
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum phase transition in quantum wires controlled by
an external gate

Tobias Meng, Mehul Dixit, Markus Garst, and Julia S. Meyer
Phys. Rev. B 83, 125323 — Published 31 March 2011

DOI: 10.1103/PhysRevB.83.125323

http://dx.doi.org/10.1103/PhysRevB.83.125323


BZ11566

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Quantum phase transition in quantum wires controlled by an external gate

Tobias Meng,1 Mehul Dixit,2 Markus Garst,1 and Julia S. Meyer3

1Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
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We consider electrons in a quantum wire interacting via a long-range Coulomb potential screened
by a nearby gate. We focus on the quantum phase transition from a strictly one-dimensional to a
quasi-one-dimensional electron liquid, that is controlled by the dimensionless parameter nx0, where
n is the electron density and x0 is the characteristic length of the transverse confining potential.
If this transition occurs in the low-density limit, it can be understood as the deformation of the
one-dimensional Wigner crystal to a zigzag arrangement of the electrons described by an Ising order
parameter. The critical properties are governed by the charge degrees of freedom and the spin sector
remains essentially decoupled. At large densities, on the other hand, the transition is triggered by the
filling of a second one-dimensional subband of transverse quantization. Electrons at the bottom of
the second subband interact strongly due to the diverging density of states and become impenetrable.
We argue that this stabilizes the electron liquid as it suppresses pair-tunneling processes between
the subbands that would otherwise lead to an instability. However, the impenetrable electrons
in the second band are screened by the excitations of the first subband, so that the transition is
identified as a Lifshitz transition of impenetrable polarons. We discuss the resulting phase diagram
as a function of nx0.

PACS numbers: 71.10.Pm, 64.70.Tg, 75.40.Cx

I. INTRODUCTION

Electron correlations in one-dimensional (1D) systems are especially pronounced due to the restricted available
phase space. Most prominently, the quasi-particle concept for the electron liquid, that accurately describes metals in
higher dimensions, breaks down in 1D giving rise to a correlated Luttinger liquid with the concomitant spin-charge
separation. At strong interactions, the formation of Wigner crystals and commensurate Mott insulating states are
expected. Technological advances in the fabrication of quantum wires and carbon nanotube systems with a high
tunability nowadays allows the controlled study of such strong correlation phenomena,1–5 see Ref. 6 for a recent
review.

While transport and spectroscopic properties of quantum wires in the Luttinger liquid regime have been the subject
of much attention over the years both experimentally2,4,7–10 and theoretically,11–13 much less is known outside this
regime where a description solely in terms of a Luttinger liquid becomes insufficient. This is, in particular, the
case close to quantum phase transitions at which the number of Fermi points changes and, consequently, a Fermi
energy EF vanishes. In the approximation of a non-interacting electron gas, these transitions are directly reflected as
rounded steps in the conductance,14,15 G(EF , T ), that sharpen up as the temperature T decreases. The influence of
electron-electron interactions close to these transitions is, however, only partially understood.16–31 It is important to
realize that the limits EF → 0 and T → 0 in the approach to the quantum phase transition do not commute, and, in
particular, the critical conductance G(0, T ) is governed by the underlying quantum critical point.32 As a Fermi energy
EF vanishes at the transition, one necessarily enters a regime where temperature T is larger than characteristic energy
scales of the electron liquid and, as a result, phenomena beyond a Luttinger liquid description become important.
Close to the quantum phase transition, one can distinguish two characteristic energy scales, namely the Fermi energy
EF for charge excitations and the spin exchange constant J for spin excitations. The intermediate temperature range
EF ≫ T ≫ J , where the charge sector still sustains plasmon excitations while the spin sector is already incoherent,
has caught some attention recently.26,33,34 It was pointed out by Matveev26 that in this spin-incoherent regime the
conductance should qualitatively deviate from the prediction for the non-interacting electron gas, which might explain
additional features in the conductance of quantum wires observed experimentally.17,18

In the present work, we consider the quantum phase transition from a strictly one-dimensional electron liquid to
a quasi-one-dimensional state with the aim to identify the nature, i.e., the universality class, of the transition at
T = 0. In the absence of any interaction, the electrons form subbands whose separation is controlled by the confining
potential. The quantum wire is one-dimensional if only the lowest subband is occupied and undergoes a transition
to a quasi-one-dimensional state by filling the second subband. Without interaction, this is just a Lifshitz transition
where the number of Fermi points increases from two to four. It is the purpose of this work to investigate how this
transition is modified in the presence of Coulomb interaction between electrons that is screened by a nearby gate.

