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 6 

We have performed extensive analysis of the correlation factors for interstitial-mediated self-diffusion via various 7 

possible mechanisms and hopping networks in the diamond lattice using the kinetic lattice Monte Carlo (KLMC) 8 

approach. The correlation factor for the kick-out mechanism in the tetrahedral hopping network is calculated to be 9 

0.73, in agreement with previous results; and the value for the hexagonal hopping network is 0.47 for the dominant 10 

mechanism. For the mechanism where a split interstitial is stable (“stable-split” mechanism), the correlation factor 11 

for the tetrahedral network stays the same while that for the hexagonal network increases to 0.62. We then 12 

performed simulations for the diffusion process of silicon involving multiple mechanisms. The choice of 13 

mechanisms is justified by ab initio calculations. We conclude that unlike vacancy diffusion, interstitial self-14 

diffusion has a temperature dependent correlation factor. This conclusion holds in general for diffusion processes 15 

involving multiple mechanisms with different activation energies. The correlation factor obtained from ab initio 16 

results for interstitial-mediated self-diffusion in silicon at 1000-1100°C is 0.64-0.80, compared to the value of 0.6 17 

extracted from the experiment. 18 

 19 

I.  INTRODUCTION 20 

 21 

Self-diffusion is the most fundamental process in crystals. Under intrinsic conditions, it is 22 

caused by point defects such as vacancies and interstitials. Experimentally, self-diffusion is 23 

usually measured by the usage of stable isotopes as tracers. Assuming the diffusion correlation 24 
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factors of all charge states are equal,1, 2 the tracer diffusivity can be related to the self-diffusion 1 

coefficients via3-5 2 
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The symbols f, D and C* on the right hand side denotes the diffusion correlation factors, the 4 

diffusivity of interstitials (I) and vacancies (V), and the equilibrium concentrations respectively. 5 

CS is the concentration of the native lattice atom. The correlation factor enters the equation due 6 

to the fact that although the movement of the point defects alone can be treated as uncorrelated 7 

random walks, the successive jumps of a tracer atom are correlated, due to interactions with 8 

intrinsic point defects.5, 6 The correlation factor is generally different for different crystals. In this 9 

paper, we limit our analysis to the diamond lattice structure, with representative materials 10 

including the group IV elements (C, Si, Ge, α-Sn, and Pb). In the diamond lattice, the correlation 11 

factor for the vacancy-mediated self-diffusion was calculated to be 0.5 by Compaan7 using 12 

electric network theory. Since the vacancy mechanism is simple and only involves the vacancy-13 

silicon exchange, this value is widely accepted.3 However, the situation is much more 14 

complicated when it comes to the correlation factor for interstitial-mediated diffusion, since there 15 

are many possible mechanisms. In another paper,6 Compaan also calculated the correlation factor 16 

for interstitial diffusion as 0.7273, assuming a tetrahedral configuration for interstitials and a 17 

kick-out mechanism. However, his analysis is only limited to just one interstitial configuration, 18 

and the process of constructing and appropriately truncating resistive networks is quite tedious. 19 

 20 

Over the past 50 years, due to the pervasive applications of silicon technology, the self-diffusion 21 

phenomenon in silicon has been investigated by many researchers. Experimental data8 show that 22 
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the value of fI must be about 0.6 in order to match phosphorus diffusion data in silicon. 1 

Meanwhile, various ab initio investigations on self-diffusion in silicon report values of 0.56,9 2 

0.59,10 0.69,10 and 0.75.11 Generally, for a simple mechanism, the correlation factor only depends 3 

on the geometric aspects of the hopping transitions. However for real situations such as 4 

interstitial self-diffusion in silicon, where multiple mechanisms are present, the correlation factor 5 

also depends on the energetic of the formation and migration of the interstitial defects. In this 6 

paper, we have first performed extensive analysis of various possible mechanisms and hopping 7 

networks of interstitial self-diffusion in the diamond lattice. We then identify the possible 8 

mechanisms involved in self-diffusion in silicon based on ab initio calculation results and 9 

calculate the effective correlation factor for the combined diffusion mechanism in silicon. 10 

 11 

 12 

II. NUMERICAL DETAILS 13 

 14 

According to the statistical diffusion theory,12-14 the tracer diffusion correlation factor is related 15 

to the square displacements of the tracer and interstitial by 16 
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where the subscripts tr and I denote tracer and interstitial properties respectively. 2rΔ and N  are 18 

the square displacement and total hopping steps. For a single mechanism in a given hopping 19 

network, the quantity on the right hand side of Eq. (2) can be calculated by the average cosine 20 

value of the angles between successive jumps 21 
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For the mechanisms discussed below, all of the non-successive jumps are uncorrelated (i.e. 2 

