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Mesoscale experiment and simulation permit harvesting information about both geometric fea-
tures and texture in polycrystals. The grain boundary character distribution (GBCD) is an empirical
distribution of the relative length (in 2D) or area (in 3D) of interface with a given lattice misorien-
tation and normal. During the growth process, an initially random distribution of boundary types
reaches a steady state that is strongly correlated to the interfacial energy density. In simulation,
it is found that if the given energy density depends only on lattice misorientation, then the steady
state GBCD and the energy are related by a Boltzmann distribution. This is among the simplest
non-random distributions, corresponding to independent trials with respect to the energy.

In this paper we derive an entropy based theory which suggests that the evolution of the GBCD
satisfies a Fokker-Planck Equation, an equation whose stationary state is a Boltzmann distribution.
Cellular structures coarsen according to a local evolution law, curvature driven growth, and are
limited by space filling constraints. The interaction between the evolution law and the constraints
is governed primarily by the force balance at triple junctions, the natural boundary condition as-
sociated to curvature driven growth, and determines a dissipation relation. A simplified coarsening
model is introduced which is driven by the boundary conditions and reflects the network level
dissipation relation of the grain growth system. It resembles an ensemble of inertia-free spring-
mass-dashpots. Application is made of the recent characterization of Fokker-Planck kinetics as a
gradient flow for a free energy in deriving the theory. The theory predicts the results of large scale
2D simulations and is consistent with experiment.

PACS numbers: 61.72.Mm, 68.35.-p, 89.70.Cf, 05.70.Ln
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I. INTRODUCTION

Cellular networks are ubiquitous in nature. They exhibit behavior on many different length and
time scales and are generally metastable. Most technologically useful materials are polycrystalline
microstructures composed of a myriad of small monocrystalline grains separated by grain bound-
aries, and thus comprise cellular networks. The energetics and connectivity of the grain boundary
network plays a crucial role in determining the properties of a material across a wide range of
scales. A central problem in materials is to develop technologies capable of producing an arrange-
ment of grains that provides for a desired set of material properties. Traditionally the focus has
been on the geometric feature of size and the preferred distribution of grain orientations, termed
texture. More recent mesoscale experiment and simulation permit harvesting large amounts of in-
formation about both geometric features and crystallography of the boundary network in material
microstructures,1–5

A leading candidate to characterize texture of the grain boundary population is the grain bound-
ary character distribution3. The grain boundary character distribution (GBCD) is an empirical
distribution of the relative length (in 2D) or area (in 3D) of interface with a given lattice misorien-
tation and grain boundary normal. During the growth process, an initially random grain boundary
texture reaches a steady state that is strongly correlated to the interfacial energy density. In simu-
lation, a GBCD is always found. In view of the previous work3,4 and the theory developed in this
paper, it is the GBCD which should serve as a reference distribution for texture in preference to
other distributions.

If the given energy depends only on lattice misorientation, then the steady state GBCD and
the interfacial energy density are related by a Boltzmann distribution. This is among the simplest
non-random distributions, corresponding to independent trials with respect to the density. Such
a simple dependence between the character distribution and the interfacial energy offers evidence
that the GBCD is a material property. Why does such a simple distribution arise from such a
complex system comprised of many interacting interfaces? In this paper we attempt to answer this
question.

We outline a new entropy based theory which suggests that the evolving GBCD satisfies a Fokker-
Planck Equation. Coarsening in polycrystalline systems is a complicated process involving details
of material structures, chemistry, arrangement of grains in the configuration, and environment. In
this context, we consider just two competing global features, as articulated by C. S. Smith6: cell
growth according to a local evolution law and space filling constraints. We shall impose curvature
driven growth for the local evolution law, cf. Mullins7. Space filling requirements are managed
by critical events, rearrangements of the network involving deletion of small contracting cells and
facets. The interaction between the evolution law and the constraints is, we shall discover, governed
primarily by the balance of forces at triple junctions. This balance of forces, often referred to as the
Herring Condition,8 is the natural boundary condition associated with the equations of curvature
driven growth. It determines a dissipation relation for the network as a whole.

We introduce a simplified coarsening model driven by the boundary conditions that reflects the
dissipation relation of the grain growth system. It resembles an ensemble of inertia-free spring-mass-
dashpots9. For this simpler network, we learn how entropic or diffusive behavior at the large scale
emerges from a dissipation relation at the scale of local evolution. The cornerstone is our novel
implementation of the iterative scheme for the Fokker-Planck Equation in terms of the system
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free energy and a Kantorovich-Rubinstein-Wasserstein metric10, cf. also11, which will be defined
and explained later in the text. The network level nonequlibrium nature of the iterative scheme
leaves free a temperature-like parameter. The entropy method is exploited to identify uniquely this
parameter. To illustrate the idea, we include a simple application to the solution of the Fokker-
Planck Equation itself.

