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Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of fi-
nite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and
various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NL-
CEs, combined with extrapolation techniques, allow us to access temperatures much lower than those
accessible to exact diagonalization and other series expansions. We show that the high-temperature
peak in specific heat decreases as the frustration increases, consistent with the large amount of un-
quenched entropy in the region around maximum classical frustration, where the nearest-neighbor
and next-nearest neighbor exchange interactions (J and J ′, respectively) have the same strength,
and with the formation of a second peak at lower temperatures. The staggered susceptibility shows
a change of character when J ′ increases beyond 0.75J , implying the disappearance of the anti-
ferromagnetic order at low temperatures. For J ′ = 4J , in the limit of weakly-coupled crossed
chains, we find large susceptibilities for stripe and Néel order with Q = (π/2, π/2) at intermediate
temperatures. Other magnetic and bond orderings, such as a plaquette valence-bond solid and a
crossed-dimer order suggested by previous studies, are also investigated.
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FIG. 1. Various ordered phases on the checkerboard lattice explored in this work; Néel order with a) Q = (π, π), b) Q =
(π/2, π/2) (Néel∗), c) Q = (π/2, π), d) Q = (0, π) (stripe). Empty (full) circles denote spin downs (ups). e) Crossed-dimer
order where thick (thin) diagonal lines represent strong (weak) bonds, and f) P-VBS phase with strong dimer-dimer correlation
between parallel bonds of uncrossed plaquettes marked by big circles.

I. INTRODUCTION

The checkerboard lattice is a unique two-dimensional (2D) system for studying magnetic systems. The next-
nearest-neighbor (NNN) interactions, which are present on every other plaquette in a checkerboard pattern, not only
can impose frustration and drive the system to exotic ground states but also provide a great tool for numerical and
analytical investigators to study the evolution of physical properties in transitions between different geometries. For
instance, in the limit of weak NNN interactions, it is expected that the physics associated with the simple square
lattice be dominant. In the antiferromagnetic Heisenberg (AFH) model, this means a tendency towards long-range
Néel ordering at temperatures smaller than the characteristic energy scale set by the nearest-neighbor (NN) magnetic
exchange interaction, J . Whereas a ferromagnetic (negative) NNN exchange interaction, J ′, favors this Néel ordering,
an antiferromagnetic (positive) one introduces frustration and thus, new types of ordering such as a valence-bond
solid emerge. In the fully-frustrated region where J ∼ J ′ > 0, the lattice is a projection of the three-dimensional
corner-sharing tetrahedrons (pyrochlore lattice) onto a 2D lattice. The other interesting limit is J ′ ≫ J , where the
2D lattice is practically reduced to weakly-coupled crossed chains and physical properties are dominated by those of
one-dimensional (1D) system. Moreover, by eliminating certain bonds, one can even turn the focus from the square
basis of the underlying lattice to a triangular one that can capture the geometry of the Kagomé lattice.

The problem of frustrated AFH model on the checkerboard lattice has its roots in early studies on its three-
dimensional counterpart, the pyrochlore lattice. The latter system was originally studied by Harris et al.

1 using
quantum field theory. They ruled out the possibility of a phase with long-range spin correlations but found strong
correlation between NN spins, suggesting a dimerized ground state. A few years later, using perturbative expansions
and exact diagonalization, Canals and Lacroix2 concluded that the ground state is a spin-liquid with correlations that
decay exponentially by distance. Around the same time, another study by Isoda and Mori,3 in which a bond-operator
approach was used, suggested a resonant-valence-bond like plaquette phase.

So far, the magnetic properties of the checkerboard lattice has been the focus of many theoretical studies,4–19

with compelling evidence that the ground state for J ′ = J (the planar pyrochlore) is a plaquette valence-bond solid
(P-VBS) with long-range quadrumer order.4,6–10,12 This was shown by means of strong-coupling expansion,4,6 exact
diagonalization,7 as well as mean-field theory10 and a quadrumer boson approximation.9

In the limit of J ′ ≪ J , the existence of the long-range Néel order has also been established.7,13–15 Semiclassical
approaches, such as linear spin-wave,14,15 and numerical results7,13 predict the stability of antiferromagnetic (AF)
long-range order for J ′/J . 0.75. However, this number is different in other studies that associate the instability of
the P-VBS phase, as J ′ is reduced, with the transition to the Néel state (5/8 in Ref. 9, and [0.88 − 0.94] in Ref. 6).

