, -1/2) 
(1/2, 1/2, 1) 

A (2a) 
B (4g) 

(0, 0, 0)  
(1/3, 1/3, 0); (2/3, 2/3, 0) 

9 (10) A2B 
(AB2) 
 

β1  
(β2) 

/mmmI 4  
(#139) 

(0, -1/2, -3/2) 
(0, 1/2, -3/2) 
(1/2, 0, 3/2) 

A (2a) 
B (4e) 

(0, 0, 0)  
(1/3, 1/3, 0); (2/3, 2/3, 0) 

11 (13) A3B 
(AB3) 
 

V1 
(V3) 

mR3  
(#166) 

(-3/2, 1, 3/2) 
(-1, 3/2, 3/2) 
(-3/2, 3/2, 1) 

A (1a) 
B (1b) 
B (2c)  

(0, 0, 0) 
(1/2, 1/2, 1/2) 
(1/4, 1/4, 1/4); (3/4, 3/4, 3/4) 

12 A2B2 V2 A (2c) 
B (2c) 

(0, 0, 0); (1/4, 1/4, 1/4) 
(1/2, 1/2, 1/2); (3/4, 3/4, 3/4) 

14 (16) A3B 
(AB3) 
 

W1 
(W3) 

mC /2  
(#12) 

(-1, -1/2, -1/2) 
(-1/2, -1/2, -1) 
(1/2, -1, 1/2) 

A (2a) 
B (2d) 
B (4i) 

(0, 0, 0) 
(1/2, 1/2, 1/2) 
(1/4, 1/4, 3/4); (3/4, 3/4, 1/4) 

15 A2B2 W2 A (4i) 
B (4i) 

(0, 0, 0); (1/4, 1/4, 3/4) 
(1/2, 1/2, 1/2); (3/4, 3/4, 1/4) 

17 (18) A3B 
(AB3) 
 

L13 Cmmm  
(#65) 

(1, 1/2, 1/2) 
(-1, 1/2, 1/2) 
(0, -1/2, 1/2) 

A (2a) 
B (2b) 
B (4f) 
 

(0, 0, 0) 
(1/2, 1/2, 0) 
(1/2, 0, 1/2) 
(0, 1/2, 1/2) 

19 (21) A3B 
(AB3) 
 

D022 /mmmI 4  
(#139) 

(-1, -1/2, 1/2) 
(-1, 1/2, -1/2) 
(1, -1/2, -1/2) 

A (2a) 
B (2b) 
B (4d) 

(0, 0, 0) 
(1/2, 1/2, 0) 
(1/4, 3/4, 1/2); (3/4, 1/4, 1/2) 

20 A2B2 40 /amdI 41  A (4a) 
B (4b) 

(0, 0, 0); (1/4, 3/4, 1/2) 
(1/2, 1/2, 0); (3/4, 1/4, 1/2) 
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(#141) 
22 (24) A3B 

(AB3) 
 

Y1 
(Y3) 

Pmmm  
(#47) 

(0, -1/2, -1/2) 
(-1, 0, 0) 
(0, 1, -1) 

A (1a) 
B (1c) 
B (2t) 

(0, 0, 0) 
(0, 0, 1/2) 
(1/2, 1/2, 1/4); (1/2, 1/2, 3/4) 

23 A2B2 Y2 Pmmn  
(#59) 

A (2a) 
B (2a) 

(0, 0, 0); (1/2, 1/2, 1/4) 
(0, 0, 1/2); (1/2, 1/2, 3/4) 

25 (27) A3B 
(AB3) 
 

Z1 
(Z3) 

/mmmP4  
(#123) 

(-1/2, -1/2, 0) 
(1/2, -1/2, 0) 
(0, 0, 2) 
 

A (1a) 
B (1b) 
B (2h) 

(0, 0, 0) 
(0, 0, 1/2) 
(1/2, 1/2, 1/4); (1/2, 1/2, 3/4) 

26 A2B2 Z2 /nmmP4  
(#129) 

A (2c) 
B (2c) 

(0, 0, 0); (1/2, 1/2, 1/4) 
(0, 0, 1/2); (1/2, 1/2, 3/4) 

28 (29) A3B 
(AB3) 
 

L12 mPm3  
(#221) 

(1, 0, 0) 
(0, 1, 0) 
(0, 0, 1) 

A (1a) 
B (3c) 
 

(0, 0, 0) 
(1/2, 1/2, 0); (1/2, 0, 1/2) 
(0, 1/2, 1/2) 