We present evidence that the theory predicts the results of large scale 2D simulations12. Energy
densities consisting of quadratic and quartic trigonometric polynomials are analyzed in detail. The
discussion of the quartic based energy density places in relief the entropic nature of the GBCD.
It would take us rather far afield to discuss consistency with experiment and we refer to3. A
companion paper emphasizing the mathematical and simulation issues of the project is13. A theory
for the evolution of geometric features of microstructure is discussed in14,15. Some of the results
of the present work were announced in12,16. Different treatments of texture development are given
in17,18 and19,20.

II. MESOSCALE THEORY

Our point of departure is the common denominator theory for the mesoscale description of grain
growth. This is curvature driven growth, more precisely the equation (II.2) below, for the motion of
curves or arcs individually or in a network, which we employ for our local law of evolution. Boundary
conditions must be imposed where the arcs meet. This condition is the Herring Condition, (II.3),
which is the natural boundary condition at equilibrium for (II.2). Since their appearance by Mullins
for general or anisotropic growth,7, and Herring,8,21, a large and distinguished body of work has
grown about these equations. Most relevant to here are22–25. Let α denote the misorientation
between two grains separated by an arc Γ, as noted in FIG. 1, with normal n = (cos θ, sin θ), tangent
direction b and curvature κ. Let ψ = ψ(θ, α) denote the energy density on Γ. So, representing the
time evolving arc Γ in the x = (x1, x2) plane by the vector valued function ξ(s, t) = (ξ1(s, t), ξ2(s, t))
of arc parameter s and time t,

Γ : x = ξ(s, t), 0 ≦ s ≦ L, t > 0, (II.1)

with

b =
∂ξ

∂s
(tangent), n = Rb (normal),

v =
∂ξ

∂t
(velocity), vn = v · n(normal velocity)

where R is a positive rotation of π/2. The Mullins Equation of evolution is

vn = (ψθθ + ψ)κ on Γ. (II.2)

We assume that only triple junctions are stable and that the Herring Condition holds at triple
junctions. This means that whenever three curves {Γ(1),Γ(2),Γ(3)} meet at a point p the force
balance, (II.3) below, holds:

∑
i=1,..,3

(ψθn
(i) + ψb(i)) = 0. (II.3)
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FIG. 1. (Color online) An arc Γ with normal n, tangent b, and lattice misorientation α, illustrating lattice
elements.(reproduced from16)

It is easy to check,24, that the instantaneous rate of change of energy of Γ is

d

dt

∫
Γ

ψ|b|ds = −

∫
Γ

v2
nds+ v · (ψθn+ ψb)|∂Γ (II.4)

We turn now to a network of grains bounded by a collection of curves {Γi} subject to some condition
at the border of the region they occupy, like fixed end points or periodicity, cf. FIG. 2. Our
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FIG. 2. (Color online) Example of an instant during the simulated evolution of a cellular network. This
is part of the frame from a small simulation with constant energy density and periodic conditions at the
border of the configuration.

simulation is described in26,27. The typical simulation consists in initializing a configuration of cells
and their boundary arcs, usually by a modified Voronoi tessellation, assigning random orientations
to the cells, and then solving the system (II.2), (II.3), eliminating facets when they have negligible
length and cells when they have negligible area. The simulation satisfies all known diagnostics and,
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in particular, when ψ = constant, the von Neumann-Mullins n− 6 rule28,29 is satisfied for each cell
at each time when it is not subjected to a critical event, facet or grain deletion.

The total energy of the system is given by

E(t) =
∑
{Γi}

∫
Γi

ψ|b|ds (II.5)

Owing exactly to the Herring Condition (II.3), the instantaneous rate of change of the energy

d

dt
E(t) = −

∑
{Γi}

∫
Γi

v2
nds+

∑
TJ

v ·
∑

(ψθn+ ψb)

= −
∑
{Γi}

∫
Γi

v2
nds

≦ 0,

(II.6)

rendering the network dissipative for the energy in any instant absent of critical events. Indeed, in
an interval (t0, t0 + τ) where there are no critical events, we may integrate (II.6) to obtain a local
dissipation equation