,cos 0,  for  1i j j iθ = > + ). Besides, half of the successive jumps are also uncorrelated (i.e. 3 

, 1cos 0,  for every second i i iθ + = ). Therefore, we can simplify Eq. (3) as6  4 
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where the cosθ  terms without subscripts (i) denote the average of the non-zero cosine values 6 

corresponding to the angles between the vectors of correlated hops.  7 

 8 

To carry out simulation of the diffusion process of tracers and interstitials, we have used the 9 

kinetic lattice Monte Carlo (KLMC) approach,15-18 which ignores atomic vibrations and treats 10 

diffusion as stochastic transitions between locally metastable states. By replicating the sequence 11 

of atomic transitions and arrangements, this approach can directly simulate the diffusion process 12 

in the atomic level while still achieving macroscopic system sizes and practical time scales.19, 20  13 

 14 

The simulation domain consists of a three-dimensional array of native lattice atoms. We have 15 

performed tests on different domain sizes and found that the influence of the domain size on the 16 

results is negligible. Periodic boundary conditions are used, but the times of crossing through 17 

periodic boundaries are included in the calculation of displacements. At any step, there are 18 

several possible interstitial hops with rates determined by the associated vibration frequencies 19 

and migration energies. At each step, a hop is chosen with the probability weighted by the 20 
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associated hopping rates. After each hop, the position of the atom is updated, and rates are 1 

recalculated.19-21 2 

 3 

Since the correlation factor does not depend on tracer concentration, we have used in our 4 

simulation only one tracer, which starts off at an interstitial site22 and move randomly in the 5 

domain. We also track the trajectory of the interstitial, which is just the extra atom (either a 6 

tracer or a native atom) in the domain. For a single mechanism in a given hopping network, we 7 

use Eq. (4) to calculate the correlation factor. For combined mechanisms, Eq. (2) is used; and the 8 

ratio is determined via a linear fit to the 2rΔ -versus- N  data. 9 

 10 

All the ab initio calculations were done using the density functional theory (DFT) code VASP23, 11 

24 with the Perdew-Wang 1991 generalized gradient approximation functional25 and ultrasoft 12 

Vanderbilt-type pseudopotentials.26, 27 All calculations were performed in a nominally 64 atom 13 

supercell with periodic boundary conditions and 23 Monkhorst-Pack k-point sampling. 14 

Calculations have also been carried out for 216-atom supercells and the change of total energy 15 

differences is within 0.02 eV. An energy cutoff of 250 eV was used to achieve required accuracy. 16 

The structures were fully relaxed to a maximal force of less than 0.005 eV/Å per atom. The 17 

climbing image nudged elastic band (NEB) method28, 29 was used to identify transition paths 18 

between two given stable configurations, with the stopping criterion being a maximum force less 19 

than 0.005 eV/Å per atom for each image. 20 

 21 

 22 

III. CORRELATION FACTOR OF THE “KICK-OUT” MECHANISM 23 
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 1 

Over the past years, many interstitial self-diffusion mechanisms have been proposed. Some argue 2 

a direct mechanism, in which interstitials make a sequence of direct hops between interstitial 3 

sites. In this case,  the tracer and the interstitial are always the same atom, and the jumps will, in 4 

general, be uncorrelated.6 Another set of mechanism involves atoms on lattice sites and is called 5 

the indirect “kick-out” mechanism.30 In this mechanism, a tracer atom on an interstitial site A 6 

approaches a native atom at the lattice site B and kicks it out onto an interstitial site C, after 7 

which the tracer takes the lattice site B. If we think of the split-interstitial Ix as the intermediate 8 

state, the kick-out process actually consists of two processes: Ii→Ix and Ix→Ii. In this kick-out 9 

process, the tracer has made one hop from A to B; while the interstitial has made two successive 10 

hops, from A to B and then to C. This kick-out mechanism assumes that the processes Ii→Ix and 11 

Ix→Ii happen in cascades. This kick-out mechanism will generally be correlated since, in the next 12 

move of the tracer on site B, it will have a higher probability of being kicked back by the new 13 

interstitial atom nearby (on site C). Once the tracer atom is kicked out again to an interstitial site, 14 

the next step will generally be uncorrelated with the previous step. Thus, by tracking the average 15 

cosine values of the incoming and outgoing hop directions during the kick-out processes, we can 16 

determine the correlation factor via Eq. (4).  17 

  18 

Compaan determines the cosθ  values in Eq. (4) for the kick-out mechanism using resistive 19 

network theory and calculates the correlation factor to be 0.72736 for the tetrahedral network 20 