30 (31) A4B 
(AB4) 
 

mC10c mC /2  
(#12) 

(3/2, 0, -1/2) 
(3/2, 1/2, 0) 
(-1, -1, 1) 

A (2a) 
B (4i) 
B (4i) 

(0, 0, 0) 
(1/5, 1/5, 3/5); (4/5, 4/5, 2/5) 
(2/5, 2/5, 1/5); (3/5, 3/5, 4/5) 

32 (33) A4B 
(AB4) 
 

D1a 
 

mI /4  
(#87) 

(-1/2, -1, 1/2) 
(1/2, 1, 1/2) 
(-1, 1/2, -1/2) 

A (2a) 
B (8h) 

(0, 0, 0) 
(1/5, 2/5, 3/5); (4/5, 3/5, 2/5) 
(3/5, 1/5, 4/5); (2/5, 4/5, 1/5) 

34 (35) A7B 
(AB7) 
 

D1 
(D7) 

mFm3  
(#225) 

(0, 1, 1) 
(1, 0, 1) 
(1, 1, 0) 

A (4a) 
B (4b) 
B (24d) 
 

(0, 0, 0)  
(1/2, 1/2, 1/2) 
(1/2, 0, 0); (0, 1/2, 0) 
(0, 0, 1/2); (1/2, 1/2, 0) 
(1/2, 0, 1/2); (0, 1/2, 1/2) 

36 (37) A7B 
(AB7) 
 

ACSd /mmmI 4  
(#139) 

(-2, -1/2, 1/2) 
(-2, 1/2, -1/2) 
(2, -1/2, -1/2) 

A (2a) 
B (2b) 
B (4e) 
B (8g) 

(0, 0, 0) 
(1/2, 1/2, 0) 
(1/4, 1/4, 0); (3/4, 3/4, 0) 
(1/8, 5/8, 1/2); (3/8, 7/8, 1/2) 
(5/8, 1/8, 1/2); (7/8, 3/8, 1/2) 

a Atoms are given for one of the structures. 
b Wyckoff letter with multiplicity. 
c Pearson symbol. 
d Reference 29. 
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Table A2 
Lattice vectors and atomic positions (fractional coordinates) for fcc based SQS structures with 8, 16, and 
32 atoms. Note that (i) the lattice parameter of fcc structure is set as unity, (ii) all the available structures 
are tested by using the ATAT code improved by the present author YW.28  
SQS-8 (A4B4)a SQS-8 (A2B6)a 
Lattice vectors: 
(1, 1/2, -1/2) 
(1/2, 1/2, -1)  
(-1, 2, 1) 

Lattice vectors: 
(1/2, -1, -1/2)  
(1/2, -1, 1/2)  
(-2, 0, 0) 

A atoms: (0, 0, 1/2); (1/2, 1/2, 1/4) 
(3/4, 3/4, 5/8); (3/4, 3/4, 1/8) 
B atoms: (0, 0, 0); (1/4, 1/4, 7/8) 
(1/4, 1/4, 3/8); (1/2, 1/2, 3/4) 
 

A atoms:  (0, 0, 0); (3/4, 3/4, 1/8) 
B atoms: (1/4, 1/4, 7/8); (1/2, 1/2, 3/4); (3/4, 3/4, 5/8) 
(0, 0, 1/2); (1/4, 1/4, 3/8); (1/2, 1/2, 1/4) 

SQS-16 (A8B8)b SQS-16 (A4B12)b 
Lattice vectors: 
(1, -1/2, -1/2) 
(0, 1, -1) 
(1, 3/2, 3/2) 

Lattice vectors: 
(1/2, 1/2, -1)  
(0, -3/2, -1/2)  
(-2, 1/2, -1/2) 

A atoms: (1/4, 1/4, 1/4); (1/4, 3/4, 1/4) 
(3/4, 1/2, 1/4); (1/4, 0, 3/4); (0, 1/4, 1/2) 
(1/2, 3/4, 0); (0, 1/2, 0); (0, 0, 0) 
B atoms: (1/2, 1/2, 1/2); (3/4, 0, 1/4) 
(1/2, 0, 1/2); (1/4, 1/2, 3/4); (0, 3/4, 1/2) 
(3/4, 1/4, 3/4); (3/4, 3/4, 3/4); (1/2, 1/4, 0) 