∑
{Γi}

∫ t0+τ

t0

∫
Γi

v2
ndsdt+ E(t0 + τ) = E(t0) (II.7)

which bears a resemblance to the simple dissipation relation for an ensemble of inertia free springs
with friction. In the simulation, the facet interchange and cell deletion are arranged so that the
inequality in (II.6) is maintained. In the case that the energy density is independent of the normal
direction, so ψ = ψ(α), the situation that will concern us in this paper, (II.2) and (II.3) may be
expressed

vn = ψκ on Γ (II.8)∑
i=1,...,3

ψb(i) = 0 at p, (II.9)

where p denotes a triple junction. (II.9) is the same as the Young wetting law30. Our interfacial
energy densities ψ are chosen so that

1 ≦ ψ(α) ≦
3

2
, |α| ≦

π

4
, (II.10)

(periodic with period π/2) giving square symmetry which is intended to mimic cubic symmetry in
three dimensions. For the range of ψ in (II.10), one may check that (II.9) can always be resolved,
namely, given three numbers ψi ∈ [1, 3/2] there are unit vectors bi such that

ψ1b1 + ψ2b2 + ψ3b3 = 0.

In executing this check, one may note that if the oscillation in ψ is too large, then it may not
be possible to fulfill the Young Law condition in general, cf.2 for a discussion of the issue. To
develop the GBCD, the collection of initial orientations must be sufficiently random, since for this
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type of density, all misorientations are drawn from the initial list of pairwise differences of cell
orientations.31

For this situation we define the grain boundary character distribution, GBCD, with Ω = (−π
4 ,

π
4 ),

ρ(α, t) = relative length of arc of misorientation

α at time t, normalized so that∫
Ω

ρdα = 1.

(II.11)

III. SIMPLIFIED COARSENING MODEL

A significant difficulty in developing a theory for the GBCD, and understanding texture devel-
opment in general, lies in the lack of understanding of consequences of rearrangement events or
critical events, facet interchange and grain deletion, on misorientations and grain size. For exam-
ple, in FIG. 3, the average area of six-faceted grains during a growth experiment on an Al thin
film32 and the average area of six-faceted cells in a typical simulation33 both increase with time.
Note that the von Neumann-Mullins Rule is that the area An of a cell with n-facets satisfies

A′
n(t) = c(n− 6), (III.1)

when ψ = const. and triple junctions meet at angles of 2π/3. This is thought to hold approximately
when anisotropy is small. The von Neumann-Mullins Rule does not fail in the example in FIG. 3,
of course, but cells observed at later times had 7, 8, ... facets at earlier times. The trend of increase
in average area over time holds for all facet classes. Thus in the network setting, critical events
and subsequent rearrangement play a major role. Although we may be reasonably confident that
small cells with small numbers of facets will be deleted, their resulting effect on the configuration
appears to be essentially random.

We shall study this by a simplified model which retains critical events and kinetics but neglects
curvature driven motion of the boundaries. It is an abstraction of the role of triple junctions in the
presence of the rearrangement events. We have used this model to develop a statistical theory for
critical events,34–36. It has been found to have its own GBCD which we shall now study.

Our theme will be that the GBCD statistic for the simplified model resembles the solution of
a Fokker-Planck Equation obtained via the mass transport implicit scheme. The first part of the
discussion consists in introducing this model. The simplified model is formulated as a gradient flow
which results in a dissipation inequality analogous to the one found for the coarsening grain network.
Because of this simplicity, it will be possible to ‘upscale’ the network level system description to
a higher level GBCD description that accomodates irreversibility. As this changes the ensemble,
following Boltzmann, there is an entropic contribution, which we take in the form of configurational
entropy. A more useful dissipation inequality is obtained by modifying the ‘velocity’ term to be
a true viscous term, which now brings us to the realm of the Kantorovich-Rubinstein-Wasserstein
implicit scheme, sometimes referred to as the JKO-scheme. At this stage, we explain how we may
appeal to the Fokker-Planck paradigm.

The second part of the discussion, in section IV, will be our argument to validate this paradigm.
We do not know that the statistic solves the Fokker-Planck PDE but we ask if it shares important
aspects of Fokker-Planck behavior. A defining characteristic of the Fokker-Planck Equation, and
diffusion equations in general, is the exponential decay of their solutions to equilibrium. We give
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FIG. 3. (Color online) The average area of six-sided cell populations during coarsening in two different
cellular systems showing that the von Neumann-Mullins n− 6-Rule (III.1) does not hold at the scale of the
network. (a) In an experiment on Al thin film (b) a typical simulation (arbitrary units). Please refer to
the first paragraph of Section III for additional explanation.

evidence for this by asking for the unique ‘temperature-like’ parameter that minimizes the relative
entropy over long time. The empirical stationary distribution and Boltzmann distribution with
the special value of parameter are in excellent agreement, FIG. 6. This gives an explanation
for the stationary distribution and the kinetics of evolution. We do not know, at this point of
our investigations, that the two dimensional network has the detailed dissipative structure of the
simplified model, but we are able to produce evidence that the same argument employing the
relative entropy does suggest the correct kinetics and stationary distribution.