(It↔Ix↔It). Apart from considering the tetrahedral network, we extend the analysis to include the 21 

hexagonal network, as both tetrahedral and hexagonal interstitials have been reported in various 22 

DFT studies as the low energy structures in silicon and germanium.31-34 Consider a typical kick-23 
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out process where an interstitial atom kicks a native atom on the lattice site out onto a new 1 

interstitial site. In the tetrahedral network, shown in FIG. 1(a), the tracer atom starts at one of the 2 

tetrahedral sites t0 and kicks the silicon atom onto one of the neighboring interstitial sites ti (i = 1, 3 

2, 3). During this process, the tracer moves from t0 to the lattice site; while the interstitial moves 4 

from t0 to ti. Due to symmetry, these three ti sites are equivalent, with cos Iθ equal to 1/3. In the 5 

hexagonal hopping network, shown in FIG. 1(b), the tracer atom starts at one of the interstitial 6 

sites h0 and kicks the silicon atom onto one of the neighboring interstitial sites hi (i = 1, 2, ... , 9) 7 

on the other side of the lattice site (3 sites have been excluded since they are on the same side as 8 

h0). We break the possible hexagonal destinations into 3 groups, with the cos Iθ  equal to 9/11, 9 

7/11, and 1/11 respectively. Correspondingly, we have three sub-mechanisms for the hexagonal 10 

hopping network. We argue that for geometry reasons the mechanism with cos 9 /11Iθ =  is the 11 

dominant process, which is also supported by ab initio calculations. For the sake of completeness, 12 

we include all three sub-mechanisms in our analysis.  13 

       14 

 (a)                                                          (b) 15 

FIG. 1. Schematics of the “kick-out” mechanism in the (a) tetrahedral network, and (b) hexagonal 16 

network. t0 and h0 denote the incoming tracer. The center atom is the silicon atom being kicked out. For 17 
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tetrahedral configurations t1-3 (red/dark spheres) are equivalent, while for hexagonal configurations, the 1 

neighbors can be divided into 3 groups: h1-2 (red/dark, large spheres), h3-4 (blue/dark, medium spheres), 2 

and h5-8 (brown/dark, small spheres). The other h sites (grey/light, medium spheres) are excluded. 3 

 4 

We have calculated the correlation factor values for the kick-out mechanism in the tetrahedral 5 

and hexagonal networks. The results are listed in Table I. The value for the tetrahedral network 6 

(0.7276±0.0001) is very close to Compaan’s value (0.7273).6 Actually we believe that our value 7 

is more accurate than Compaan’s which is derived from truncating infinite resistive networks. 8 

This result demonstrates the validity of the KLMC approach. The value for the hexagonal 9 

hopping network decreases as cos Iθ  increases. For all the mechanisms, the cos
tr

θ  values are 10 

negative, consistent with the argument that after the tracer kicks out an atom, it will have a 11 

higher probability of being kicked back.  12 

 13 

Table I. Correlation factors for the “kick-out” mechanism in the tetrahedral and hexagonal hopping 14 

networks. The mechanism in the hexagonal network is categorized into 3 groups based on the kick-out 15 

direction. The brackets denote the corresponding destinations after the kick-out. The cos Iθ  value is 16 

fixed for each mechanism, and the cos
tr

θ  value is calculated from the KLMC approach. The uncertainty 17 

of the correlation factor is the standard error of the mean.  18 

Network cos
I

θ  cos
tr

θ  f  

Tetrahedral (t1-3) 4/12 -0.0299 0.7276±0.0001 

Hexagonal (h1,2) 9/11 -0.1475 0.4690±0.0001 
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Hexagonal (h3,4) 5/11 -0.0731 0.6372±0.0001 

Hexagonal (h5-8) 1/11 -0.0073 0.9099±0.0001 

 1 

 2 

IV. CORRELATION FACTOR OF THE “STABLE-SPLIT” MECHANISM 3 

 4 

The above analysis assumes that the Ii→Ix and Ix→Ii processes happen in cascades, which 5 

implies that the transition state, which is the split-interstitial configuration, is unstable. However, 6 

it has been proposed based on various ab initio results that there exists a stable split interstitial 7 

oriented along the <110> direction.34 Therefore, in this part we drop the assumption of the kick-8 

out mechanism and consider the situation where the split-interstitial is stable (denoted as “stable-9 

split” mechanism hereafter). In this case, either of the atoms comprising the split can hop onto 10 

neighboring interstitial sites. In turn, the atom on interstitial sites can hop onto a lattice site and 11 