For spin-polarized electrons this question was already addressed in a series of works by some of the authors.29–31
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FIG. 1: Transition from a one-dimensional to a quasi-one-dimensional state. (a) At weak coupling, naB ≫ 1, the transition is
triggered by filling a second subband upon tuning the chemical potential µ2 through zero. (b) At strong coupling, naB ≪ 1,
the transition corresponds to the deformation of a 1D Wigner crystal to a zigzag configuration.

It was found that in the limit of weak interactions, naB ≫ 1, where n is the one-dimensional electron density and
aB is the Bohr radius, the transition is still a Lifshitz transition but in terms of polarons, i.e., dressed fermionic
quasi-particles. As the electrons start occupying the second subband, see Fig. 1(a), they propagate with a very small
velocity. The relatively fast Luttinger liquid fluctuations within the filled first subband can follow these electrons
adiabatically thus dressing them with a cloud of plasmons. It was shown by Balents28 that the residual couplings of
the dressed fermions to the Luttinger liquid are irrelevant at the transition. A peculiarity of this transition concerns
processes where pairs of electrons are transfered between the two subbands.29 Although such processes do not influence
the nature of the transition, they determine in fact the ground state for a finite density of polarons, i.e., pair-tunneling
is dangerously irrelevant at the critical point. As polarons start populating the second subband, the system can gain
energy by pair-tunneling and, as a result, a BCS-like gap opens up as a secondary effect. As a result of the dangerously
irrelevant pair-tunneling operator, the Lifshitz transition thus separates two C1 phases in the notation of Ref. 35 that
possess only a single gapless charge mode.

As the interaction strength increases, the universality class of the transition, however, changes. For strong inter-
actions, naB ≪ 1, a one-dimensional Wigner crystal forms, and the transition corresponds to the splitting of the
crystal into two rows with a zigzag arrangement of the electrons, see Fig. 1(b). This transition can be described by
an Ising order parameter. Correspondingly, the transition is now of Ising type and separates two C1 phases with a
single gapless phonon mode. The residual coupling between the Ising critical degrees of freedom and the plasmon
excitations leads to logarithmic corrections to Ising criticality, that were analyzed in Ref. 31. Although this coupling
turns out to be marginally irrelevant, the renormalization group (RG) flow generates an enhanced SU(2) symmetry
as the velocities of the plasmons and the Ising critical degrees of freedom approach each other in the low-energy limit.
However, at the same time the mean velocity decreases resulting, e.g., in a divergence of the specific heat coefficient
as a function of T . The multicritical point separating the Lifshitz transition at weak and the Ising transition at strong
coupling has not been identified so far.

In this work, we extend the analysis of these previous works to electrons that are not spin polarized and investigate
the influence of the spin degree of freedom on these transitions. One-dimensional two-subband systems of electrons
have been investigated before by many authors.35–41 For a related theoretical study in the context of cold atomic
systems see Ref. 42. Of particular interest in the present context are the works of Varma and Zawadowski,36 that
was motivated by the physics of fluctuating valence compounds, and of Balents and Fisher35 that analyzes the phase
diagram of the two-chain Hubbard model. We discuss the relation of our results to these earlier works in detail in
the main text. The zigzag transition of the Wigner crystal was also studied in the context of ion traps43–45 as well as
dipolar cold gases.46

Experimentally, the influence of the confining potential (and, thus, the interaction strength) on the transition from
a one-dimensional to a quasi-one-dimensional state was investigated by Hew et al.23 with the help of conductance
measurements on a weakly-confined wire. The absence of the first quantized plateau in a range of confining potential
strengths was interpreted as a signature related to the formation of a two-row Wigner crystal state.

The organization of this article is as follows. In section II we specify the model used in our study and construct a
mean-field phase diagram. The transition for strong interactions, naB ≪ 1, is discussed in section III while the weak
coupling regime, naB ≫ 1, is addressed in section IV. We conclude in section V with a summary and discussion of
our results.