A atoms: (3/4, 5/16, 3/16); (1/4, 7/16, 1/16) 
(0, 3/4, 1/4); (3/4, 1/16, 7/16) 
B atoms: (1/2, 7/8, 1/8); (1/4, 3/16, 5/16) 
(0, 1/2, 1/2); (1/2, 5/8, 3/8); (1/2, 3/8, 5/8) 
(1/4, 11/16, 13/16); (0, 0, 0); (0, 1/4, 3/4) 
(1/4, 15/16, 9/16); (3/4, 9/16, 15/16) 
(1/2, 1/8, 7/8); (3/4, 13/16, 11/16) 
 

SQS-32 (A16B16)c SQS-32 (A8B24)c 
Lattice vectors: 
(0, 1, -3) 
(-1, -5/2, 3/2) 
(0, 3, -1) 

Lattice vectors: 
(0, -1, -1) 
(-2, 0, 0) 
(0, 2, -2) 

A atoms: (1/16, 1/2, 1/16); (3/16, 1/2, 3/16) 
(5/8, 0, 1/8); (1/16, 1/2, 9/16); (0, 0, 0) 
(11/16, 1/2, 3/16); (9/16, 1/2, 1/16) 
(7/16, 1/2, 7/16); (13/16, 1/2, 5/16); (1/2, 0, 0) 
(9/16, 1/2, 9/16); (5/16, 1/2, 13/16); (1/4, 0, 1/4) 
(15/16, 1/2, 7/16); (1/8, 0, 5/8); (3/4, 0, 1/4) 
B atoms: (3/16, 1/2, 11/16); (5/8, 0, 5/8) 
(5/16, 1/2, 5/16); (0, 0, 1/2); (7/8, 0, 7/8) 
(1/8, 0, 1/8); (11/16, 1/2, 11/16); (3/4, 0, 3/4) 
(3/8, 0, 3/8); (13/16, 1/2, 13/16); (1/2, 0, 1/2) 
(1/4, 0, 3/4); (15/16, 1/2, 15/16); (7/8, 0, 3/8) 
 (3/8, 0, 7/8); (7/16, 1/2, 15/16)  

A atoms: (1/2, 1/2, 1/2); (1/4, 3/4, 3/8) 
(1/4, 3/4, 1/8); (0, 1/2, 1/4); (1/2, 0, 1/4) 
(1/4, 1/4, 1/8); (1/2, 0, 0); (3/4, 3/4, 5/8) 
B atoms: (0, 0, 0); (0, 1/2, 0); (0, 1/2, 1/2) 
(3/4, 3/4, 1/8); (1/2, 1/2, 0); (1/4, 3/4, 5/8) 
(3/4, 3/4, 3/8); (1/2, 1/2, 1/4); (0, 0, 3/4)  
(3/4, 1/4, 3/8); (1/4, 1/4, 3/8); (0, 0, 1/4) 
(3/4, 3/4, 7/8); (1/4, 3/4, 7/8); (0, 0, 1/2) 
(0, 1/2, 3/4); (3/4, 1/4, 5/8); (1/4, 1/4, 5/8) 
(1/2, 0, 1/2); (3/4, 1/4, 7/8); (1/2, 1/2, 3/4) 
(1/4, 1/4, 7/8); (1/2, 0, 3/4); (3/4, 1/4, 1/8) 

a See also the SQS-8’s reported in Refs. 20-21. 
b The same as the ones reported in Ref. 26. 
c The present work. 
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Tables and Table captions  

 

Table 1. Pair correction functions Π2,n (n up to the 11th nearest neighbor) for the random (disordered) 
structures and the fcc based SQS structures (see Appendix for the structure details). 
Structure  Π2,1 Π2,2 Π2,3 Π2,4 Π2,5 Π2,6 Π2,7 Π2,8 Π2,9 Π2,10 Π2,11 
Random (A0.5B0.5) 0 0 0 0 0 0 0 0 0 0 0 
SQS-8 (A4B4) 0 0 1/24 -1/12 1/12 0 -1/8 -1/2 1/12 0 0 
SQS-16 (A8B8) 0 0 0 0 0 0 0 -1 0 0 0 
SQS-32 (A16B16) 0 0 0 0 0 0 0 0 -1/12 -1/6 0 
Random (A0.25B0.75) 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 
SQS-8 (A2B6) 1/4 1/3 1/4 0 1/6 0 1/3 2/3 1/4 1/12 1/3 
SQS-16 (A4B12) 1/4 1/4 1/4 5/24 11/48 1/8 19/96 1/4 19/48 1/4 1/6 
SQS-32 (A8B24) 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/3 1/6 1/6 1/4 
 
 
 

 

Table 2. First-principles EOS calculated lattice parameters and bulk moduli of fcc Ni and fcc Pt by GGA 
and LDA, where the percent errors between the predictions and the experiments are shown in the 
parentheses. 
 
