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There is currently fundamental and technological interest in measuring and manipulating
nanoscale magnets, particularly in the quantum coherent regime. To observe the dynamics of
such systems one requires a magnetometer with not only exceptional sensitivity but also high gain,
wide bandwidth and low backaction. We demonstrate a dispersive magnetometer consisting of a
two-junction SQUID in parallel with an integrated, lumped-element capacitor. Input flux signals are
encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting
in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator
results in quantum limited, phase sensitive parametric amplification of this signal, which improves
flux sensitivity at the expense of bandwidth. Depending on the drive parameters, the device per-

formance ranges from an effective flux noise of 0.29 µΦ0Hz−
1
2 and 20 MHz of signal bandwidth to a

noise of 0.14 µΦ0Hz−
1
2 and a bandwidth of 0.6 MHz. These results are in excellent agreement with

our theoretical model.
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I. INTRODUCTION

The dc Superconducting Quantum Interference Device (SQUID)—a superconducting loop interrupted by two
Josephson junctions—is an extremely sensitive detector of magnetic flux, and has been used in a wide variety of
applications for almost half a century1,2. Recent progress in nanoscale magnets3 has generated excitement about us-
ing magnetic molecules for both classical and quantum information storage and processing4–12. In principle, a SQUID
has sufficiently high intrinsic flux sensitivity and bandwidth to resolve the spin state of a single magnetic molecule.
However, a conventional dc SQUID with resistively shunted Josephson tunnel junctions is operated with a current
bias just above its critical current, and the continuous dissipation in the shunt resistors produces local heating and a
backaction that can potentially induce relaxation and decoherence in a nanoscale magnet. This dissipation can be elim-
inated by using an unshunted SQUID and applying fast current pulses to measure its critical current12,13. However,
the flux sensitivity is significantly lower than in the resistively shunted case14 because the repetition rate—and hence
the bandwidth—are limited by the time (∼1 ms for aluminum tunnel junctions at millikelvin temperatures) required
for the SQUID to cool to its equilibrium temperature after returning to the zero-voltage state15. Any backaction
associated with switching to the voltage state remains.

Alternatively, the SQUID can be operated in the superconducting regime where it functions as a flux dependent
nonlinear inductor, and forms a nonlinear resonator when shunted with a capacitor [Fig. 1(a)]. In our device, we apply
a fixed frequency microwave drive to this resonator and demodulate the reflected microwave signal. An input flux
signal results in a variation of the resonance frequency and a corresponding phase modulation of the microwave drive
tone. At specific bias points in the presence of a sufficiently intense drive tone, parametric amplification occurs and the
flux sensitivity is enhanced. Dispersive SQUID techniques have been studied in a variety of different microwave circuit
configurations over the past thirty years16–18. Recent work on the dispersive readout of superconducting qubits—
single, pseudospin-1/2 systems—also harnesses the nonlinearity of the Josephson junction to boost sensitivity, but
typically these devices are operated in the bistable regime as digital detectors19–21. In this article, we demonstrate
an analog magnetometer with megahertz bandwidth suitable for measuring transitions between states in multilevel
spin systems22 and the macroscopic magnetization of spin ensembles23. Depending on the operating conditions, the
performance ranges from an effective flux noise of 0.14 µΦ0Hz−

1
2 and 0.6 MHz of signal bandwidth to a noise of 0.29

µΦ0Hz−
1
2 and a bandwidth of 20 MHz. This performance results from the large gain, bandwidth and nearly quantum

limited noise temperature of the parametric amplifier which by itself is suitable for a variety of dispersive measurements
as a general purpose amplifier. These results are in quantitative agreement with our theoretical model which, in
particular, predicts that low flux noise and wide bandwidth are obtained for a low Q (quality factor) resonator.
Our theory allows us to optimize our device for specific applications, and provides insight into the fundamental and
practical limitations of a single SQUID operated in the dispersive regime.