form a split interstitial with the lattice atom. 12 

 13 

We again consider the tetrahedral and hexagonal hopping networks. For split interstitials, we 14 

limit our analysis to <110>-split interstitials, which have been found to be the most stable 15 

structure in Si and Ge.34 Due to the fact that the <110>-split interstitial has an orientation, certain 16 

orientation constraints have to be imposed on the migration paths. FIG. 2 illustrates the 17 

constraints for the split hopping onto tetrahedral and hexagonal sites. By intuition we can see that 18 

only the sites that are located along the direction most aligned with the split orientation are 19 

favored (tB in (a) and hC in (b)). The others are located in a roughly orthogonal (tA in (a) and hA, 20 

hB, hD in (b)) direction and are therefore unfavorable. Similarly, when a tetrahedral (hexagonal) 21 
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interstitial hops onto the lattice site and forms a split interstitial, only 3 (2) out of the 6 <110>- 1 

split orientations are allowed. These orientation constraints are verified by the migration barrier 2 

results from NEB calculations.  3 

         4 

 (a)                                                           (b) 5 

FIG. 2. Allowed hopping directions in the (a) split-tetrahedral and (b) split-hexagonal network, viewed 6 

along the 110< >  direction. a and b form the <110>-split interstitial. c is the original lattice site. In (a) 7 

the small spheres denote the 4 first nearest tetrahedral neighbors of the split categorized into 2 groups, 2 8 

in tA and 2 in tB. The allowed hopping destinations of the split are the 2 tB sites only. In (b) the small 9 

spheres denote the 12 first nearest hexagonal neighbors of the split categorized into 4 groups, 2 in hA, 4 in 10 

hB, 4 in hC and 2 in hD. The allowed hopping destinations of the split are the 4 hC sites only. Note that 11 

some nearest neighbors behind are blocked by the ones in front of them, when viewed along this direction. 12 

 13 

We have calculated the correlation factor values for the stable-split mechanism in the tetrahedral 14 

and hexagonal network with the above orientation constraints imposed. The results are listed in 15 

Table II. Using statistical diffusion theory, the cos
I

θ value can be calculated analytically by 16 

constructing allowed hopping networks of the interstitial. The average cosine values become 17 

smaller than the kick-out mechanism due to the fact that here more choices of Ix→Ii hop 18 

directions are allowed after an Ii→Ix hop. In other words, not only “kick-out”, but also “bounce-19 
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back” are allowed. The correlation factor for the tetrahedral network is the same as the previous 1 

value, simply because when the tracer is bounced back, it returns to the previous interstitial site 2 

and has no net displacement, giving no contribution to the total correlation effect. The situation 3 

is different for hexagonal sites, since when bounced back, the tracer atom can be on a different 4 

interstitial site (e.g. In Figure 2 (b) jumping between two hC sites on the left via atom a).  5 

 6 

Table II. Correlation factor values for the tetrahedral and hexagonal hopping networks. The cos
I

θ  value 7 

is calculated analytically, and the cos
tr

θ  value is calculated via the KLMC approach. The uncertainty of 8 

the correlation factor is the standard error of the mean. 9 

Network cos
I

θ  cos
tr

θ  f  

Tetrahedral -1/3 -0.5150 0.7275±0.0001 

Hexagonal -1/11 -0.4357 0.6207±0.0001 

 10 

 11 

V. CORRELATION OF COMBINED MECHANISMS IN SILICON 12 

 13 

In this part, we perform a case study for interstitial-mediated self-diffusion in silicon. The lowest 14 

energy structures as well as the migration barriers of self interstitials in silicon have been studied 15 

extensively.31-34 The general consensus is that the hexagonal, tetrahedral and <110>-split 16 

interstitials have relatively lower formation energies than other configurations.34 We have 17 

performed ab initio calculations which confirmed that the lowest energy structures are the 18 

<110>-split and hexagonal interstitials, with formation energies of 3.70 eV and 3.79 eV 19 
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respectively; while the tetrahedral interstitial has a slightly higher formation energy of 3.97 eV. 1 

Using the NEB method, we have identified several migration paths and calculated the associated 2 

barriers, which are listed in Table III. The tetrahedral interstitial is found to be an intermediate 3 

state, which relaxes to a hexagonal interstitial. The direct (uncorrelated) mechanism, Ih↔Ih via It , 4 

has a lower barrier than the indirect mechanism Ix↔Ih . Previously a four-fold interstitial defect 5 

has been reported.35 However due to the high migration barrier of the concerted exchange,33 they 6 

are less likely to migrate and thus not included in our analysis. The +2 charge state interstitials 7 

reported in a recent paper36 are also excluded due to their high migration barriers.  8 