Element 

Lattice parameter (Å) and error  Bulk modulus (GPa) and error 
GGA LDA Expt.a   GGA LDA Expt.b 

fcc Ni 3.521 (0.1%) 3.425 (-2.8%) 3.525  195.7 (4.7%) 255.6 (-36.7%) 187 
fcc Pt 3.986 (1.6%) 3.907 (-0.4%) 3.922  242.9 (15.7%) 304.7 (-5.8%) 288 
a References 48-49.  
b References 49-50. 
 
 
 
 
Table 3. First-principles calculated elastic properties (GPa) for the disordered Ni0.5Pt0.5, including the 
elastic constants (cij’s), bulk modulus (BVoigt approach from cij’s and BEOS from EOS fitting), and shear 
modulus (GVoigt). 
Structure c11 c12 c44 BVoigt BEOS GVoigt 
SQS-8 280 ± 26 179 ± 2 102 ± 2 213 ± 10 211 82 ± 6 
SQS-16 287 ± 14 181 ± 1 101 ± 3 216 ± 5 212 82 ± 4 
SQS-32 279 ± 14 183 ± 5 99 ± 3 215 ± 8 212 78 ± 3 
(Ni+Pt)/2a 286 193 89 224  72 
a Based on the predicted elastic constants of pure elements49 and Vegard’s law.  
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Table 4. Pair correction function (Π2,rnd) for the random (disordered) alloy, and the pair correction 
functions (Π2,n) up to the fourth nearest neighbors for fcc based ordered structures (entries 1-37) 
and SQS structures (entries 38-46), together with the first-principles properties at 0 K fitted by 
Birch-Murnaghan EOS, including the equilibrium volume V0 (Å3/atom), relative energy ΔE0 
(meV/atom) with the reference states of fcc Ni (FM state) and fcc Pt (NM state), bulk modulus 
B0 (GPa) and its pressure derivative B0’, and the magnetic moment MM0 (μB/atom). As examples, 
calculated results for NM states are also shown for entries 1-29.  
Entrya Namea Formulaa Π2,rnd Π2,1 Π2,2 Π2,3 Π2,4 State V0 ΔE0 B0 B0’ MM0 
1 A1 Ni 1 1 1 1 1 FM 10.92 0.0 195.7 4.95 0.61 

   NM 10.85 54.3 199.7 4.95 
   FM 10.95b 187b 0.62c 

2 A1 Pt 1 1 1 1 1 NM 15.83 0.0 242.9 5.51 0.00 
   NM 15.08b 288b 

3 L11 NiPt 0 0 -1 0 1 FM 13.71 -52.9 213.3 5.22 0.51 
   NM 13.61 -22.5 219.3 5.27 

4 L10 NiPt 0 -1/3 1 -1/3 1 FM 13.53 -93.3 213.3 5.24 0.51 
   NM 13.42 -77.9 220.7 5.26 
   FM 13.46d -96e 0.22c 

5 α1 Ni2Pt 1/9 1/3 -1/3 0 1/3 FM 12.94 3.5 205.7 5.16 0.54 
   NM 12.84 43.3 210.5 5.17 

6 α2 NiPt2 1/9 1/3 -1/3 0 1/3 FM 14.47 -46.3 218.7 5.32 0.48 
   NM 14.37 -27.1 226.0 5.51 

7 γ1 Ni2Pt 1/9 -1/9 1/9 1/3 -1/9 FM 12.74 -68.8 205.6 5.14 0.57 
   NM 12.64 -33.8 211.3 5.16 

8 γ2 NiPt2 1/9 -1/9 1/9 1/3 -1/9 FM 14.41 -42.0 220.9 5.39 0.47 
   NM 14.32 -29.3 226.0 5.36 

9 β1 Ni2Pt 1/9 1/9 5/9 -1/3 1/9 FM 12.73 -37.9 204.1 5.13 0.53 
   NM 12.61 -12.5 210.7 5.14 

10 β 2 NiPt2 1/9 1/9 5/9 -1/3 1/9 FM 14.31 -72.4 222.2 5.34 0.47 
   NM 14.21 -58.7 228.1 5.36 