II. THEORY

We model our magnetometer as consisting of two stages: a transducer which upconverts a low frequency magnetic
flux signal to a microwave voltage signal and a subsequent parametric gain stage [see Fig. 1(b)]. Using this picture,
we derive an expression for the flux sensitivity based on the circuit parameters and the parametric gain. We first
consider the dynamics of the Josephson oscillator. The supercurrent I(t) flowing through a Josephson tunnel junction
is related to the phase difference δ (t) across it by I(t) = I0 sin δ(t), where I0 is the critical current. For a SQUID with
loop inductance L � Φ0/2I0, the critical current is Ic (Φ) = 2I0

∣∣∣cos(πΦ
Φ0

)
∣∣∣, where Φ is the flux through the SQUID

loop and Φ0 ≡ h/2e is the magnetic flux quantum. Thus, we treat the SQUID as a junction with a flux-dependent
critical current. In our experiment the SQUID is shunted with a lumped-element capacitor, forming an electrical
resonator with resonant frequency ωp0 (Φ) /2π =

√
2πIc (Φ) /(Φ0C)/2π. The resonator is connected directly to a

microwave transmission line of characteristic impedance Z0 [Fig. 1(a)], resulting in a quality factor Q = ωp0Z0C.
The dynamics of this system are well described by the Duffing equation, in which the sinusoidal current phase

relationship of the junction is truncated after the first nonlinear term24:

d2δ

dt2
+ 2Γ

dδ

dt
+ ω2

p0(Φ)(δ − δ3

6
) =

2π
Φ0C

Id cos(ωdt). (1)

Here, Γ = (2Z0C)−1 and Id is the amplitude of the rf drive at frequency ωd/2π. Next we consider a flux Φ =
Φb + ∆Φ cos(ωst) applied to the SQUID, where Φb is a static flux bias and ∆Φ� Φ0 is the amplitude of a weak flux
signal at frequency ωs. We calculate the system response by assuming a solution of the form δ(t) = δ0 cos(ωdt−θ)+ε(t),
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where the first term is the steady state solution for ∆Φ = 0 and ε(t) is a small perturbation of the junction phase due
to ∆Φ, and substituting it into Eq. (1). The resulting expression for the junction phase perturbation ε(t) is

d2ε

dt2
+ 2Γ

dε

dt
+ εω2

p0

(
1− δ2

0

4

)[
1− δ2

0

4− δ2
0

cos (2ωdt− 2θ)
]

(2)

=
Vrf

Z0CΦ0
[cos(ωdt+ ωst− θ) + cos(ωdt− ωst− θ)] .

We recognize the left hand side of Eq. (2) as the equation for a parametrically driven harmonic oscillator. Details
on the calculation of the gain and bandwidth of parametric amplification in this system are given in the Appendix.
For appropriate bias conditions, the system can amplify25–27 any additional weak rf signal with frequency ωrf /2π
near ωd/2π. In this doubly degenerate mode of parametric amplification27, a single sideband signal at frequency
ωrf /2π is amplified with a voltage gain

√
G, and an idler signal is also produced at frequency ωi/2π = (2ωd−ωrf )/2π

with gain
√
G− 1 and phase factor eiφ [Fig. 2(a)]. In the high gain limit, the voltage signal-to-noise ratio (SNR)

is degraded by a factor of at least
√

2, since the amplified signal is accompanied by incoherent noise from both the
signal and idler frequencies. For an operating temperature T � TQ = ~ωd/2kB , this noise is set by the amplitude
of quantum fluctuations at frequency ωd and the amplifier is quantum limited with a noise temperature TN = TQ.
Other Josephson junction based parametric amplifiers have been shown to operate with near quantum limited noise
temperature28,29. If such an amplifier is now presented with a double sideband signal, symmetric about the drive
tone with coherent components at both the signal and idler frequencies, the output voltage is a coherent combination
of these two signals. We can express this double sideband signal in terms of two orthogonal quadrature signals—one
of which is amplified and the other deamplified. This process is shown schematically for the amplified quadrature in
Fig. 2(b). If the signal lies fully along the amplified quadrature (α = 0), it is amplified without adding additional
noise, a process known as phase sensitive amplification30.

Examining the right hand side of (2), we see that the flux signal at frequency ωs/2π has been parametrically
upconverted through interaction with the drive tone, resulting in a double sideband rf signal with components at
frequencies (ωd ± ωs) /2π which can be expressed as a single quadrature signal with angle α = θ relative to the
drive tone. The voltage amplitude Vrf of these two sidebands is linked to the input signal flux by the expression
Vrf = ∆Φ (dVrf /dΦ), where dVrf /dΦ is the flux-to-voltage transduction gain, given by

dVrf

dΦ
= π

2I0Z0

4Φ0
sin
(
πΦb
Φ0

)(
δ0 −

δ3
0

8

)
.