The situation in the limit of weakly-coupled crossed chains (J ′ ≫ J) is less clear. There are at least two proposals for
the ground state in this region of the parameter space; first is the 2D spin-liquid ground state (sliding Luttinger liquid)
characterized by the absence of long-range order and elementary excitations being massless deconfined spinons.5 This
idea is supported by an exact diagonalization study of Sindzingre et al.,13 which suggests a range of J/J ′ = [0 − 0.8]
for the 1D behavior. However, their calculations suffer from strong finite-size effects even with 36 sites due to the
quasi-1D nature of the problem. Second is the crossed-dimer (CD) phase suggested by Starykh et al.

9 They argued
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FIG. 2. Clusters generated in the first four orders of NLCE expansion with a square building block on the checkerboard lattice.

that in the CD phase, staggered dimer correlations, which have a power-law decay with distance in a perfect 1D
system, are stabilized when a weak interchain interaction (J) is present. As depicted in Fig. 1(e), in this phase,
the “strong” (positive) dimers from perpendicular chains meet at the same crossed plaquette. This scenario is in
agreement with the results of M. Arlego et al.,16 who examined this idea by means of series expansion in terms of
J and J ′ connecting the blocks of crossed dimers. Including results from other works, Starykh et al.

9 also mapped
out the global zero-temperature phase diagram of the system with respect to the ratio of J and J ′ and discussed
the possibility of a magnetically ordered phase being present in the transition between the CD phase and the P-VBS
phase. This so called Néel∗ phase is the long-range ordered phase with diverging susceptibility at Q = (π/2, π/2) [see
Fig. 1(b)]. Most recently, using a two-leg ladder to construct the 2D lattice in a density matrix renormalization group
study, and by measuring various spin-spin correlations, Moukouri17 confirmed most of these predictions for the phase
diagram except that the magnetically ordered phase in the proximity of the CD phase has a wave vector Q = (π/2, π)
instead of the Q = (π/2, π/2) proposed in Ref. 9. Sketches of the former order, along with the other orders explored
here, are shown in Fig. 1.

Most of the numerical calculations for the AFH model on the checkerboard lattice have been done at zero tem-
perature using finite clusters with periodic boundary condition. As discussed above, some of the early works7,13,18

helped shape theories that describe ground state properties such as the P-VBS. However, a systematic study of finite
temperature properties in the thermodynamic limit, more relevant to experiments, has been missing. Our goal in this
study is to explore the thermodynamic properties of this model and address the finite-temperature behavior of the
susceptibilities to the ordered phases proposed for the ground state and described above.

We employ the numerical linked-cluster expansions (NLCEs),20,21 along with exact diagonalization of finite clusters,
to calculate thermodynamic properties of the system in different regions of the parameter space. We study the change
of behavior in energy, entropy, specific heat, and several susceptibilities as J and J ′ vary. We find that the high-
temperature peak in specific heat is strongly suppressed in the case of maximum classical frustration, J ′ = J .
Consistently, we see large amounts of unquenched entropy in this region, signaling the possibility of a second peak
in specific heat. Our study of different susceptibilities include the staggered susceptibility, which for J ′/J ≤ 0.75
continues to grow as the temperature is lowered, suggesting that the ground state is Néel ordered with Q = (π, π) in
this region. We also study the susceptibility to the the P-VBS phase using relevant order parameters and find that
it is largest for J ′ ∼ J . In the limit of weakly-coupled crossed chains, and down to the lowest temperatures we can
access, the dominant correlations belong to the Néel∗ and stripe phases.

The paper is organized as follows: In Sec. II, we present the model and briefly discuss NLCEs, and the extrapolation
techniques, along with the clusters utilized in the exact diagonalizations. The results are presented in Sec. III, and a
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summary and conclusions are provided in Sec. IV.

II. MODEL AND NUMERICAL APPROACH

The Hamiltonian

The AFH Hamiltonian can be written as

H = J
∑

〈i,j〉

Si · Sj + J ′
∑

〈〈i,j〉〉

Si · Sj , (1)

where Si is the spin-1/2 vector at site i, and 〈i, j〉 denotes bonds between NN sites i and j. 〈〈i, j〉〉 denotes bonds
between NNN sites i and j on every other square in a checkerboard pattern.