A. Formulation

Let I ⊂ R be an interval of length L partitioned by points xi, i = 1, . . . , n, where xi < xi+1, i =
1, . . . , n−1 and xn+1 is identified with x1. For each interval [xi, xi+1], i = 1, . . . , n, select a random
misorientation number αi ∈ (−π/4, π/4]. The intervals [xi, xi+1] correspond to grain boundaries
with misorientations αi and the points xi represent the triple junctions. Choose an energy density
ψ(α) ≧ 0 and introduce the energy

E =
∑

i=1,...,n

ψ(αi)(xi+1 − xi). (III.2)
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We impose gradient flow kinetics with respect to (III.2), which is the system of ordinary differential
equations

dxi
dt

= −
∂E

∂xi
, i = 1, ..., n, that is

dxi
dt

= ψ(αi) − ψ(αi−1), i = 2...n, and

dx1

dt
= ψ(α1) − ψ(αn).

(III.3)

The velocity vi of the ith boundary is

vi =
dxi+1

dt
−
dxi
dt

= ψ(αi−1) − 2ψ(αi) + ψ(αi+1). (III.4)

The grain boundary velocities are constant until one of the boundaries collapses. That segment is
removed from the inventory of active cells and the velocities of its two neighbors are changed due to
the emergence of a new junction. Each such deletion event rearranges the network and, therefore,
affects its subsequent evolution just as in the two dimensional cellular network. Actually, since the
interval velocities are constant, this gradient flow is just a sorting problem. At any time, the next
deletion event occurs at smallest of

xi − xi+1

vi
with vi < 0.

We turn to the dissipation inequality for the gradient flow. At any time t between deletion events,

dE

dt
=

∑
ψ(αi)vi

= −
∑

(ψ(αi) − ψ(αi−1))
2

= −
∑ dxi

dt

2

≦ 0.

(III.5)

We may write a mass-spring-dashpot-like local dissipation inequality analogous to the grain
growth one. In an interval (t0, t0 + τ) where there are no critical events, dE/dt may be integrated
to give

τ
∑

i=1...n

dxi
dt

2

+ E(t0 + τ) = E(t0)

or

∑
i=1...n

∫ τ

0

dxi
dt

2

dt+ E(t0 + τ) = E(t0) (III.6)

With appropriate interpretation of the sum, (III.6) holds for all t0 and almost every τ sufficiently
small. With the obvious use of Young’s Inequality37, we have that

1

4

∑
i=1...n

∫ τ

0

v2
i dt+ E(t0 + τ) ≦ E(t0) (III.7)
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The energy of the system at time t0 + τ is determined by its state at time t0. Vice versa, changing
the sign on the right hand side of (III.3) allows us to begin with the state at time t0 + τ and return
to the state of time t0: the system is reversible in an interval of time absent of rearragement events.
This is no longer the situation after such an event. At the later time, we have no knowledge about
which interval, now no longer in the inventory, was deleted.

We introduce a new ensemble based on the misorientation parameter α where we take Ω : −π
4 <

α < π
4 , for later ease of comparison with the two dimensional network. The GBCD or char-

acter distribution in this context is, as expected, the histogram of lengths of intervals sorted by
misorientation α scaled to be a probability distribution on Ω. To be precise, let

li(α, t) = xi+1(t) − xi(t)

= length of the ith interval,

where explicit note has been taken of

its misorientation parameter α

Now partition Ω into m subintervals of length h = π
2

1
m

and let

ρ(α, t) =
∑

α′∈((k−1)h,kh]

li(α
′, t) ·

1

Lh
,

for (k − 1)h < α ≦ kh, t > 0.

(III.8)

For this definition of the statistic,

∫
Ω

ρ(α, t)dα = 1

Note that

∂ρ

∂t
(α, t) =

∑
α′∈((k−1)h,kh]

vi(α
′) ·

1

Lh
,

for (k − 1)h < α ≦ kh.