(
−Φ0

2
< Φb <

Φ0

2

)
(3)

In the limit of low drive current Id � Ic = 8I0/
(
33/4Q3/2

)
(see Appendix for details of G dependence on Id),√

G = 1 and the paired rf signals serve to modulate the phase of the reflected microwave drive signal at frequency
ωs/2π. In the high gain limit, the component of the transduced signal which lies along the amplified quadrature
of the phase sensitive amplifier is noiselessly amplified with gain 2

√
G. The transduced signal, however, does not

lie fully along the amplified quadrature at high gain points, so that the effective transduction coefficient is reduced.
Consequently, in the high gain limit, the amplitude of the output signal is given by ∆Φη (dVrf /dΦ)

√
G, where

η = 2 cos θ.
To characterize the flux sensitivity of the magnetometer, we first note that the output of our device is further

amplified by a cryogenic high electron mobility transistor (HEMT) amplifier and a room temperature amplifier before
being mixed down and digitized for further processing. The noise of this amplification chain is given by the system
noise temperature Tsys, and includes cable losses between our device and the HEMT. We now refer the noise of the
output rf voltage signal to an effective input flux noise via the transduction coefficient η (dVrf /dΦ). This effective
flux noise has a single-sided spectral density

S
1/2
Φeff (f) =

√
2(kBTsys + ~ωd/2)Z0

η
dVrf

dΦ Φ0

=
4
π

√
2(kBTsys + ~ωd/2)Z0

2I0Z0η sin
(
πΦb

Φ0

)(
δ0 − δ30

8

) Φ0√
Hz

. (4)

Note that in the above expression Tsys refers to the added noise of the amplification chain and the total noise
includes a contribution from zero point fluctuations given by ~ωd/2. For weak drive amplitudes, where the resonator
response is linear and G = 1, Tsys is dominated by THEMT , the noise temperature of the HEMT amplifier, and is
typically much larger than the quantum limit. Furthermore, we can express the junction oscillation amplitude in
terms of the voltage drive as δ0 − δ3

0/8 ≈ δ0 ≈ VdQ/Z02I0. In the absence of parametric amplification, there is no
preferred quadrature for amplification and we set η = 1 to yield
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S
1/2
Φeff (f) ≈ 4

π

√
2kBTHEMTZ0

sin
(
πΦb

Φ0

)
VdQ

Φ0√
Hz

for G = 1, (5)

which varies inversely with resonator Q and drive voltage Vd. Thus, in this regime higher sensitivity can be achieved
by increasing the Q of the resonator and the drive amplitude. In practice, however, the maximum drive voltage is
limited by the onset of nonlinearity inherent in any SQUID based resonator31.

For strong drive amplitudes, where the resonator response is nonlinear and G� 1 such that THEMT/G� ~ωd/2,
the noise temperature of the system is determined by the amplitude of quantum fluctuations at the drive frequency,
and Tsys ≈ ~ωd/2kB . Further, as G → ∞, δ0 approaches a critical value31 of δc = 4/31/4

√
Q. For Q & 10, δc ≤ 1

and we can make the approximation δ0 − δ3
0/8 ≈ δc. Similarly, at this operating point, the angle θ also approaches a

critical value of 60◦, so that we can approximate η ≈ 1. Since the maximum value of η is 2, only half of the transduced
signal is noiselessly amplified resulting in an effective flux noise two times higher than what could be achieved in the
ideal case with θ = 0. A similar analysis which treats the system as a degenerate parametric amplifier with a detuned
pump and takes into account the non-orthogonality of the amplified and deamplified quadratures, gives the same
result in this limiting case32. The effective flux noise computes to

S
1/2
Φeff (f) ≈ (2

√
3)1/2

π

√
~ωd

2I0 sin (πΦb/Φ0)

√
Q

Z0

Φ0√
Hz

for G� 1. (6)