Numerical Linked-Cluster Expansions

NLCEs are linked-cluster expansions method which allow one to calculate the partition function and other observ-
ables, per lattice site, in the thermodynamic limit at finite temperatures. The information for these quantities at a
given temperature are built up by calculating contributions from all the clusters, up to a certain size, that can be
embedded in the infinite lattice. Unlike high temperature expansions (HTEs), each cluster is solved exactly using
full diagonalization algorithms. Hence, NLCEs have a region of convergence which extends beyond that of HTEs.
Depending on the type of ordering that occurs in the system at low temperatures, NLCEs can remain converged
down to surprisingly low temperatures. Examples of these can be seen in case of geometrically frustrated magnetic
systems such as the Kagomé lattice where there is no long-range magnetic ordering.20–22 As in other series expansion
approaches, we use extrapolation techniques to perform the summation of existing orders to further decrease the
temperature of convergence, and often gain access to regions where most of the interesting phenomena take place.
More details about these extrapolations can be found in the following subsection and references therein.

Depending on the symmetry of the lattice and properties of the model, the generation of clusters in NLCEs can
be done using different building blocks. These include the usual bond expansion, site expansion, triangle or square
expansions, etc.21 In this work, we focus on the square expansion which offers a particularly convenient approach
in constructing the checkerboard lattice, i.e., by tiling it with crossed squares. In this picture, the first order in the
expansion has a single crossed square, the second order has two crossed squares, and so on. The first four orders,
including the 0th order with a single site, are shown in Fig. 2.

In the square expansion, the maximum number of sites of a cluster in the nth order is 3n + 1. Also, the number
of topologically distinct clusters increases exponentially as the order increases. The number of clusters of each size,
which need to be considered up to the sixth order, is shown in Table I. Note that out of 31 clusters in the sixth order,
23 have 19 sites, seven have 18 sites and one has 17 sites. Since the clusters have open boundaries, no translational
symmetries can be used to block-diagonalize the Hamiltonian matrix. This restricts the calculations to orders ≤ 6

TABLE I. Size and number of topologically distinct clusters up to the sixth order of the square expansion.

Order No. of sites No. of clusters

0 1 1

1 4 1

2 7 1

3 10 2

4 12 1

4 13 4

5 15 1

5 16 10

6 17 1

6 18 7

6 19 23
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16 18 20

FIG. 3. (Color online) Periodic clusters on the checkerboard lattice used in our finite-size exact-diagonalization calculations.
The number inside each cluster represents its size.
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FIG. 4. (Color online) Energy per site versus temperature for the AFH model on the checkerboard lattice with NN and NNN
exchange interactions J = 0.50 and J ′ = 1.00, respectively. The thin dashed and dotted-dashed lines represent the bare NLCE
sums up to the fifth and sixth orders of the square expansion. The solid line shows the average of last two terms in the Euler
and Wynn extrapolations with the shaded (yellow) area representing the “confidence limit” where all the extrapolations lie.
The unit of energy is J ′.

where, by using the conservation of the total spin in the z direction, we have to diagonalize matrices with linear size
as large as

(

19
9

)

= 92, 378. This is nearly impossible using serial LAPACK subroutines on single-processor machines
given memory restrictions and the time needed for such huge diagonalizations. Therefore, most of the calculations
have been performed on parallel computers using SCALAPACK routines.

Where possible, we compare results from NLCEs to those from exact diagonalization of finite clusters with periodic
boundary conditions (ED) to build intuition about the finite-size effects that might have influenced results of previous
studies. These clusters, with 16, 18, and 20 sites, are shown in Fig. 3. We use translational symmetries that are
allowed on the checkerboard lattice and are not prohibited by the symmetries of the order parameters in the broken
symmetry cases. The largest matrix we had to diagonalize in this case was for the 20-site cluster, which had linear
dimension of 36, 956.

Extrapolations

Measurements from all the clusters of every NLCE order are grouped together before summing different orders either
regularly (bare sums) or by using Euler23 or Wynn24 sequence extrapolation algorithms (for a detailed description of
these algorithms see Ref. 21). In the Euler sum, one can choose to have bare sums up to a particular order before
using the Euler algorithm for the rest of the remaining orders. Here, we apply the Euler sum to the last 4, 3, 2, and
1 terms. We find that the one with 3 Euler sums is generally the best (more physically sensible). In the Wynn sum,
we can have 1 or 2 cycles of improvement, each eliminating 2 terms, leaving us with 4 and 2 terms respectively out of
the initial 6. Because of the small number of terms in the Wynn sum, we find that using only one cycle yields more
reliable outcome. Hence, unless otherwise is mentioned, we show results throughout this paper for Wynn sum with
one cycle and Euler sum for three terms.