11 V1 Ni3Pt 1/4 1/2 0 1/4 1/2 FM 12.51 26.6 202.0 5.11 0.55 
   NM 12.43 68.5 206.7 5.12 

12 V2 Ni2Pt2 0 1/2 0 0 0 FM 13.74 3.2 211.4 5.22 0.48 
   NM 13.65 30.2 217.3 5.31 

13 V3 NiPt3 1/4 1/2 0 1/4 1/2 FM 14.81 -32.7 222.9 5.51 0.37 
   NM 14.74 -22.3 230.6 5.51 

14 W1 Ni3Pt 1/4 1/6 0 1/4 1/2 FM 12.34 -42.6 202.4 5.11 0.56 
   NM 12.25 -4.1 208.3 5.12 

15 W2 Ni2Pt2 0 -1/6 0 0 0 FM 13.56 -67.7 209.1 5.31 0.53 
   NM 13.45 -44.7 214.7 5.27 

16 W3 NiPt3 1/4 1/6 0 1/4 1/2 FM 14.81 -36.1 226.8 5.47 0.40 
   NM 14.74 -23.8 230.8 5.41 

17 L13 Ni3Pt 1/4 1/6 0 1/6 1 FM 12.38 -40.1 202.4 5.08 0.55 
   NM 12.28 -4.9 209.2 5.12 
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18 L13 NiPt3 1/4 1/6 0 1/6 1 FM 14.83 -46.7 227.2 5.41 0.36 
   NM 14.77 -27.4 231.3 5.41 

19 D022 Ni3Pt 1/4 0 2/3 1/3 1/3 FM 12.27 -71.6 203.6 5.06 0.59 
   NM 12.18 -35.4 210.4 5.12 

20 “40” Ni2Pt2 0 -1/3 1/3 1/3 -1/3 FM 13.57 -71.3 214.0 5.25 0.53 
   NM 13.48 -48.7 220.0 5.27 