II. MODEL OF THE QUANTUM WIRE

In the following, we specify the model of a quantum wire created by gating a two-dimensional electron gas (2DEG).
The 2DEG forms at the interface (chosen to be in the xy-plane) between two different semiconductors which provide
a steep confining potential in the perpendicular direction due to their band structure mismatch. Applying a bias
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FIG. 2: Mean-field phase diagram of the Hamiltonian (1) as a function of the inverse one-dimensional electron density n−1

and the oscillator length x0 = 1/
√

mΩ, both measured in units of the Bohr radius aB = ǫ/(e2m). As x0 increases, a transition
occurs at the (red) solid line from a one-dimensional to a quasi-one-dimensional state. At low densities 1/(naB) ≫ 1, this
transition corresponds to the deformation of a 1D Wigner crystal into a zigzag configuration. At high densities, 1/(naB) ≪ 1,
the transition is triggered by the filling of a second subband. The thick dotted line indicates where the interaction energy
equals the subband separation so that the band picture ceases to be well-defined. For large x0, the two-dimensional limit is
approached. For a derivation of the various lines and regimes, see text.

voltage to a metallic split gate at a distance d from the 2DEG leads to an additional confining potential Vconf(y) that
restricts the motion of the electrons in the y-direction, thus creating a wire along the x-direction. In addition, the
gate screens the Coulomb interaction between the electrons.

The system is described by the model Hamiltonian

Ĥ = T̂ + V̂conf + V̂int, (1)

where the single-particle part comprises the kinetic energy, T̂ , and the confining potential, V̂conf , whereas V̂int is the
Coulomb interaction energy. We work in units ~ = 1, kB = 1, and 4πǫ0 = 1.

Assuming a parabolic confining potential characterized by the frequency Ω, the single-particle terms read

T̂ =
∑

i

p̂2
i

2m
, V̂conf =

1

2
mΩ2

∑

i

ŷ2
i , (2)

where the index i labels the electrons and m is the effective electron mass. The interaction between electrons is given
by

V̂int =
1

2

∑

i6=j

U(r̂i − r̂j) (3)

with the screened Coulomb potential

U(r) =
e2

ǫ

( 1

|r| −
1

√

r
2 + (2d)2

)

, (4)

where e is the electron charge and ǫ is the dielectric constant of the host material. The mirror charge in the gate
ensures that the potential falls off as a dipole field U(r) ≈ 2e2d2/(ǫ|r|3) for large distances, r ≫ d.

A. Mean-field phase diagram

Before analyzing the Hamiltonian (1), let us discuss its qualitative features.

1. Characteristic length scales

The Hamiltonian (1) is characterized by four characteristic length scales. (i) The mean particle spacing is given
by the inverse one-dimensional density, 1/n, i.e., the number of particles in the quantum wire per unit length. (ii)
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The extension of the system in the lateral direction is quantified by the oscillator length, x0 = 1/
√

mΩ. Finally, the
electron-electron interaction is characterized by (iii) the Bohr radius, aB = ǫ/(e2m), and (iv) the distance to the gate,
d, specifying the strength and range of the interaction potential (4), respectively. In the following, we assume that
the Bohr radius is much smaller than the distance to the gate, aB ≪ d, as is usually the case for quantum wires; for
example, for GaAs based systems one can estimate aB ≃ 10 nm and d & 100 nm.30

To understand the interplay between the different length or energy scales, a mean-field phase diagram of the model
as a function of the length scales 1/n, x0, aB, and d can be constructed by minimizing the dominant terms in the
Hamiltonian in various regimes and comparing the associated ground state energy scales. In particular, one can
distinguish the cases where either the single-particle part of the Hamiltonian dominates over the interaction energy
V̂int (Sec. II A 2) or vice versa (Sec. II A 3). By comparing the Fermi energy, EF ∼ n2/m, which is the characteristic
energy for single-particle physics, with the typical interaction energy at distances of order of the mean particle spacing,
U(1/n) ∼ ne2/ǫ, one finds that the two cases are distinguished by the ratio of the mean particle spacing and the
Bohr radius. For high densities, naB > 1, the single-particle energy dominates whereas for low densities, naB < 1,
the interaction energy dominates.

2. Single-particle limit: multi-subband quantum wire

In the high density limit, naB ≫ 1, interactions are weak. Thus, it is appropriate to first chose the eigenbasis of the
single-particle part of the Hamiltonian consisting of T̂ + V̂conf , see Eqs. (2), and then analyze the effect of interactions
in that basis. The single-particle eigenbasis is given by product-wavefunctions of traveling waves along the wire and
the oscillator eigenfunctions in the transverse directions. The system is one-dimensional (1D) as long as only the
lowest oscillator level is occupied. By comparing the Fermi energy with the oscillator frequency Ω, one obtains the
condition

x0 <
1

n
, (5)

that is shown as a solid line in Fig. 2. The transition from a single- to a two-subband quantum wire that is at the
focus of this work occurs for nx0 ∼ 1. Upon further increasing the density n or relaxing the confining potential, i.e.,
increasing x0, more and more subbands are populated.