The behavior of these extrapolations can be seen in Fig. 4, where we show, as an example, the energy per site
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FIG. 5. (Color online) Specific heat versus temperature for various J and J ′. In the left panels, J ′ < J and in the right
panels J ′

≥ J . For comparison, results from ED with 18 and 20 sites are shown. The first peak is captured for all cases after
extrapolation. The NLCE results are cut off roughly where the errorbars exceed 0.1. The unit of energy is set to max(J, J ′).

(E) versus temperature for J = 0.50 and J ′ = 1.00. We also include the bare sums up to the fifth and sixth orders,
which start diverging around T = 0.4J ′. As expected, the results from the Euler and Wynn sums show a less
divergent behavior and extend the region of convergence to lower temperatures. To have a rough estimate for energy
at temperatures not accessible by bare NLCE sums, we take the average of the last two terms in the Euler and Wynn
sums (solid line). All these four extrapolations lie in a region (yellow region) which can serve as the “confidence limit”.
We refer to this region around the average as the errorbar, although it by no means represents statistical errorbars.
Below the temperature where bare NLCE sums diverge, the extrapolations’ average is not guaranteed to be the exact
result in the thermodynamic limit. However, along with the errorbars, it serves as an estimate of the desired quantity.

III. RESULTS AND DISCUSSIONS

Here we study thermodynamic properties such as total energy, entropy, specific heat, and several magnetic suscep-
tibilities for a range of parameters, sweeping different regions of the phase diagram, from the simple square lattice
without the NNN interaction to near the 1D limit where NNN interactions dominate. For most of these quantities,
we show results for J ′ = 0.00, 0.25, 0.50, 0.75, and 1.00 when J = 1.00 and J = 0.75, 0.50, and 0.25 when J ′ = 1.00.
The unit of energy is set to max(J, J ′).

Energy, Entropy, Specific Heat and Bulk Susceptibility

The specific heat per site (C) provides valuable information about the state of the system in different regions of
the parameter space. In Fig. 5, we show this quantity after extrapolations of NLCE results for a range of values of
J ′/J . For comparison, results from ED with 18 and 20 sites are also shown. The highest peak appears for the simple
square lattice with no frustration [see Fig. 5(a)]. One can see that the bare NLCE results for fifth and sixth orders
(dashed and dotted-dashed lines, respectively) start deviating at T ∼ 0.8, where the antiferromagnetic correlations
presumably exceed the linear size of our biggest clusters. However, the average extrapolation captures a peak around
T = 0.6. More interestingly, both ED curves depart from the exact curve at a temperature greater than J and show
almost no improvement by increasing the cluster size from 16 to 20, with a position of the peak which is at slightly
higher temperature (the 16-site results are not shown).



7

-0.6

-0.4

-0.2

0

E

0

0.2

0.4

0.6

S 0.00
0.25
0.50
0.75
1.00

0

0.2

0.4

C

QMC

0

0.05

0.1

χ

0.1 1 10
T

-0.6

-0.4

-0.2

0

E

0.1 1 10
T

0

0.2

0.4

0.6

S

1 10
T

0

0.2

0.4

C

0.75
0.50
0.25

1 10
T

0

0.05

0.1

χ

J’/J=

J/J’=

a)

c)

e)

g)

b)

d)

f)

h)

FIG. 6. (Color online) The evolution of a, b) energy, b, c) entropy, e, f) specific heat, and g, h) bulk susceptibility per site as
J and J ′ change. These results are taken from the average extrapolations of NLCE and are cut off where the errorbars reach
10% or less. Circles in (a), (e), and (g) are the data from a large-scale QMC simulation for J ′ = 0 (Ref. 25). Circles in (c) are
the result of a direct integration of C/T over temperature using the QMC results in (e), plus an additive constant to recover
the infinite-temperature entropy i.e., account for the missing low-temperature tail of the specific heat. The statistical errorbars
for the QMC are smaller than the symbols and are not shown.