This expression has the remarkable feature that the effective flux noise varies directly with the resonator Q, so that
a resonator with lower Q has improved flux sensitivity. This results from the requirements of parametric amplification,
in particular that high parametric gain occurs at a critical phase oscillation δc ∝ Q−1/2, which in turn limits the
maximum achievable transduction coefficient. Additionally, lowering the resonator Q leads to parametric amplification
with increased bandwidth for a given parametric gain, and so is doubly desirable. This advantage breaks down at
very low Q, where the resonator oscillations will become chaotic before reaching the critical phase oscillation point31,
limiting the achievable parametric gain and associated flux sensitivity. In both the linear and nonlinear regime, it is
advantageous to increase the SQUID critical current and operate at a flux bias near Φ0/2. However, for sufficiently
large critical current such that Φ0/I0 ∼ L, where L is the inductance of the SQUID loop, the simple expression for
Ic (Φ) is no longer valid and one has to use numerical simulations to determine the change in SQUID inductance as
a function of applied flux, which is often a multivalued function. Furthermore, unlike the critical current modulation
of a dc SQUID, the inductance modulation with flux of a dispersive SQUID is not limited by the loop inductance
provided one remains in one of the branches of the multivalued function.

III. EXPERIMENT

Our lumped element resonator is shown in a false color scanning electron microscope image in Fig. 3(a). The device
consists of three layers: a 250-nm thick Nb underlayer, a 180-nm thick SiNx insulating layer, and an aluminum upper
layer. The capacitor was fabricated in a split geometry, with both electrodes on the top Al layer connected through the
Nb underlayer. The split geometry simplifies fabrication by avoiding the use of vias. The SQUID was fabricated with
double-angle evaporated Al-AlOx-Al junctions, with 2I0 = 4.3 µA. A short-circuit terminated coplanar waveguide
transmission line was also fabricated on chip to allow us to apply oscillating flux signals to the SQUID loop. Static
flux was provided by a superconducting wire-wound coil. The device was cooled in superconducting and Cryoperm
shields, and its performance measured at 30 mK in a cryogen-free dilution refrigerator. All static and rf lines were
heavily attenuated and filtered to minimize external noise.

To determine the dependence of the resonant frequency on applied flux, we used a vector network analyzer to
measure the phase of a weak microwave tone reflected from the resonator as a function of frequency and flux. The
results are shown in Fig. 3(b). As the flux through the SQUID washer was varied, the resonant frequency varied
from a maximum of 7.2 GHz to a minimum of 4 GHz, set by the low frequency cutoff of the circulators used in the
measurement chain. The horizontal bands apparent in the plot are due to the finite directivity of the circulator
used to separate the incoming and outgoing microwave signals from the resonator. The sample was flux biased at
Φb = 0.3Φ0, where the flux sensitivity was high and the frequency band was clear of ripples which could obscure the
response to rf and magnetic signals.

We next examined the performance of the parametric amplification stage. To characterize the gain, a strong
rf drive tone at frequency ωd/2π was applied to the resonator simultaneously with a weak rf signal at frequency
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ωrf /2π [Fig. 2(a)]. The reflected rf signal was further amplified, demodulated by a double sideband mixer with local
oscillator frequency ωLO/2π = ωrf /2π + 110 Hz, and digitized. The gain was determined by calculating the ratio of
the reflected microwave signal with the drive tone turned on versus a calibration sweep with the drive tone turned
off; in the latter mode the signal tone is reflected from the resonator with unity gain. The gain is plotted in Fig.
4(a) as a function of the frequency offset (ωrf − ωd)/2π for different drive powers. The advantage of low resonator
Q is evident in these data where a gain of 15 dB is demonstrated with a -3 dB full-bandwidth of 40 MHz. We note
that the observed gain and bandwidth deviate slightly from the analytical solution of the simple Duffing oscillator
prediction for a given drive amplitude. This discrepancy is resolved using numerical simulations which indicate gain
suppression due to noise rounding in nonlinear resonators with very low Q.

In separate measurements using a hot/cold load, we found the system noise temperature at the plane of the resonator
to be between 29 and 37.5 K, with the scatter arising from the uncertainty in the attenuation of the hot load line. By
measuring the SNR improvement of rf signals measured at finite gain versus G = 0 dB, we calculate the system noise
temperature as a function of drive power [shown in Fig. 4(b)]. The lowest system noise temperature was measured
with G = 32 dB at ωd/2π = 5.56 GHz, with Tsys between 0.14 and 0.21 K, corresponding to a nearly quantum limited
added noise of 0.50 to 0.78 photons. At the highest gain point, the noise temperature was degraded due to instabilities
associated with operation near the critical point33.

