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We study a single channel one dimensional Kondo Model where the impurity spin is replaced by
an su(n) spin. Using Abelian bosonization and canonical transformation we explicitly show that
this system has an exactly solvable point. The calculation also shows that there are n collective
excitation modes in the system, one charged and n− 1 neutral spin excitation modes.

I. INTRODUCTION

The Kondo problem1 and its subsequent multichannel generalization2 is a classic problem of condensed matter
physics. Over the years different approaches have been used to address both the single and the generalized multi-
channel Kondo problem. This classic problem is now considered to be one of the class of condensed matter physics
problems where a local degree of freedom interacts with a gap-less continuum. Some of the more powerful methods
applied to understand properties of Kondo systems includes the renormalization group (RG) theory2–4, boundary con-
formal field theory (BCFT)5, an exact solution by Bethe Ansatz6–8, exact solutions using bosonization and canonical
transformations9–11, and numerical methods12.

With the advancement of new methods in micro-fabrication and other experimental techniques enabled physicists
to design and fabricate artificial atoms in nano-structures. These developments renewed the interest in Kondo physics
in novel heterostructures, where the effect can be observed when an artificial magnetic impurity sits on an artificial
metal (a two dimensional electron gas). Such experiments have been conducted using semiconductor quantum dots
(SCQD), such as GaAs/AlGaAs and carbon nanotube quantum dots (CNQD)13,14. In these experiments, a tuneable
magnetic impurity is formed by controlling the tunneling of electrons between the artificial atom and the 2D electron
gas.

The conventional Kondo problem has a spin rotation or su(2) symmetry. However, in nano-structures other higher
symmetries are also possible, either due to additional internal degrees of freedom, or because of the way these hetero-
structures are built in. In particular, there is growing interest in su(4) symmetry both in SCQD15 and CNQD16, the
case relevant to carbon nanotubes.

In this paper we study a single channel Kondo system that has an su(n) symmetry. It was discovered by Toulouse9

that the conventional su(2) Kondo model has a simple solvable limit in the parameter space of the coupling constants.
The su(2) Toulouse solution was subsequently extended to provide useful insights into the multichannel and Kondo
lattice problems10,17. Here we demonstrate that the single channel Kondo model, with a generalized su(n) symmetry,
has an exactly solvable limit. We begin by solving the su(4) model before turning our attention to the generalized
su(n) model.

II. THE SU(N) KONDO MODEL

We consider a single channel wire where electrons in the lead are assumed to be non-interacting. The magnetic
impurity is placed at the center of the wire so that it interacts with the free electron gas in the metal via exchange
coupling. As we are interested in higher symmetries we assume electrons to have n internal degrees of freedom. The
case n = 2 corresponds to an electron with spin. Higher n values result if the electronic states are labeled by a
sub-band index, as in the case of nanotubes where the orbital degeneracy is denoted by + and −, or by a valley
index, as in the case of silicon. We denote the Hamiltonian of the Fermi sea by H0 and the exchange interaction of
the impurity and the free electron gas by HKondo. Since the critical behavior of the Kondo system depends mainly
on the interaction of the impurity and the s angular momentum state of the Fermi sea, the radial equation can be
used to describe the system. Following Schotte and Schotte18 we write the linearized Hamiltonian in terms of chiral
left moving fermions ψα(x) as24

H = H0 +HKondo, (1)

where the kinetic energy is given by

H0 =

n
∑

α=1

∫ ∞

−∞
ψ†

α(x)(−i∂x)ψα(x)dx (2)
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and the exchange term has the form

HKondo =

n2−1
∑

ν=1

JνS
ντν . (3)

Here we are working in units of h̄=vF =1, where vF is the Fermi velocity. ~τ is the su(n) impurity “spin” and

~S =

n
∑

α,β=1

ψ†
α(0)~Σαβψβ(0) (4)

is the su(n) “spin” density of the conduction electrons at the origin. Jν is the exchange coupling, which we assume

to be independent of energy and the ~Σ’s are the n × n traceless Hermitian matrices that represent the su(n) “spin”
operators. These are a set of n2−1 matrices that constitute the basis for the set of n×n traceless hermitian matrices.
Evidently n− 1 of them are diagonal. They satisfy the “orthogonality” condition

Tr(ΣαΣβ) = 2δαβ. (5)

The Σ matrices are called the Pauli matrices in su(2) case, the Gell-mann matrices for su(3), etc.