As J ′/J increases to 0.5 [Fig. 5(b) and (c)], the peak in specific heat broadens, its maximum value decreases, and
the temperature at which the latter is reached also decreases. Due to the increase in frustration, the AF correlations
are suppressed and ED more accurately predicts the location of the peak while still overestimating its value. For the
same reason, the convergence in the bare NLCE sums is extended from T ∼ 0.8 for J ′ = 0.0 to T ∼ 0.5 for J ′ = 0.5.
Further increasing J ′ to 0.75 [Fig. 5(d)] changes these features qualitatively by strongly suppressing the peak. In ED,
the peak is pushed to lower temperatures (T ∼ 0.3) and the agreement with exact NLCE results can be seen down
to lower temperature (T ∼ 0.5) where the bare NLCE sums also diverge. These observations are consistent with
results from previous studies that find a transition from the magnetically ordered Néel phase to a disordered phase
for J ′ & 0.75J .14,15

As expected, the minimum peak value is seen for the fully-frustrated case of Fig. 5(e) where J ′ = J [see also Fig. 6(e)
and (f)]. Although ED is in good agreement with NLCE for T > 0.5, one can see significant finite-size effects at lower
temperatures between the 18-site and 20-site clusters. The integral of C/T for the temperature range shown for the
average extrapolation curve only recovers about half of the entropy at infinite temperature, whereas this is 88% for
the case of Fig. 5(a) with no frustration. At T = 0.3, the specific heat shows the tendency to develop a second peak.
This tendency can be seen both in the NLCE and ED results and, along with the fact that there is a huge amount of
unquenched entropy already at T ∼ 0.3 [see Fig. 6(c) and (d)], strongly suggest that there is a second peak in specific
heat at T < 0.3.

As the value of J/J ′ decreases from one, the peak in specific heat, shown in Fig. 5 (f-h), increases again and the 2D
system starts to behave more and more like a 1D chain. This can be inferred from the dramatic finite-size effects in
ED. While the 20-site cluster can recover the NLCE results with relatively good accuracy, the results for the 18-site
cluster start deviating from NLCE at temperatures as high as 2.0. This can be understood from the fact that in
the limit of decoupled crossed chains, J = 0, the 18-site cluster contains six decoupled periodic chains consisting of
only three sites, whereas the 20-site cluster, contains two 10-site decoupled chains. Note that not only are the 1D
decoupled chains in the 18-site cluster significantly smaller, but also they contain an odd number of chain sites, i.e.,
AF correlations are geometrically frustrated and this strongly affects the results. Due to the quantum fluctuations,
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FIG. 7. (Color online) Entropy divided by temperature as a function of frustration angle, tan−1(J ′/J). A peak in entropy
develops at J = J ′ as temperature is lowered below 0.5. The values and the errorbars are taken from the average extrapolation
of NLCE results.

any long-range order is suppressed near the 1D limit and so, the extrapolations capture the specific heat with much
smaller errorbars for J ′/J = 4 as seen in Fig. 5 (h).

In Fig. 6, we show the evolution of energy, entropy (S), specific heat, and uniform susceptibility (χ) per site as the
value of J ′/J changes. One can see that the energy per site at temperatures below 0.2 increases monotonically as J ′

increases and, as expected from the results in Fig. 5, the low temperature entropy [Fig. 6(c) and (d)] is maximum in
the case of J ′ = J . The previously discussed decrease of the maximum value of the specific heat by increasing J ′ to
J , followed by an increase for larger values of J ′ > J , is more clearly seen in Fig. 6(e) and (f). Finally, Fig. 6(g) and
(h) show that the uniform susceptibility remains small in all regions with a downturn below T = 1.0. We have also
included results from a large-scale stochastic series expansion quantum Monte Carlo (QMC) simulation (circles) with
up to 256× 256 spins for the unfrustrated case of J ′ = 025 using directed loop updates.26,27 This is the only case that
we consider where the low-temperature QMC calculation is not limited by the sign problem.

To better compare the behavior of the entropy in different regions, in Fig. 7, we show the entropy divided by
temperature as a function of the frustration angle defined as φ = tan−1(J ′/J). By lowering the temperature below
0.5, the entropy develops a peak at J ′ = J which persists down to the lowest accessible temperature (with reasonable
errorbars for all angles). In the square lattice limit, φ = 0, the specific heat, and therefore the entropy, are known to
be quadratic in T at low temperatures. As can be seen in this figure, our results are consistent with this for T ≤ 0.5.
However, by increasing J ′/J to 1.0, this behavior changes completely and entropy decreases even slower than T . On
the other hand, close to the 1D limit, φ > 0.4π, the entropy has a linear region around T = 0.5 below which it
decreases faster than T , similar to the weakly-frustrated regions with small φ.