21 D022 NiPt3 1/4 0 2/3 1/3 1/3 FM 14.76 -44.9 224.2 5.38 0.35 
   NM 14.70 -38.4 231.8 5.43 

22 Y1 Ni3Pt 1/4 1/6 1/3 1/6 1/3 FM 12.32 -40.2 202.2 5.08 0.58 
   NM 12.22 -4.8 207.9 5.13 

23 Y2 Ni2Pt2 0 0 -1/3 0 -1/3 FM 13.63 -46.9 212.5 5.27 0.54 
   NM 13.53 -19.6 217.2 5.29 

24 Y3 NiPt3 1/4 1/6 1/3 1/6 1/3 FM 14.79 -30.1 221.0 5.21 0.39 
   NM 14.72 -23.6 230.5 5.40 

25 Z1 Ni3Pt 1/4 1/3 2/3 0 1/3 FM 12.31 -13.8 200.6 5.05 0.53 
   NM 12.19 11.9 207.9 5.09 

26 Z2 Ni2Pt2 0 1/3 1/3 -1/3 -1/3 FM 13.50 -34.2 209.3 5.10 0.45 
   NM 13.40 -16.6 218.2 5.30 

27 Z3 NiPt3 1/4 1/3 2/3 0 1/3 FM 14.70 -53.5 223.8 5.20 0.42 
   NM 14.62 -43.4 231.9 5.41 

28 L12 Ni3Pt 1/4 0 1 0 1 FM 12.29 -69.4 201.8 4.92 0.59 
   NM 12.17 -39.4 210.6 5.11 
   FM 12.12f 0.43c 

29 L12 NiPt3 1/4 0 1 0 1 FM 14.73 -64.3 228.9 5.48 0.27 
   NM 14.69 -53.7 233.1 5.44 
   FM 14.53f 

30 mC10 Ni4Pt 9/25 1/3 1/5 1/3 1/3 FM 12.07 -27.8 200.1 5.10 0.57 
31 mC10 NiPt4 9/25 1/3 1/5 1/3 1/3 FM 14.99 -27.6 226.1 5.38 0.33 
32 D1a Ni4Pt 9/16 1/2 1/2 1/2 1 FM 12.01 -54.3 202.3 5.10 0.57 
33 D1a NiPt4 9/16 1/2 1/2 1/2 1 FM 14.99 -33.2 226.1 5.43 0.32 
34 D1 Ni7Pt 9/25 0 -1 0 1 FM 11.67 -24.8 198.9 5.00 0.59 
35 D7 NiPt7 9/25 0 -1 0 1 FM 15.34 -29.5 234.9 5.51 0.23 
36 ACS Ni7Pt 9/16 1/2 5/6 1/2 2/3 FM 11.61 -25.8 199.5 5.05 0.59 
37 ACS NiPt7 9/16 1/2 5/6 1/2 2/3 FM 15.30 -32.2 234.3 5.45 0.21 
38 SQS-8 Ni6Pt2 1/4 1/4 1/3 1/4 0 FM 12.32 -28.5 202.9 5.10 0.56 
39 SQS-8 Ni4Pt4 0 0 0 1/24 -1/12 FM 13.56 -57.5 210.7 5.27 0.49 
40 SQS-8 Ni2Pt6 1/4 1/4 1/3 1/4 0 FM 14.76 -39.0 223.1 5.22 0.41 
41 SQS-16 Ni12Pt4 1/4 1/4 1/4 1/4 5/24 FM 12.33 -29.8 202.5 5.11 0.56 
42 SQS-16 Ni8Pt8 0 0 0 0 0 FM 13.65 -39.2 211.8 5.28 0.50 
43 SQS-16 Ni4Pt12 1/4 1/4 1/4 1/4 5/24 FM 14.78 -35.2 224.9 5.41 0.36 
44 SQS-32 Ni24Pt8 1/4 1/4 1/4 1/4 1/4 FM 12.33 -32.7 201.6 5.10 0.57 
45 SQS-32 Ni16Pt16 0 0 0 0 0 FM 13.63 -42.6 211.8 5.27 0.50 
46 SQS-32 Ni8Pt24 1/4 1/4 1/4 1/4 1/4 FM 14.79 -30.0 224.6 5.53 0.35 
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a See Appendix for the structure details, the m+n in NimPtn indicates the independent atoms in the 
primitive cell.  
b Experimental data, see Table 2 for details.  
c Experimental data.54  
d Experimental data.7  
e Experimental data at 298 K.55  
f Experimental data.17 
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Figure captions 

 

Fig. 1 (Color online) Average radial distribution functions (RDF’s) for the SQS structures and 

the ideal fcc structure of FM Ni0.5Pt0.5. 

 

Fig. 2 (Color online) Bond length distributions in the first nearest neighbor region of the 

disordered FM Ni1-xPtx alloys predicted by first-principles SQS calculations. The dotted line 

indicates that the average bond length (mean value of SQS-8, SQS-16, and SQS-32) is equal to 

the bond length distribution. The solid lines indicate the average Ni-Ni, Ni-Pt, and Pt-Pt bond 

lengths according to SQS-32.  

 

Fig. 3 (Color online) First-principles calculated equilibrium volumes (upper triangle) and bulk 

moduli (lower triangle) of the ordered and disordered (SQS’s) FM Ni1-xPtx alloys, see Table 4 for 

details. 

 

Fig. 4 (Color online) First-principles calculated derivatives of bulk modulus relative to pressure 

(above panel) and magnetic moments (low panel) of the ordered and disordered (SQS’s) FM Ni1-

xPtx alloys, see Table 4 for details. The experimental data are taken from Ref. 54. 

 

Fig. 5 (Color online) First-principles calculated relative energies (i.e., formation enthalpies) of 

the ordered and disordered (SQS’s) FM Ni1-xPtx alloys when considering the FM contributions, 

see Table 4 for details. Note that the reference states are fcc Ni and fcc Pt, the dotted line links 

the ground states, the solid line is the CEM predicted results for disordered alloys based on the 

results of the ordered structures, the dashed line shows the fitted results by R-K polynomial for 

disordered alloys based on the SQS results, and the experimental data are from Ref. 55. 

 

Fig.  6 (Color online) First-principles calculated phonon DOS’s for the ordered and disordered 

(SQS’s) FM Ni0.5Pt0.5 alloys. The experimental data are derived from incoherent inelastic 

scattering.62  
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Fig.  7 (Color online) First-principles calculated stretching and bending force constants of the 

ordered and disordered (SQS’s) FM Ni0.5Pt0.5, together with the results for fcc Ni and fcc Pt (see 

Table 4 for the ordered structures used herein). 

 

Fig.  8 (Color online) Predicted relative Helmholtz free energy (ΔF) and relative entropy (ΔS) of 

FM Ni0.5Pt0.5 between the ordered L10 and the disordered SQS-16 structures, with L10 being the 

reference state. 
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