III. TOULOUSE LIMIT FOR SU(4) MODEL

We now focus on the su(4) case to find its solvable limit. Later on we use similar formalism to generalize the result
to the su(n) case. In su(4) symmetry the Hilbert space of the 4× 4 spin space can be spanned by the fifteen traceless
Σ matrices. We choose the three diagonal Σ matrices which satisfy eq (5) as

D1 = 1√
2







1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0







D2 = 1√
6







1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0







D3 = 1√
12







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3






.

(6)

The twelve off-diagonal matrices are selected from the matrices O(α, β) and Õ(α, β) where

O(α, β)ij = δαiδβj + δαjδβi

Õ(α, β)ij = −i(δαiδβj − δαjδβi).
(7)

These matrices are the generalizations of the Pauli matrices σx and σy and we denote them by Oi where i = 1, ...12
and

O1 = O(1, 2), O2 = O(1, 3), O3 = O(1, 4)
O4 = O(2, 3), O5 = O(2, 4), O6 = O(3, 4)

O7 = Õ(1, 2), O8 = Õ(1, 3), O9 = Õ(1, 4)

O10 = Õ(2, 3), O11 = Õ(2, 4), O12 = Õ(3, 4).

(8)

The d’s and the O’s, together, constitute the su(4) Lie Algebra. If the exchange coupling Jν in eq (3) is independent
of ν the Kondo model has a full su(n) symmetry. Here we consider an anisotropic case for the exchange coupling
where Jν takes either Jν = J‖ or Jν = J⊥. This reduces the interaction part of the Hamiltonian into parallel and
perpendicular components,

HKondo = H
‖
Kondo +H⊥

Kondo (9)
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where

H
‖
Kondo = J‖

4
∑

α,β=1

3
∑

ν=1

τν
‖ ψ

†
α(0)(Dν)αβψβ(0) (10)

and

H⊥
Kondo = J⊥

4
∑

α,β=1

12
∑

ν=1

τν
⊥ψ

†
α(Oν)αβψβ . (11)

IV. BOSONIZATION AND UNITARY TRANSFORMATION

The Hamiltonian of the system can take the form of a free Hamiltonian by Bosonizing the fermionic operators and
then making a canonical transformation. Since the spin dynamics of the system depend only on the algebra that the
spin operators satisfy, we prefer to work on the canonically transformed operators. The bosonization procedure can
be done using the Mandelstam formula19–21 where we can write chiral fermionic fields ψα’s in terms of the bosonic
fields φα’s as

ψασ(x) =
1√
2πǫ

Fασe
−iφ−

ασ
(x), (12)

where

φ−ασ(x) =
√
π

[∫ x

−∞
dyΠασ(y) + φασ(x)

]

. (13)

Here ǫ is the cutoff, which goes to zero in the continuum limit. Πασ(x) is the conjugate momentum of φασ(x) which
satisfies the commutation relations

[φασ(x),Πβσ′ (y)] = iδαβδσσ′δ(x− y). (14)

The Fασ are the Klein factors that keeps check the correct anti-commutation relations. They commute with the φ−ασ’s
and satisfy the following algebra:

F †
ασFασ = FασF

†
ασ = 1,

F †
ασFα′σ′ = −Fα′σ′F †

ασ for (ασ) 6= (α′σ′),
FασFα′σ′ = −Fα′σ′Fασ for (ασ) 6= (α′σ′).

(15)

Since the single fermion operators comes in to the Hamiltonian in pair, the Klein factors will completely vanishes from
the bosonised versions of H0. More over, one can also show22,23 that the remaining Klein factors can be absorbed into
the impurity part of the Hamiltonian. Hence, from here on the Klein factors are not retained explicitly for further
calculations.