Order Parameter Susceptibilities

Other than the uniform susceptibility, which can be measured directly from the fluctuations of the total spin in
the z direction, other susceptibilities per site are calculated using their definition as the second derivative of the free
energy with respect to the field that couples to the corresponding order parameter (O):

χO =
T

N

∂2lnZ

∂h2

∣

∣

∣

h=0
, (2)

where N is the number of sites, Z is the partition function, and h is the field that couples to the order parameter in
the new Hamiltonian: Ĥ ′ = Ĥ − hÔ. For example, we consider the following order parameter for Néel orderings with
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different wave vectors:

ÔNéel =
∑

R

eiQ.RSz(R), (3)

where Q = (qx, qy), R runs over a Bravais lattice with the basis a = ( π
qx

, 0) and b = (0, π
qy

), and Sz(R) is the total

spin in the z direction in the corresponding unit cell.
We find that the staggered susceptibility, χstg [Q = (π, π)], at low temperatures changes character when J ′/J is

increased from 0.75 to 1.00. As can be seen in Fig. 8, χstg continues to grow by decreasing temperature in the weakly-
frustrated region and as long as J ′/J ≤ 0.75, but shows a downturn at low T for J ′/J ≥ 1.00. This is more clearly
seen in the inset of Fig. 8, where we have plotted the inverse of the staggered susceptibility versus temperature, and
is consistent with previous findings7,13–15 which suggest that in the latter region, the system no longer exhibits long-
range Néel order. Note that the calculation of the staggered susceptibility for the unfrustrated case of J ′ = 0 is one of
the worst case scenarios for NLCEs as the antiferromagnetic correlation length grows exponentially by decreasing the
temperature. This can be realized by comparing the NLCE curve to the finite-size-converged (thermodynamic limit)
QMC results (circles). Similar to the specific heat, the NLCE results start deviating from the exact solution around
T = 0.8. Nevertheless, NLCE provides a far better estimate for this quantity at low temperatures than ED.

According to the Mermin-Wagner theorem,28 the Heisenberg model with finite-range exchange interactions in two
dimensions cannot undergo a phase transition to a long-range ordered state at finite temperature. However, in light
of the recent analytical and numerical predictions for the ground state phases of this system, we calculate the finite-
temperature susceptibilities associated with various order parameters to study their behavior as the temperature is
lowered. These susceptibilities are shown in Figs. 9 to 12 in a low temperature window for the relevant values of J
and J ′.

In Fig. 9, we show the susceptibility to a plaquette order which is expected to be large in the P-VBS phase around
J ′ = J . Fouet et al.

7 argued that the ground state wave function in this phase is the symmetric combination of the
pairs of singlets on parallel bonds of the uncrossed plaquettes. Based on that, we consider the following four-spin
order parameter:

Ô4 = 32 ×
∑

©

Sl1 · Sl2 Sl3 · Sl4, (4)

where l is the position of every other uncrossed square, marked by a circle in Fig. 1 (f). The spin numbers around
each of these squares is such that 1 and 2 (and therefore, 3 and 4) are nearest neighbors. Since this kind of order
involves uncrossed squares, NLCEs in crossed squares are not suited to measure the corresponding susceptibility and
so, we have obtained results only from ED. They show that this susceptibility is largest in the region around the
maximum classical frustration. However, significant finite-size effects are seen, especially for the J ′ = J case. In
this region, the results for the 16-sites cluster deviate from those for the 20-site cluster when T < 1.0, with the
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FIG. 9. (Color online) ED results for the susceptibility to the P-VBS order (see Eq. 4) per site versus temperature. Thick
(thin) lines are results for the 20-site (16-site) cluster. The order is depicted in Fig. 1 (f). The inset shows the susceptibility to
the two-spin version of the plaquette order parameter as presented in Eq. 5.