We subsequently investigated the flux response of the system by applying a flux tone at frequency ωs/2π, chosen
so that the upper sideband of the upconverted rf output at frequency (ωd + ωs) /2π was offset by 10 Hz from an
additional applied rf signal at frequency ωrf /2π. This allows simultaneous measurements of the parametric gain and
flux sensitivity. The output signals were again amplified, demodulated with a double sideband mixer with local
oscillator frequency ωLO/2π = ωrf /2π+ 110 Hz, and digitized. The SNR of the flux response at each bias point was
calculated by comparing the height of the transduced output signal to the average of the white noise in a bandwidth
of 200 Hz. This SNR was converted into an effective flux noise using the known amplitude of the flux signal applied
to the magnetometer. In these measurements, the primary source of uncertainty in the effective flux noise is the
calibration of the flux signal, which we estimate to be a few percent. In Fig. 4(c), we plot the effective flux noise
as a function of drive amplitude and flux signal frequency. In the linear regime, the magnetometer bandwidth is
limited by the bandwidth of our flux excitation line and is demonstrated to be at least 80 MHz. Using our value of
Q ≈ 26, we expect the bandwidth to be greater than 100 MHz. By biasing the resonator in the nonlinear regime, we
trade bandwidth for parametric gain and reduced noise. By operating at a parametric gain of 32 dB, we achieved a
minimum effective flux noise of 0.21 µΦ0Hz−

1
2 at ωs/2π = 100 kHz. However, this is not the lowest attainable noise

as the demodulated noise in these measurements with ωLO 6= ωd is the sum of incoherent noise sidebands above and
below the LO frequency, thus degrading the effective flux noise.

To determine the optimum device performance, we performed a second set of measurements with ωLO = ωd. With
this demodulation technique we made use of the single quadrature nature of the transduced flux signal. The effective
flux noise as function of drive power measured at ωs/2π =100 kHz for both demodulation techniques is shown in Fig.
4(c) and clearly demonstrates the advantage of demodulating with ωLO = ωd. In the linear regime at low powers,
the latter demodulation scheme improves the effective flux noise by a factor of 2 since both sidebands containing
information are used. At high drive powers the improvement is only

√
2, since both sidebands contain identical signal

and noise due to parametric amplification. The minimum effective flux noise of 0.14 µΦ0Hz−
1
2 was achieved with

G = 32 dB, with a flux signal bandwidth of 600 kHz set by the parametric amplifier half bandwidth. If we substitute
our system parameters into Eq.(6), we predict a minimum effective flux noise of 0.14 ± 0.007 µΦ0Hz−

1
2 , in very good

quantitative agreement with our measured results. The uncertainty in this calculation is the estimated uncertainty in
our knowledge of the circuit parameters. By reducing the parametric gain to 15 dB, we achieved an effective flux noise
of 0.29 µΦ0Hz−

1
2 while signficantly increasing the flux signal bandwidth to 20 MHz. As a final note, at frequencies

below 100 Hz (not shown) we observe an effective flux noise with a nearly 1/f power spectrum and a value of a few
µΦ0Hz−

1
2 at 1 Hz, consistent with that typically measured for SQUIDs at low temperatures34.

IV. CONCLUSION

We have demonstrated a dispersive magnetometer based on a lumped-element, nonlinear resonator involving a
two-junction SQUID. The bandwidth and sensitivity of the device can be dynamically altered to suit the needs of
specific measurements by changing the microwave drive. We have achieved an effective flux noise of 0.14 µΦ0Hz−

1
2

with a bandwidth of 600 kHz. The bandwidth can be increased to 20 MHz with only a factor of two increase in flux
noise. We expect that our magnetometer will exhibit low backaction, since the SQUID never switches to the voltage
state, making it attractive for quantum state measurement. There are several avenues for further improvement. The
magnetometer could be realized as two physically separate devices, a transducer and a gain stage. This would allow
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for independent optimization of the transduction coefficient and the performance of the parametric amplifier. By
increasing the Q of the transduction stage to match the bandwidth of the parametric amplifier, and rotating the
transduced signal fully into the amplified quadrature, reductions by a factor of about 10 in the effective flux noise
should be possible. A lower effective flux noise could also be achieved by optimizing the transduction coefficient using
junctions with higher critical currents, and by operating at a flux bias closer to Φ0/2. An increased bandwidth could
be obtained by reducing the noise temperature of the microwave postamplifier, thus reducing the parametric gain
necessary for quantum noise limited operation. Moreover, the quantum noise limited amplification we have observed
suggests that this device can be used as a general purpose first-stage rf amplifier for a variety of applications.