For convenience we define the following excitations, which we call spin(s), flavor(f), spin-flavor(fs) and charge(c)
excitations as

φ−s = 1√
2
(φ−1 − φ−2 )

φ−f = 1√
6
(φ−1 + φ−2 − 2φ−3 )

φ−sf = 1√
12

(φ−1 + φ−2 + φ−3 − 3φ−4 )

φ−c = 1
2 (φ−1 + φ−2 + φ−3 + φ−4 ).

(16)

Applying the bosonizing procedure in the free part of the Hamiltonian we have

H0 =
1

2

∑

α=c,s,f,sf

∫ ∞

−∞
dx
[

(

∂xφ
−
α (x)

)2
+ Π−

α

2
(x)
]

. (17)

Similarly bosonization of the parallel part of the interaction Hamiltonian gives

H
‖
Kondo =

J‖√
π

(

τ
‖
1 (0)

∂φ−s
∂x

+ τ
‖
2 (0)

∂φ−f
∂x

+ τ
‖
3 (0)

∂φ−sf

∂x

)∣

∣

∣

∣

∣

x=0

. (18)
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Bosonization of the perpendicular term, H⊥
Kondo, leads to a more complicated expression where spin-flip terms get

coupled in pair wise fashion. However, these τ⊥’s are coupled only through an effective rotations of (φ−i − φ−j ), for
i 6= j. Thus unitary transformation in the space of τ will remove the coupling. For a generic operator, U , its rotation
is given by

U(t) = eiF tU(0)e−iF t (19)

where t is a parameter and F is the generator of the unitary transformation. We choose this generator to be

F =
(

τ
‖
1 (0)φ−s + τ

‖
2 (0)φ−f + τ

‖
3 (0)φ−sf

)∣

∣

∣

x=0
. (20)

Application of the canonical transformation on the bosonized H⊥
Kondo completely decouples the τ⊥’s at t =

√
4π; i.

e.

H⊥
Kondo(

√
4π) = eiF t H⊥

Kondo e
−iF t

∣

∣

t=
√

4π

=
J⊥
πǫ

6
∑

ı=1

τ⊥2i−1(0) (21)

The same canonical transformation on H
‖
Kondo will give no additional terms. However, H0 will be transformed in

such a way that the transformation of H after bosonization can be written in the form25

H = eiF tHe−iF t
∣

∣

t=
√

4π

=
1

2

∑

k=c,s,f,sf

∫ ∞

−∞
dx
[

(

∂xφ
−
k (x)

)2
+ Π−

k

2
(x)
]

+

(

J‖√
π
− t

)

(

τ
‖
1 (0)

∂φ−s
∂x

+ τ
‖
2 (0)

∂φ−f
∂x

+ τ
‖
3 (0)

∂φ−sf

∂x

)∣

∣

∣

∣

∣

x=0

+
J⊥
πǫ

6
∑

i=1

τ⊥2i−1(0). (22)

We clearly see that for J‖ = 2π the terms in the middle line of eq (22), which couples the free electron gas with the
localized impurity spin, vanishes. Hence for J‖ = 2π the su(4) Kondo problem is exactly solvable.

V. TOULOUSE LIMIT FOR SU(N) MODEL

A direct generalization of the same procedure reveals that the su(n) single channel Kondo model has the same
solvable limit as that of the su(4) model, i.e. J‖ = 2π. The su(n) generalization can be studied by bosonizing the
Hamiltonian in eq (1) and extending eq (20) to get the generalized form of the generator of the rotation in the nxn
dimensional matrix spin space. The appropriate choice for the generator is

F =

n−1
∑

k=1

τ
‖
k (0)ϕ−

k (23)

where the τ
‖
k ’s are the diagonal spin operators in their representations and ϕ−

k are the n-1 different collective spin
excitation modes, which are the generalizations of eq (16). Here we span the spin space with n2−1 hermitian matrices.
As in the case of su(4) symmetry, a convenient choice of the n− 1 diagonal matrices will be