0.1 1
T

0

1

2

3

4

χC
D

J=1.00, J’=0.50
J=1.00, J’=1.00
J=0.75, J’=1.00
J=0.50, J’=1.00
J=0.25, J’=1.00

0.1 1T
0

3

6

9

χC
D

J/J’=0.75

FIG. 10. (Color online) Susceptibility to the crossed-dimer order [see Eq. 6 and Fig. 1(e)] per site versus temperature. Thin
dotted lines are the last two orders of bare NLCE sums, and thin solid lines are the ED results with 20 sites. In the Euler
extrapolation, only the last two terms have been used. In the inset, lines are as in Fig 9 with thick (thin) lines representing
ED results for the 20-site (16-site) cluster.

susceptibility being roughly a factor of two larger at T ∼ 0.1 for the 16-site cluster. Interestingly, for the 20-site
cluster, the susceptibility shows a significant decrease by further decreasing temperature below T = 0.07J . Note
that most of the thermodynamic quantities, such as the specific heat and other susceptibilities calculated using ED
(even with 20 sites), deviate from their exact NLCE counterparts (bare sums) starting from temperatures as high
as 0.5 in this parameter region. So, the peak feature is expected to be a consequence of the finite-size nature of the
calculations. We have tested a more sophisticated order parameter suggested in Ref. 7 to better capture the P-VBS
phase, namely, the four-spin cyclic permutation operator (P4 + P−1

4 ),29 and found the same qualitative results as for

Ô4 after rescaling.
Alternatively, one can define a simple two-spin order parameter as the sum of strong NN bonds around every other

empty plaquette and weak NN bonds elsewhere to describe this phase:

Ô2 =
∑

�

(−1)lx(Sl1 · Sl2 + Sl2 · Sl3 + Sl3 · Sl4 + Sl4 · Sl1), (5)

where l is the position of each empty square (�) in units of the NN lattice spacing and we have numbered the spins in
each square clockwise, starting from the lower left corner. The resulting susceptibilities for three values of J ′/J around
the fully-frustrated region are plotted in the inset of Fig. 9, which show similar trends as their four-spin counterparts.
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FIG. 11. (Color online) Néel∗ susceptibility [Q = (π/2, π/2)] per site versus temperature for a range of ratios of J and J ′. The
inset shows the corresponding magnetic order where the empty (full) circles represent down (up) spins. Thin dotted lines are
the last two orders of bare NLCE sums, and thin solid lines are the ED results with 16 sites.

By decreasing J/J ′ to 0.5, we find that the low temperature susceptibility to the CD order is enhanced (Fig. 10).
To calculate this susceptibility, we consider the following order parameter:

ÔCD = 2 ×
∑

⊠

(−1)lx(Sl1 · Sl3 + Sl2 · Sl4), (6)

where l is the position of each crossed square (⊠) and spin numbering is the same as in Eq. 5 so that, S1 and S3 (or
S2 and S4) are at the two ends of diagonal bonds. Although this susceptibility is significantly larger for J ′/J > 1,
the extrapolated values for J ′/J = 4 exhibit a downturn at finite temperature. The results from ED with 20 sites
overestimate the NLCE results at low T for J ′ > J . However, we see significant finite-size effects between the 16-site
and 20-site clusters, shown in the inset of Fig. 10. We have checked the susceptibility to a closely related order
parameter in which there is one strong diagonal bond on every crossed plaquette, specifically, Eq. 6 with a minus sign
between the two terms, and found a qualitatively similar behavior as the CD susceptibility but with smaller values
(not shown). Since the CD phase was predicted to exist for J ′ ≫ J9, an interesting question posed by these results
is whether the peak feature will eventually disappear for smaller values of J/J ′ and one would find a susceptibility
that always increases with decreasing temperature. In this scenario, the relevant temperature at which the CD phase
becomes dominant is O(J2/J ′)9, which is beyond the convergence region of our current NLCE calculations.

We find that for large values of J ′/J > 2 (weakly-coupled crossed chains), there are two magnetic orderings that
are dominant at the lowest temperatures we can study. They are (i) the so called Néel∗ order and (ii) stripes along
the horizontal (or vertical) directions (Figs. 11 and 12). The corresponding order parameters are defined in Eq. 3 with
Q = (π/2, π/2) and Q = (0, π), and are depicted in Fig. 1 (b) and (d), respectively. The former has been proposed
theoretically as the candidate for this region.9 An intriguing observation is that the values for these two susceptibilities
are hardly distinguishable, especially when J ′ > J . To illustrate the latter, we plot the NLCE results for the Néel∗

susceptibility against the stripe susceptibility in Fig. 12 (circles). One can see that the relative difference is negligible
for all values of J ′/J shown.