(III.9)

We may express (III.7) in terms of the character distribution (III.8), which amounts to

µ0

∫ t0+τ

t0

∫
Ω

|
∂ρ

∂t
|2dαdt+

∫
Ω

ψ(α)ρ(α, t0 + τ)dα

≦

∫
Ω

ψ(α)ρ(α, t0)dα,

(III.10)

where µ0 > 0 is some constant.
We now impose a modeling assumption. The expression (III.10) is in terms of the new misorien-

tation level ensemble, upscaled from the local level of the original system. Consistent with the lack
of reversibility when rearrangement events occur, an entropic term will be added. We use standard
configurational entropy,

+

∫
Ω

ρ log ρdα, (III.11)
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although this is not the only choice. Minimizing (III.11) favors the uniform state, which would be
the situation were ψ(α) = constant.

Given that (III.10) holds, we assume that for any t0 and τ sufficiently small that

µ0

∫ t0+τ

t0

∫
Ω

(
∂ρ

∂t
)2dαdt+

∫
Ω

(ψρ+ λρ log ρ)dα|t0+τ

≦

∫
Ω

(ψρ+ λρ log ρ)dα|t0 .

(III.12)

E(t) was analogous to an internal energy or the energy of a microcanonical ensemble and now

F (ρ) = Fλ(ρ) = E(t) + λ

∫
Ω

ρ log ρdα (III.13)

is a free energy.

B. Fokker Planck paradigm

(III.12) above fails as a proper dissipation principle because the first term does not represent
lost energy due to frictional or viscous forces. For a deformation path f(α, t), t0 ≦ t ≦ t0 + τ, of
probability densities, this quantity is

D = D(f) =

∫ τ

0

∫
Ω

v2fdαdt (III.14)

where f, v are related by the continuity equation and initial and terminal conditions

ft + (vf)α = 0 in Ω × (t0, t0 + τ), and

f(α, t0) = ρ(α, t0), f(α, t0 + τ) = ρ(α, t0 + τ) in Ω,
(III.15)

by analogy with fluids38, p.53 et seq. and elementary mechanics.
For brevity, set ρ∗(·) = ρ(·, t0). Our question now is whether or not the first term of (III.12)

can dominate the term D(f) for some f so that D(f) may be substituted while maintaining the
inequality. Using the deformation path given by ρ itself, we may calculate that indeed

D(ρ) =

∫ τ

0

∫
Ω

v2ρdαdt

≦
cΩ

minΩ ρ
·

∫ τ

0

∫
Ω

(
∂ρ

∂t
)2dαdt,

(III.16)

where the v is chosen by solving explicitly the continuity equation (III.15). We now have that for
any relaxation time τ > 0,

µ

2

∫ τ

0

∫
Ω

v2ρdαdt+ Fλ(ρ) ≦ Fλ(ρ
∗) (III.17)
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for some constant µ.
The infimum of D(f) over all admissible (v, f) is a known statistical measure of closeness of prob-

ability densities, the square of the Kantorovich-Rubinstein-Wasserstein or Wasserstein metric.39,40

For densities ρ, ρ∗ it is defined to be

d(ρ, ρ∗)2 = inf
P

∫
Ω

∫
Ω

|x− y|2dp(x, y)

P = joint distributions for ρ, ρ∗ on Ω̄ × Ω̄,

(III.18)

Recall here that the probability density p(x, y) is a joint distribution for the probability distributions
P and P ∗ with densities ρ and ρ∗ provided that

P (E) =

∫
E

ρ(x)dx =

∫
E

∫
Ω

dp(x, y) and

P ∗(F ) =

∫
F

ρ∗(y)dy =

∫
Ω

∫
F

dp(x, y)

for all E,F ⊂ Ω.

The metric d has the property that

1

τ
d(ρ, ρ∗)2 = infD(f), (III.19)

where the infimum is taken over all deformation paths (f, v) satisfying (III.15).41 We next replace
(III.17) by a minimum principle, arguing that the path given by ρ(α, t) is the one most likely to
occur and that the minimizing path has the highest probability. We are led to the variational
principle for the unknown ρ given ρ∗

µ

2τ
d(ρ, ρ∗)2 + Fλ(ρ) = inf

{η}
{
µ

2τ
d(η, ρ∗)2 + Fλ(η)}. (III.20)

For each relaxation time τ > 0 we determine iteratively the sequence {ρ(k)} by choosing ρ∗ = ρ(k−1)

and ρ(k) = ρ in (III.20) and set

ρ(τ)(α, t) = ρ(k)(α) in Ω for kτ ≦ t < (k + 1)τ. (III.21)

We then anticipate recovering the GBCD ρ as

ρ(α, t) = lim
τ→0

ρ(τ)(α, t), (III.22)

with the limit taken in a suitable sense.42 It has been recently established that ρ obtained from
(III.22) is the solution of the Fokker-Planck Equation10

µ
∂ρ

∂t
=

∂

∂α
(λ
∂ρ

∂α
+ ψ′ρ) in Ω, 0 < t <∞. (III.23)

We might point out here, as well, that a solution of (III.23) with periodic boundary conditions and
nonnegative initial data is positive for t > 0.