[Dk]ij =
d

j
k

√

√

√

√

n
∑

j=1

(dj
k)2

δij (24)

where

d
j
k =







1 if j < k + 1
−k if j = k + 1
0 if j > k + 1

. (25)
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The dj
k’s are the jth elements of the kth diagonal matrix. The off-diagonal matrices are given by extending eq (7) for

the nxn case. The collective spin excitation modes, ϕ−
k , can be written in terms of the left moving Bose fields as

ϕ−
k =

n
∑

i=1

[Dk]ii φ
−
i (26)

and the charge mode is also given by

ϕ−
c =

1√
n

n
∑

k=1

φ−k . (27)

The canonical transformation of the off-diagonal spin matrices τ⊥ is obtained from the evolution equation

−i ∂
∂t
τ⊥j (t) = eiFt[F , τ⊥j (0)]e−iFt. (28)

Again here the spin operators and the n2 − 1 hermitian matrices that span the Hilbert space satisfy the same Lie

Algebra, the commutator of τ⊥j and τ
‖
k can be obtained from the commutator of D’s and O′s(Õ′s), which is given by

[O(j, k), Dl] = −i
(

d
j
l − dk

l

)

Õ(j, k) (29)
[

Õ(j, k), Dl

]

= i
(

d
j
l − dk

l

)

O(j, k) (30)

where O(j, k) and Õ(j, k) are given by eq (7).

Bosonization and canonical transformation of the su(n) Hamiltonian, eq (1), gives us

H =
1

2

n
∑

k=1

∫ ∞

−∞
dx
[

(

∂xϕ
−
k (x)

)2
+ Π−

k

2
(x)
]

+

(

J‖√
π
− t

) n−1
∑

k=1

τ
‖
k

∂ϕ−
k

∂x

∣

∣

∣

∣

∣

x=0

+
J⊥
πǫ

1

2
(n2−n)
∑

i=1

τ⊥2i−1

∣

∣

t=0
, (31)

where again here we considered the energy independent anisotropic case of the exchange coupling, namely that Jν

takes is either Jν = J‖ or Jν = J⊥. Clearly eq (31) shows that for the model we considered the solvable point is the
same as in the su(n) model.

VI. SUMMARY AND CONCLUSION

In this work we have studied su(n) Kondo spin in a one dimensional single channel wire with electrons in the lead
assumed to be non-interacting. Using Abelian Bosonization of chiral fermions and canonical transformation we have
found a solvable point for the problem, which is the su(n) generalization of the Toulouse limit9. This result may be
used to test the large n approximation for the Kondo problem and a straightforward extension of this analysis can
be applied to the multi-channel su(n) single impurity Kondo model and Kondo lattice problem. Finally the exact
solution obtained here may be used to compute the transport properties of nanostructures, a task to which we will
return in future work.
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Appendix A

Linearization of Kondo Hamiltonian

Here we show the linearization of the Hamiltonian of a single Kondo impurity in a formalism similar to that of
Schotte and Schotte18. Consider a field operator ψ(x) which we write it in terms of its Fourier components as

ψ(x) =
1√
L

∞
∑

k=−∞
eikxck

=
1√
L

−kF
∑

k=−∞
eikxck +

1√
L

−kF
∑

k=−kF

eikxck +
1√
L

∞
∑

k=kF

eikxck (32)

where c†k is electron creation operator and kF is the one dimensional Fermi operator. Suppose we are interested only
in the low lying excitations near the Fermi surface. Then the field operator can be approximated as

ψ(x) ≈ 1√
L

Λ
∑

p=−Λ

ei(kF +p)xc−(kF +p) +
1√
L

Λ
∑

p=−Λ

ei(kF +p)xckF +p. (33)

If we rename c†kF +p = αp and c
†
−(kF +p) = βp, which creates electrons near the Fermi surface at k = kF and k = k−F

respectively, then the approximated field operator in eq (33) can be written as

ψ(x) =
1√
L
eikF xψ+(x) +

1√
L
e−ikF xψ−(x). (34)

where

ψ+(x) =
1√
L

Λ
∑

p=−Λ

eipxαp and ψ−(x) =
1√
L

Λ
∑

p=−Λ

e−ipxβp. (35)