These results are consistent with what one would expect at intermediate temperatures in the limit of J ′ ≫ J ,
because both orders are compatible with the antiferromagnetic correlations that develop along the diagonal chains.
We note that for the ED with the 16-site cluster, using adjacency matrices, one can easily show that the modified
Hamiltonians, Ĥ ′, are identical for the two order parameters. It would have been interesting to compare ED results
for both orders with larger system sizes, however, given the unit cell size for each order (eight sites for the Néel∗ and
four sites for the stripe) and our computational limitations with increasing system sizes, those are only available for
the stripe order and are shown in Fig. 12. Resolving which order becomes dominant at lower temperatures will require
the study of larger cluster sizes both in NLCEs and ED. It is worth mentioning that, based on numerical calculations,
the stripe order was suggested to be the one relevant to the ground state of the J1 − J2 model when J2 & 0.6J1.

17

We have explored another magnetic ordering suggested by Mokouri17 to be dominant in the limit J ′ ≫ J . It has a
wave vector of Q = (π/2, π) and a unit cell of 8 sites. Because of the breaking of certain symmetries of the lattice, the
NLCE calculations for this case become much more expensive as one has to compute the physical properties of each
cluster at different orientations and locations on the lattice to properly deal with the broken symmetry (this applies
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FIG. 12. (Color online) Susceptibility to the stripe order [Q = (0, π)] per site versus temperature. The inset shows the
corresponding magnetic order where the empty (full) circles represent down (up) spins. Thin dotted lines are the last two
orders of bare NLCE sums, and thin solid lines are the ED results with 20 sites. Circles are NLCE results for the Néel∗ order
(Fig. 11).

FIG. 13. (Color online) Susceptibility to the Néel order with Q = (π/2, π) per site, calculated using ED with 16 sites, versus
temperature. The inset shows the corresponding order where empty (full) circles represent down (up) spins.

to the previously mentioned orders as well, but due to the presence of other symmetries, computations are less costly
in those cases). Thus, we only present results from ED with 16 sites for this type of order. As shown in Fig. 13, not
only is this susceptibility smaller close to the 1D limit, but the maximum value, which belongs to the case of J ′ = J ,
is also much smaller than the maximum value seen for other orders with 16 sites (see e.g., Fig. 11). Therefore, a
transition to this phase seems unlikely in any of the parameter regions. The fact that this type of order is not favored
close to the 1D limit is not surprising since, unlike in the Néel∗ or stripe ordered phases, spins on diagonal chains are
not antiferromagnetically aligned.

IV. SUMMARY

We have calculated the thermodynamic properties of the AFH model on the checkerboard lattice using NLCE and
ED, and studied their behavior as the system crosses over from a simple square lattice (J ′ = 0) to the maximally-
frustrated planar pyrochlore lattice (J ′ = J) to the limit of one-dimensional crossed chains (J ′ ≫ J).

We found that the peak value in the specific heat is suppressed as the frustration increases (by increasing J ′/J
from 0 to 1) with strong indications that there is a second peak in the specific heat for J ′ ∼ J . In the same region,
finite-size effects in ED are minimum for temperatures above the convergence limit of NLCE. In contrast, close to the
1D limit, ED results can vary significantly from one cluster to the other, depending on the size of periodic 1D chains



13

that exist inside each 2D cluster. Consistent with the reduced specific heat, entropy is maximum when J ′ = J at low
temperatures with a decrease that is slower than T .

We calculated the susceptibilities to several magnetic and bond orderings to explore the tendencies of the system
towards different phases as the temperature is decreased. By studying the staggered susceptibility, we found that
the tendency towards Néel ordering with Q = (π, π) decreases appreciably when J ′/J & 0.75. By increasing the
NNN interaction, antiferromagnetic correlations along the diagonal chains become important and other types of order
emerge. To investigate this, we examined the susceptibility to the P-VBS order using ED, and find that it is largest
for J ′ ∼ J . We also found large finite-size effects between 16-site and 20-site clusters for J ′ = J .

We further explored the susceptibility of the CD order, which is larger for J ′ > J but, according to the extrapolated
NLCE results and for the values of J and J ′ considered here, does not dominate at the intermediate temperatures
accessible within our NLCEs. Finite-size effects between the 16-site and 20-site clusters were found to be significant
in the ED calculations for J ′ ≥ J . When J ′ > 2J , i.e., for weakly-coupled crossed chains, we found fast increasing
susceptibilities at intermediate temperatures to Néel∗ order with Q = (π/2, π/2), suggested by analytical results, and
stripe order with Q = (0, π). Both of these orders are favored in this region due to the antiferromagnetically aligned
spins along the chains.
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