The oscillator levels are well defined as long as the oscillator frequency Ω is larger than the typical Coulomb energy
U(1/n), which translates to the condition x0 <

√

aB/n, see dotted line in Fig. 2. For even larger oscillator length x0

one crosses over into a two-dimensional regime where the subbands are washed out.

3. Interaction dominated regime: Wigner crystal

For small densities, naB ≪ 1, interactions dominate over the kinetic energy of the particles, and the system
behaves almost classically. In that case, the potential energy, V̂conf + V̂int, should be minimized first, resulting in
a Wigner crystal state of electrons.47,48 As a function of oscillator length x0, there is a competition between the
interaction and the confining potential. At strong confinements, x0 → 0, a one-dimensional Wigner crystal is the
ground state of the potential energy V̂conf + V̂int. If the confinement is relaxed, a transition to a zigzag Wigner
crystal occurs, followed by subsequent transitions to more two-dimensional multirow structures.29,30,49–52 Comparing
V̂conf with the energy gain obtained by relaxing the Wigner crystal from a strictly one-dimensional arrangement,
U(r = (1/n, 0)) − U(r = (1/n, y)), one arrives at the stability criterion for the one-dimensional Wigner crystal state,

x0 <
(aB

n3

)1/4

, (6)

indicated by the solid line in Fig. 2. Note that, at very low densities, n < 1/d, the screening of the interaction
becomes important and modifies the transition line between the one-dimensional and the zigzag crystal. At even
lower densities, n < aB/d2, the Wigner crystal melts (not shown in Fig. 2).

B. Outline

The focus of this work is the evolution of the quantum wire from the strictly one-dimensional limit to a quasi-
one-dimensional state. At fixed Bohr radius aB and distance to the gate d, a transition to a quasi-one-dimensional
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state occurs upon increasing oscillator length x0 or density n, see Fig. 2. This transition is the subject of the present
paper with a focus on the interplay of charge and spin degrees of freedom. In the strongly interacting Wigner crystal
regime, the increase of n or x0 leads to a transition from a 1D to a zigzag Wigner crystal. Charge and spin degrees
are governed by very different energy scales so that, as a starting point, they can be treated separately as done in
Refs. 29,31 (charge) and 53 (spin). The question as to how the spin sector affects the Wigner crystal transition is
addressed in Sec. III. In the weakly interacting regime, the increase of n or x0 results in the subsequent population
of subbands. We focus on the transition where the second subband starts to get filled and analyze the effect of
interactions. While a single subband can be described as a Luttinger liquid displaying spin-charge separation, the
interactions between the subbands couple spin and charge degrees of freedom. This leads to interesting modifications
as compared to the spin-polarized case,29,31 that will be discussed in Sec. IV.

III. WIGNER CRYSTAL QUANTUM WIRE

At low electron densities, naB ≪ 1, the interaction energy dominates over the Fermi energy, see Fig. 2, and
the classical ground state is a good starting point to describe the physics of the system. Minimizing the potential
energy V̂conf + V̂int of Eq. (1) one arrives at a Wigner crystal state for the electrons.30 At low electron densities or
strong confinement such that Eq. (6) is obeyed, this Wigner crystal corresponds to a one-dimensional arrangements
of electrons with equilibrium position (x0

j , y
0
j ) = (j a, 0) of the jth electron, where a = n−1 is the lattice spacing. If

the confinement is relaxed and the oscillator length x0 increases, a transition from a one-dimensional arrangement of
electrons to a zigzag Wigner crystal takes place, see Fig. 1(b). In the following, we consider the properties of this
quantum phase transition.

A. Charge sector

The excitations of the one-dimensional Wigner crystal correspond to fluctuations of the electrons around their
equilibrium positions,

(uxj, uyj) =
(xj − x0

j

a
,
yj − y0

j

a

)

=
(xj

a
− j,

yj

a

)

, (7)

which are the phonon modes. Deep in the 1D regime, the only low-energy mode is the Goldstone mode u
‖
0 correspond-

ing to a translation of the Wigner crystal along the wire direction, (uxj , uyj) = u
‖
0(1, 0). As the confining potential

is weakened and the quantum phase transition is approached, there appears another low-energy mode u⊥
π . It corre-

sponds to the alternating oscillation of electrons in the direction transverse to the wire, (uxj , uyj) = u⊥
π (0, (−1)j). The

remaining two phonon modes, the longitudinal out-of-phase phonon mode u
‖
π((−1)j , 0) and the transversal phonon

u⊥
0 (0, 1), have gaps determined by the Coulomb repulsion and the confining potential, respectively. Close to the

transition both these gaps are of the order Ω.