Here L is the length of the 1D wire. The operators ψ†
+ and ψ

†
− are called right and left moving chiral fermionic

operators respectively, for a reason that will become clear, from the Hamiltonian form, shortly. The Hamiltonian of
a free electron gas can be written in terms of the left and right moving chiral fermions as

H0 =

∫

dx ψ†(x)

(

−1

2

∂2

∂x2

)

ψ(x)

= kF

∫

dx
[

ψ
†
+(x)(−i∂x)ψ+(x) + ψ

†
−(x)(i∂x)ψ−(x)

]

+

k2
F

2
+ highly oscillating terms. (36)

If we rescaled the energy with respect to the Fermi level and neglect highly oscillating terms we obtain a Hamiltonian
whose form is similar to that of left- and right-handed massless fermions. In terms of αp and βp the Hamiltonian is
given by

H0 =
k2

F

2
+ kF

∑

p

[

α†
pαp − β†

pβp

]

. (37)

Appendix B

Details of Canonical Transformation

In this section we show how we derived eq (21) and (22). We begin first with the construction of the su(4) spin

representations using Schwinger’s method of oscillators. We assume that d†j creates an electron on the impurity
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site with spin state |j〉. Then the su(4) spin space can be generated using the sixteen number conserving bilinear,

Sij = d
†
idj . For a base state |µ〉 the bilinear acts according to Sij |µ〉 = δjµ|i〉. The commutator of these bilinear is

given by

[Sij , Skl] = Silδjk − Sjkδil. (38)

Using these bilinear we write the number and spin operators as

N =
∑

j

d
†
jdj

τ‖µ =
∑

ij

d
†
i [Dµ]ijdj for ν = 1,2,3

τ⊥ν =
∑

ij

d
†
i [Oν ]ijdj for ν = 1, . . . 12

(39)

where Oν is given by eq (8). Using the su(4) algebra, eq (38), one can get the commutation [τ
‖
µ , τ

⊥
ν ] for any µ and ν.

In fact, these spin operators will satisfy the same algebra as the fifteen matrices that we used to span the spin space
in eqns (6) and (8). We now consider the derivation of eq (21). Bosonization of H⊥

Kondo from eq (11) results in

πǫ

J⊥
H⊥

Kondo = τ⊥1 (0) cos[
√

4π(φ−1 − φ−2 )] + τ⊥2 (0) sin[
√

4π(φ−1 − φ−2 )] +

τ⊥3 (0) cos[
√

4π(φ−1 − φ−3 )] + τ⊥4 (0) sin[
√

4π(φ−1 − φ−3 )] +

τ⊥5 (0) cos[
√

4π(φ−1 − φ−4 )] + τ⊥6 (0) sin[
√

4π(φ−1 − φ−4 )] +

τ⊥7 (0) cos[
√

4π(φ−2 − φ−3 )] − τ⊥8 (0) sin[
√

4π(φ−2 − φ−3 )] +

τ⊥9 (0) cos[
√

4π(φ−2 − φ−4 )] − τ⊥10(0) sin[
√

4π(φ−2 − φ−4 )] +

τ⊥11(0) cos[
√

4π(φ−3 − φ−4 )] − τ⊥12(0) sin[
√

4π(φ−3 − φ−4 )]. (40)

A straight forward calculation of the commutation [τ
‖
µ , τ

⊥
ν ] determines the evolution of the spin operators through eq

(28); i.e.,

−i ∂
∂t
τ⊥j (t) = eiF t[F, τ⊥j (0)]e−iF t

where F is the generator of the rotation which was defined in eq (20). These differential equations are coupled in a
pair wise fashion and their solution are given as follows:

τ⊥1 (t) = τ⊥1 (0) cos[(φ−1 − φ−2 )t] − τ⊥2 (0) sin[(φ−1 − φ−2 )t]
τ⊥2 (t) = τ⊥2 (0) cos[(φ−1 − φ−2 )t] + τ⊥1 (0) sin[(φ−1 − φ−2 )t]
τ⊥3 (t) = τ⊥3 (0) cos[(φ−1 − φ−3 )t] − τ⊥4 (0) sin[(φ−1 − φ−3 )t]
τ⊥4 (t) = τ⊥4 (0) cos[(φ−1 − φ−3 )t] + τ⊥3 (0) sin[(φ−1 − φ−3 )t]
τ⊥5 (t) = τ⊥5 (0) cos[(φ−1 − φ−4 )t] − τ⊥6 (0) sin[(φ−1 − φ−4 )t]
τ⊥6 (t) = τ⊥6 (0) cos[(φ−1 − φ−4 )t] + τ⊥5 (0) sin[(φ−1 − φ−4 )t]
τ⊥7 (t) = τ⊥7 (0) cos[(φ−2 − φ−3 )t] + τ⊥8 (0) sin[(φ−2 − φ−3 )t]
τ⊥8 (t) = τ⊥8 (0) cos[(φ−2 − φ−3 )t] − τ⊥7 (0) sin[(φ−2 − φ−3 )t]
τ⊥9 (t) = τ⊥9 (0) cos[(φ−2 − φ−4 )t] + τ⊥10(0) sin[(φ−2 − φ−4 )t]
τ⊥10(t) = τ⊥10(0) cos[(φ−2 − φ−4 )t] − τ⊥9 (0) sin[(φ−2 − φ−4 )t]
τ⊥11(t) = τ⊥11(0) cos[(φ−3 − φ−4 )t] + τ⊥12(0) sin[(φ−3 − φ−4 )t]
τ⊥12(t) = τ⊥11(0) cos[(φ−3 − φ−4 )t] − τ⊥12(0) sin[(φ−3 − φ−4 )t]

(41)

Application of the transformation eiF t H⊥
Kondo e

−iF t, which utilizes eq (41), completely decouples the diagonal and

off-diagonal spin operators at t =
√

4π, giving the final result shown in eq (21).

To make a canonical transformation on H0 and H
‖
Kondo we first write both of these terms in terms of the spin

excitation fields. The time evolution of these field operators (ϕ−
c , ϕ

−
s , ϕ

−
f and ϕ−

sf ) and their conjugate fields

(Π−
c , Π−

s , Π−
f and Π−

sf ) are determined by

−i ∂
∂t
ϕ−

j (x, t) = eiF t[F, ϕ−
j (x)]e−iF t

−i ∂
∂t

Π−
j (x, t) = eiF t[F,Π−

j (x)]e−iF t.
(42)
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However, the commutation relation between the generator F and the fields are give by

[F, ϕ−
j (x)] = −iτ‖k (0)Θ(−x)δjk (43)

and

[F,Π−
j (x)] = iτ

‖
k (0)δ(x)δjk (44)

where Θ(−x) is the Heaviside step function. Utilizing the solutions of eq (42), one can show that the parallel
component of the Kondo Hamiltonian is canonically transformed in to

H
‖
Kondo = eiF tH

‖
Kondoe

−iF ti

=
J‖√
π

(

τ
‖
1 (0)

∂φ−s
∂x

+ τ
‖
2 (0)

∂φ−f
∂x

+ τ
‖
3 (0)

∂φ−sf

∂x

)∣

∣

∣

∣

∣

x=0

+ diverging constant . (45)

Similarly the kinetic energy part is also transformed as

H0 = eiF tH0e
−iF t

=
1

2

∑

k=c,s,f,sf

∫ ∞

−∞
dx
[

(

∂xφ
−
k (x)

)2
+ Π−

k

2
(x)
]

t

(

τ
‖
1 (0)

∂φ−s
∂x

+ τ
‖
2 (0)

∂φ−f
∂x

+ τ
‖
3 (0)

∂φ−sf

∂x

)∣

∣

∣

∣

∣

x=0

+ diverging constant (46)

We throw away the the diverging constant as it is a term that can be renormalized, and hence arrive at eq (22). A
straight forward, and similar, procedure is applied to get the solvable point of the su(n) Kondo Model, where the
same algebra of eq (30) is used to get the commutator of the su(n) spin operators.
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