An attractive possibility is to replace the tunnel junctions in the SQUID with nanobridges, provided they have
sufficient nonlinearity to exhibit efficient flux tranduction and high parametric gain35,36. Furthermore, nanobridges
are resilient to applied longitudinal magnetic fields. Nanobridges also have the important advantage of overcoming the
inherent difficulty of coupling a nanoscale spin system, such as a single molecule magnet (SMM), to a SQUID loop with
a diameter of the order of a micrometer. By placing the SMM directly across the bridge with nanometer dimensions,
one can achieve high coupling efficiency12. Such experiments would enable one to investigate the all-important issue
of backaction from the SQUID on the SMM.
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Appendix: Derivation of parametric amplifier gain

In this appendix, we derive the expressions for parametric gain and consider the limiting cases. We start with
a modified version of Eq. (2), replacing the right hand side by a signal at frequency ωd + ωs. This represents the
application of a weak signal tone to the nonlinear oscillator in addition to the strong pump tone at ωd.

d2ε

dt2
+ 2Γ

dε

dt
+ εω2

p0

(
1− δ2

0

4

)[
1− δ2

0

4− δ2
0

cos (2ωdt− 2θ)
]

=
1

Z0CΦ0
Vs(t), (7)

where Vs(t) = Vs cos (ωdt+ ωst) is the signal tone which will be amplified. We next decompose δ0 into components
that are parallel and perpendicular to the phase of the pump tone, yielding δ2

0 = δ2
c⊥ + δ2

c‖, where tan θ = δc⊥/δc‖.
By substituting this expression into Eq. (1) and making the rotating wave approximation (RWA), we arrive at

−δc‖ + δc⊥[Ω− Q

8
(δ2
c⊥ + δ2

c‖)] = 0 (8)

and

δc⊥ + δc‖[Ω−
Q

8
(δ2
c⊥ + δ2

c‖)] = QId/I0, (9)

where Ω = 2Q(1 − ωd/ωp0) is the dimensionless detuning of the pump tone from the resonant frequency ωp0. These
expressions allow us to solve for δ0 as a function of drive parameters.

As the parametric amplifier operates in a reflection mode, it is next useful to represent the signal tone in terms of
incident (Vin) and reflected (Vout) amplitudes. Using ideas from Input-Output theory37, we write

Vs (t) = 2Vin (t) (10)
and

Vout (t) = VJ (t)− Vin (t) . (11)
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Here VJ (t) = (Φ0/2π) dε/dt is the voltage across the Joesphson junction. For harmonic signals, the above system of
equations can be solved analytically in the frequency domain27. The signal power gain (Gs) is defined to be the ratio
of output power to input power at the signal frequency ωd + ωs and is given by

Gs (f) = 1 +
4ρ2[

(Ω− 2ρ)2 − ρ2 + 1
]2
− 2f2

[
(Ω− 2ρ)2 − ρε2 − 1

]
+ f4

, (12)

where ρ = Qδ2
0/8 and f = 2Q(1− ωs/ωp0) is the dimensionless signal frequency. For small offset frequencies ωs, the

gain is flat vs. offset frequency, and this gain (G) can be expressed versus bias conditions (Ω, ρ) by setting f = 0,
yielding

G = 1 +
4ρ2[

(Ω− 2ρ)2 − ρ2 + 1
]2 . (13)

Note that the above expression depends only on the dimensionless pump frequency (Ω) and oscillation amplitude (ρ)
at the pump frequency.