12

IV. VALIDATION OF THE SCHEME

We now begin the validation step of our model. First we review a few facts about solutions of
(III.23). Introduce the notation for the Boltzmann distribution with parameter λ

ρλ(α) =
1

Zλ
e−

1

λ
ψ(α), α ∈ Ω, where

Zλ =

∫
Ω

e−
1

λ
ψ(α)dα.

(IV.1)

The Kullback-Leibler relative entropy with parameter λ for (III.23) is given by

Φλ(η) = λ

∫
Ω

η log
η

ρλ
dα where

η ≧ 0 in Ω,

∫
Ω

ηdα = 1,

(IV.2)

with ρλ from (IV.1). It is a convex function of η and by Jensen’s Inequality it is always
nonnegative43. In terms of the free energy (III.13) and (IV.1), (IV.2) is given by

Φλ(η) = Fλ(η) + λ logZλ, (IV.3)

that is, it differs from the free energy by a known function of λ. A solution ρ of (III.23) with λ = σ
satisfies40, or13 for an elementary demonstration,

lim
t→∞

Φσ(ρ) = 0 exponentially fast, whereas

lim
t→∞

Φλ(ρ) > 0 for λ 6= σ.
(IV.4)

From (IV.4) and the classical Csiszar-Kullback Inequality,40,44

ρ(α, t) → ρσ(α) as t→ ∞ exponentially fast. (IV.5)

We point out here that (IV.5) follows whenever a function satisfies (IV.4).
We now turn to the validation of our method. The procedure which leads to the implicit scheme

is based on a dissipation inequality, (III.7), that holds for the entire system but does not identify in-
dividual intermediate ‘spring-mass-dashpots’. The consequence is that we cannot set the parameter
σ, but in some way must decide if one exists, as we have been suggesting.

Therefore, we seek to identify the particular λ = σ for which Φσ defined by the GBCD statistic
ρ tends monotonely to the minimum of all the {Φλ} as t becomes large. The empirical GBCD ρ is
a statistic and so the minimum of all the {Φλ} may not be zero. So we must proceed to ask if the
terminal, or equilibrium, empirical distribution ρ is equal, that is, reasonably close, to ρσ given by
the formula (IV.1). This is the essence of our validation procedure. For our purposes, we simply
decide the question of equality by inspection.

With validation we would gain qualitative properties of solutions of (III.23): If we find the correct
choice for λ = σ, then from our discussion above,

• ρ(α, t) → ρσ(α) as t→ ∞, and
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FIG. 4. (Color online) (a) The relative entropy Φσ of the solution u(x, t) of the Fokker-Planck Equation
(III.23) for the potential ψ(x) = 1 + r(x− 1

2
)2, r = 2, with the choice λ = σ = 0.0296915, computed by a

routine numerical method, compared with a sequence of Φλ with the curve for σ = 0.0296915 noted in red.
The values of λ correspond to ρλ with max ρσ/2 ≦ max ρλ ≦ (3/2) max ρσ (b) The computed equlibrium
solution, which is indistinguishable from ρσ, the Boltzmann distribution of (IV.2).

• this convergence is exponentially fast,

and otherwise these properties fail.
In this context, determining a parameter on the basis of its thermodynamic restrictions is well

known. A novelty here is its use in a nonequilibrium setting, cf. also45–47.
To understand our implementation, we offer an illustration using the solution of the (III.23) itself,

u computed on Ω = (0, 1) with the choices ψ(x) = 1 + r(x − 1/2)2, r = 2, and λ = σ = 0.0296915,
and a collection of relative entropy plots {Φλ} where values of λ are close to σ, cf. FIG. 4(a).
The plot of Φσ vs. time t is noted in red and it is decreasing and tends to 0. A glance at the
resulting equilibrium u, FIG. 4(b), identifies it as the Boltzmann distribution ρσ, as constructed.
In Fig 5, plots of − log Φλ are shown, illustrating that − log Φσ increases linearly, or Φσ decreases
exponentially while Φλ for λ 6= σ does not have this property.