 9 

Table III. Migration barriers of various migration paths of interstitials in silicon. 10 

Migration Path Forward Barrier (eV) Reverse Barrier (eV) 

Ix ↔ Ih 0.34 0.25 

Ix ↔ It 0.38 0.11 

Ih ↔ Ih 0.17 0.17 

Ih ↔ It 0.17 0.00 

 11 

From the analysis above, there are two major hopping mechanisms for self-diffusion in silicon: Ih 12 

↔Ix, and Ih↔Ih,. The former one is the indirect mechanism in the hexagonal hopping network. 13 

The latter one is the direct mechanism, with a correlation factor of 1. In the presence of both 14 

mechanisms, the hexagonal interstitial can diffuse either directly or indirectly. If we denote the 15 

corresponding probability as Pdirect and Pindirect, then we have Pdirect=1-Pindirect and the effective 16 

correlation factor feff should be a function of Pdirect. To determine the relationship between feff and 17 

Pdirect, we have performed KLMC simulations with Pdirect varying from 0 (pure indirect) to 1 18 
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(pure direct). The feff value is extracted via Eq. (2). For the indirect mechanism, we consider the 1 

dominant “kick-out” mechanism with cos
I

θ =9/11 (f=0.4690) and the “stable-split” mechanism 2 

(f=0.6207).  The results are plotted in FIG. 3. As can be seen, the total effective correlation factor 3 

increases monotonically as the probability of direct mechanism increases, with values 4 

approaching unity when the direct mechanism is more favorable, rendering the diffusion more 5 

uncorrelated. The correlation factor for the stable-split mechanism is higher than the kick-out 6 

mechanism for a given Pdirect. The actual correlation factor for a certain Pdirect value should lie 7 

somewhere between the two curves when the “kick-out” and “stable-split” mechanisms are both 8 

present. 9 

 10 

 11 

FIG. 3. Effective correlation factors of interstitial-mediated self-diffusion in silicon as a function of the 12 

probability of hopping via the direct mechanism.  13 

 14 

According to the transition state theory,12-14 the probability Pdirect can be expressed as 15 
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where Ω is the entropy factor associated with the mechanisms, and Em
 is the corresponding 2 

migration barrier. Once the migration barriers are determined, the only variable that controls the 3 

probability Pdirect, and therefore feff, is the temperature. Therefore, unlike vacancy diffusion, the 4 

effective correlation factor for the combined mechanisms of interstitial-mediated self-diffusion in 5 

silicon is temperature dependent, which may be the reason for the different correlation values 6 

reported in literature.8-11 Assuming the entropy factors are the same for the two mechanisms, the 7 

correlation factor at 1000-1100°C is calculated to be 0.64 for the kick-out mechanism and 0.80 8 

for the stable-split mechanism using the values in Table III. This estimate is higher than the 9 

reported experimental value of 0.6 for the same temperature range.8 Sources for the differences 10 

include uncertainties in values extracted experimentally and the energetics of the mechanisms 11 

predicted by the DFT calculations which results in the overestimation the probability of the 12 

direct mechanism. Another possible source of error comes from the neglect of entropy difference 13 

of the two mechanisms. To better quantify the entropy factors requires ab initio studies of the 14 

vibrational frequencies of the transition states of the two mechanisms.   15 

 16 

VI. CONCLUSION 17 

 18 

Using the kinetic lattice Monte Carlo (KLMC) approach, we have performed extensive analysis 19 

of the correlation factor values of interstitial self-diffusion for various possible mechanisms and 20 

hopping networks in the diamond lattice. The correlation factor for the kick-out mechanism in 21 

the tetrahedral hopping network is 0.72, which is in agreement with previous results; and the 22 
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value for the hexagonal hopping network is 0.47 for the dominant mechanism. For the 1 

mechanism where a split interstitial is stable (“stable-split” mechanism), the correlation factor 2 

for the tetrahedral network stays the same while that for the hexagonal network increases to 0.62. 3 

We then identify the possible mechanisms involved in interstitial-mediated self-diffusion in 4 

silicon based on ab initio calculation results and calculate the effective correlation factor for the 5 

combined mechanism. Unlike vacancy diffusion, interstitial-mediated self-diffusion has a 6 

temperature dependent correlation factor. This conclusion in general holds for diffusion 7 

processes involving multiple mechanisms with different activation energies. The correlation 8 

value obtained from ab initio results at 1000-1100°C is 0.64-0.80, higher than the experimental 9 

value of 0.6.  10 

 11 
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