We next analyze the behavior of G in the limiting cases. For no pump drive, i.e., ρ = 0, we obtain G = 1 as
expected. For Ω <

√
3, the maximum gain for a given pump frequency is achieved when

ρ = ρmax =

√
1 + Ω2

3
(14)

and

I2
d =

16I2
0

3
√

3Q3
(1 + Ω2)

(
2
√

1 + Ω2 −
√

3Ω
)

, (15)

where Id is the pump drive amplitude and the maximum gain is given by

Gmax = 1 +
1

3 + 7Ω2 − 4
√

3Ω
√

1 + Ω2
. (16)

At the critical point (Ω =
√

3) the gain (Gmax) diverges. In practice, higher order corrections ignored in this calculation
will ensure that the gain remains finite. We always operate with Ω <

√
3 to avoid instabilities in the system when it

is operated very near the critical point.
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19 A. Lupaşcu, E. F. C. Driessen, L. Roschier, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett. 96, 127003 (2006).
20 I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. B 73, 054510

(2006).



8

21 F. Mallet, F. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, and D. Esteve, Nat. Phys. 5, 791 (2009).
22 E. del Barco, A. D. Kent, E. C. Yang, and D. N. Hendrickson, Phys. Rev. Lett. 93, 157202 (2004).
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FIG. 1. (a) The magnetometer consists of the nonlinear inductance of an unshunted two-junction SQUID in parallel with an
on-chip, lumped-element capacitor. An applied magnetic flux (purple arrows) modulates the resonant frequency, and is read
out as a change in the phase of a microwave drive signal (green arrows) reflected from the device through a circulator. If the
resonator is driven strongly, the upconverted flux signal (purple arrows) and any additional weak rf input signal (blue arrows)
will be parametrically amplified. (b) The magnetometer can be characterized as a dual stage device, the first stage being an
upconverting transducer of flux to microwave voltage and the second an rf parametric amplifier.
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FIG. 2. Parametric amplification. The drive tone is in green, coherent signals are in blue, and incoherent noise is in red. (a)

A single sideband signal at frequency ωrf/2π is amplified with a voltage gain
√
G, and an idler signal is also produced at

frequency ωi/2π = (2ωd − ωrf )/2π with gain
√
G− 1 and relative phase φ. In the high gain limit, the voltage signal-to-noise

ratio (SNR) is degraded by a factor of at least
√

2, since the amplfied signal is accompanied by incoherent noise from both
the signal and idler frequencies. (b) A coherent double sideband input signal symmetric about the drive tone results in output
voltages which are a coherent combination of the signal and idler tones. This process can be decomposed as amplification of
two orthogonal quadratures—one which is amplified and the other which is deamplified. If the input signal lies fully along the
amplified quadrature (α = 0), it will be amplified without reduction of SNR.
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FIG. 3. (a) False color scanning electron microscope image of the dispersive magnetometer. The SQUID is shown magnified
in the inset, with the Al-AlOx-Al tunnel junctions marked in green. The capacitor is formed in a split geometry, with two top
layer electrodes connected through a common niobium plane. A high bandwidth flux line is formed by a short circuit terminated
coplanar waveguide transmission line, shown in the upper right of the figure. (b) The phase of the reflected microwave drive
is plotted versus applied SQUID flux and drive frequency. Each vertical slice is a resonance curve, with the color yellow (zero
phase) representing the resonant frequency.
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FIG. 4. (a) The parametric gain of rf signals (ωrf/2π) applied in combination with an rf drive tone (ωd/2π) versus the offset
frequency (ωrf − ωd) /2π. (b) System noise temperature versus drive power. As the parametric gain increases with drive
power, the system noise temperature drops. The standard quantum limit TN = ~ωd/2kB at ωd/2π = 5.56 GHz is shown as a
blue horizontal line. (c) Effective flux noise versus microwave drive power and flux signal frequency ωs/2π. As the system
noise temperature decreases with drive power, the effective flux noise is reduced. (d) Effective flux noise versus drive power
for two demodulation schemes. Data from part (c) at ωs/2π =100 kHz and demodulated with ωLO/2π = (ωd + ωs)/2π + 110
Hz, shown in red, are compared with those demodulated with ωLO = ωd, shown in blue. At each bias point, the phase of the
LO signal was varied to achieve maximum sensitivity. The latter demodulation scheme shows the expected noise improvement
factor of 2 for

√
G = 1, and

√
2 for

√
G >> 1.