For the simplified coarsening model, we consider

ψ(α) = 1 + 2α2, α ∈ Ω = (−
π

4
,
π

4
), (IV.6)

and shall identify a unique such parameter, which we label σ, by seeking the minimum of the
relative entropy (IV.2) and then comparing it with ρσ. This ψ is the development to second order
of ψ(α) = 1 + 0.5 sin2 2α used in the 2D simulation. Moreover, since the potential is quadratic,
it represents a version of the Ornstein-Uhlenbeck process48, what we computed above directly. To
proceed, we must agree upon which simulation time t = T∞ represents time equals infinity. For the
simplified critical event model we are considering, it is clear that by computing for a sufficiently
long time all cells will be gone. This time may be quite long. We choose the time parameter so
that 80% of segments have been deleted, which corresponds to the stationary configuration in the
two-dimensional simulation. For the simplifed model simulation, this time is T∞ = T (80%) = 6.73.
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FIG. 5. (Color online) Plots of − log Φλ vs. t with − log Φσ in red for the solution of (III.23), cf. FIG. 4.
The plot illustrates that Φσ decreases exponentially to 0 but that Φλ for choices of λ 6= σ do not have this
property.

Here, T (Ξ) denotes the time at which Ξ% of the cells have been deleted. For comparison, T (90%) =
30 and T (95%) =103. There may be additional criteria for choosing a terminal time T∞ in the
neighborhood of T (80%) and we may wish to discuss this later.

This simulation is initialized with 215 + 1 cells and approximately 155 trial distributions ρj are
collected at 200 rearrangement event intervals. 155 trial relative entropies are constructed from
gaussians ρλj

satisfying

ρλj
(0) = max ρλj

= max ρj . (IV.7)

Some of these are shown in FIG. 6(a). The empirical GBCD is compared with the appropriate
Boltzmann distribution in FIG. 6(b).

We include the plots of − log Φλ, FIG.7, which suggests that Φσ decays exponentially to its
minimum whereas a Φλ corresponding to a other values of λ do not.

For a second example to illustrate the method, we consider the potential

ψ(α) = 1 + ǫα4, α ∈ Ω, ǫ = 8. (IV.8)

This choice, ǫ = 8, corresponds to the first order terms in the two dimensional quartic energy
density we discuss in the next section. Also here in FIG. 8 one sees very good agreement between
the empirical GBCD and the appropriate Boltzmann distribution.
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FIG. 6. (Color online) Graphical results for the simplified coarsening model with potential (IV.6). (a)
Relative entropy plots for values of λ chosen according to (IV.7) with Φσ noted in red. The value of
σ = 0.0296915. (b) Empirical GBCD at simulation time t = T∞ in red compared with ρσ in black.

FIG. 7. (Color online) Plots of − log Φλ vs. t with − log Φσ , σ = 0.0296915, in red for the simplified
coarsening model with potential (IV.6). It shows that Φσ decays exponentially to its minimum at simulation
time t = T∞.

V. THE ENTROPY METHOD FOR THE GBCD

We shall apply the method of Section IV to the GBCD harvested from the 2D simulation. We
consider first a typical simulation with the energy density

ψ(α) = 1 + ǫ(sin 2α)2, −
π

4
≦ α ≦

π

4
, ǫ = 1/2, (V.1)
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FIG. 8. (Color online) Graphical results for the simplfied coarsening model with potential (IV.8). (a)
Relative entropy plot for selected values of λ with Φσ noted in red. The value of σ = 0.003033356683 and
is ascertained at the simulation time t = T∞ corresponding to 80% of cells deleted. (b) Empirical GBCD
at time t = T∞ in red compared with ρσ in black.

FIG. 9, initialized with 104 cells and normally distributed misorientation angles and terminated
when 2000 cells remain. At this stage, the simulation is essentially stagnant. Possible parameters
λ are constructed similarly to those of the simplified coarsening model: From the maximum of a
harvested GBCD, we construct the gaussian with the same maximum. This determines a value of λ
which is used to define ρλ in (IV.1) for the density V.1. This ρλ then defines a trial relative entropy
via (IV.2).

FIG. 9. (Color online) The energy density ψ(α) = 1 + ǫ sin2 2α, |α| < π/4, ǫ = 1
2
.
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FIG. 10. (Color online) (a) The relative entropy of the grain growth simulation with energy density (V.1)
for a sequence of Φλ vs. t with the optimal choice σ ≈ 0.1 noted in red. (b) Comparison of the empirical
GBCD distribution at time t = T∞ = 2, when 80% of the cells have been deleted, with ρσ, the Boltzmann
distribution of (IV.1).

We now identify the parameter σ which turns out to be σ ≈ 0.1, FIG. 10(a). In FIG. 10(b)
the empirical GBCD is compared with the Boltzmann distribution with parameter determined by
FIG. 10(a), showing excellent agreement. From FIG. 11, we see that this relative entropy Φσ has
exponential decay until it reaches a value of about 1.5, when it remains constant. The solution
itself thus tends exponentially (in L1) to its limit ρσ by the Csiszar-Kullback Inequality.

FIG. 12 shows that averaging over a few trials, five in this case, the empirical GBCD’s approach
the Boltzmann distributiion ρσ of (IV.1) quite closely.

A second example presented here is a quartic energy

ψ(α) = 1 + ǫ(sin 2α)4, −
π

4
≦ α ≦

π

4
, ǫ = 1/2. (V.2)

Again, a configuration of 104 cells is initialized with normally distributed misorientations and,
this time, the computation proceeds until about 1000 cells remain. The relative entropy and the
equilibrium Boltzmann statistic stabilize when 2000 cells remain.

With the equilibrium solution in hand, as depicted in FIG 13, we again initialized a configuration
of 104 cells with, on this occasion, misorientations normally distributed in the much narrower range
defined by the sides of the solution GBCD. Since these misorientations see, essentially, only the
near minimum of the potential, we would expect the new stationary distribution to be gaussian or
random. However we obtain the same relative entropy curve and equilibrium depicted in FIG. 13.
Although coarsening is not like a molecular system with eternal collisions causing the entire system
to equilibrate, the fluctuations of misorientations caused by the ‘perpetual’ critical events provide
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FIG. 11. (Color online) Plot of − log Φσ vs. t with energy density (V.1). It is approximately linear until
it becomes constant showing that Φσ decays exponentially

FIG. 12. (Color online) GBCD (red) and Boltzmann distribution (black) for the potential ψ of (V.1) with
parameter σ ≈ 0.1 as predicted by our theory. This GBCD is averaged over 5 trials.

the system with a sufficiently ample library to be driven by the given grain boundary energy
density. On the other hand, we may defeat this attribute, for example, with a Read-Shockley type
of energy, which is cusp-like near the origin and rises sharply to a maximum. Near the origin, we
obtain a reasonable distribution, however there are otherwise insufficent orientations to populate a
Boltzmann distribution,16.

Future work will address the theory when the interfacial energy density ψ = ψ(θ, α) depends
on both normal angle and misorientation of the interface. In this context, we have observed that
simply resolving the solution of the Fokker-Planck Equation with quartic potential leads to bi-
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FIG. 13. (Color online) (a) The relative entropy of the grain growth simulation with density (V.2) for
a sequence of Φλ vs. t with the optimal choice σ ≈ 0.08 noted in red. (b) Comparison of the empirical
GBCD at time t = T∞ = 2, when 80% of the cells have been deleted, with ρσ, the Boltzmann distribution
of (IV.1).

modal intermediate distributions, which are the stationary distributions for quartic interfacial en-
ergy distributions.3,49 This suggests that this situation represents the quenched solution of a Fokker
Planck Equation and a role for the second eigenfunction of the equation. Other effects will also be
studied. These can be added to the local evolution law, most simply, varying mobility, and other
retarding forces such as triple junction drag.

VI. DISCUSSION/CONCLUSIONS

Here we have outlined an entropy based theory of the GBCD which is an upscaling of cell growth
according to the two most basic properties of a coarsening network: a local evolution law and space
filling contraints. The theory accomodates the irreversibility conferred by the critical events or
topological rearrangements which arise during coarsening. Details are given for a model system
where the analytical tools are easily exploited and they are seen to describe well the results of two
dimensional simulations. Our principal conclusion is that these events occur preferentially in a
manner that renders the GBCD closely related to the solution of a Fokker Planck Equation whose
potential is the given interfacial energy density. This reasoning exploits the recent characterization
of Fokker-Planck kinetics as a gradient flow for the free energy.

We note that the theory states in particular that it is the GBCD that is a consequence of the
coarsening process. The traditional texture distribution is the orientation distribution (OD), the
distribution of grain orientations. The GBCD is the distribution of differences of the OD, basically
the convolution of the OD with itself. This relationship may be inverted, by elementary Fourier
analysis, so, in this simple case, the GBCD determines the OD and not the other way around.
Therefore, we may expect, in nature, that it is among the processes that determine the OD.
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