The Lagrangian density L = L‖
0 +L⊥

π +Lint governing these low-energy excitations in the continuum limit is given
by

L‖0 =
m

2n

[

(∂τu
‖
0)

2
+ v2

‖0

(

∂xu
‖
0

)2
]

, (8a)

L⊥π =
m

2n

[

(∂τu⊥
π )

2
+ v2

⊥π

(

∂xu⊥
π

)2
+ r (u⊥

π )2 + s (u⊥
π )4

]

, (8b)

Lint = λ
(

∂xu
‖
0

)

u⊥
π

2
, (8c)

where τ is the imaginary time. The longitudinal velocity v‖0 is determined by the compressibility, mv2
‖0/n = ∂2E0/∂n2,

where E0 is the ground state energy; in the limit d−1 ≪ n ≪ a−1
B , it evaluates to v2

‖0 = 2n/(m2aB) ln(8nd).30

The control parameter r in (8b) changes sign as function of x0, namely r = 1/m2(x0
−4 − x0c

−4) with x0c =
(2ǫ/(7ζ(3)me2n3))1/4. The transverse velocity vπ⊥ and coefficient of the quartic term s read v2

⊥π = n/(m2aB) ln(2)
and s = 93ζ(5)n4/(8m2aB), respectively. Finally, the coupling between the two modes is given by λ = 21ζ(3)e2n/(4ǫ).

Away from the transition r > 0, the transverse mode u⊥
π corresponds to an optical phonon with minimal frequency

∝ √
r. With increasing oscillator strength x0, this gap decreases and vanishes at a critical value x0c, signaling the

instability of the one-dimensional Wigner crystal. For r < 0 the phonon field u⊥
π condenses with a finite expectation
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value corresponding to a zigzag Wigner crystal phase, see Fig. 1(b). For r = 0, the Lagrangian L⊥π corresponds to a
critical one-dimensional Ising model (s > 0). Neglecting the coupling between modes, λ, the transition from the 1D
to the zigzag Wigner crystal is, thus, in the Ising universality class and the transverse mode has a gap which scales
linearly with the distance from the transition point, ∆⊥

π = r. If the Wigner crystal was pinned and the positions
of particles along the wire were fixed, the transition would break the reflection symmetry in the confining plane.
However, the presence of the mode u0

‖, i.e., the fact that the crystal may deform in the longitudinal direction, makes

the zigzag order non-local.54

It is well-known that the transverse field Ising model can be alternatively represented in terms of a fermionic degree
of freedom Ψ with Lagrangian density55

Lferm
⊥π = Ψ†∂τΨ +

v⊥π

2
(Ψ∂xΨ + h.c.) + rΨ†Ψ . (9)

The longitudinal plasmon u0
‖ couples to the most relevant operator (u⊥

π )2 ∼ Ψ†Ψ of the Ising model so that the

interaction term (8c) can be rewritten in the fermionic formulation as

Lferm
int = λ

(

∂xu
‖
0

)

Ψ†Ψ , (10)

where, for simplicity of notation, we suppressed in Eqs. (9) and (10) renormalizations of coupling constants.
The model L‖0 + Lferm

⊥π + Lferm
int and its critical properties were analyzed and discussed in Ref. 31. It was found

that the critical renormalization group flow of the model parameters depends on the ratio of velocities, v⊥π/v‖0. If
v⊥π < v‖0, which is the case for quantum wires (see above), the interaction λ is marginally irrelevant and decreases
with decreasing energy. At the same time the ratio of velocities v⊥π/v‖0 approaches one. The critical fixed point is,
thus, characterized by an enhanced SU(2) symmetry. However, a peculiarity of the RG flow is that the velocity v‖0
itself vanishes in the low-energy limit resulting, e.g., in a diverging specific heat coefficient at the critical point. (In
the opposite limit, v⊥π > v‖0, run-away RG flow was found.)

In the following, we address the question whether these critical properties are modified in the presence of a coupling
to the spin degrees of freedom.

B. Coupling to the spin sector

Spin interactions in the one-dimensional Wigner crystal are described by the anti-ferromagnetic Heisenberg model
with nearest-neighbor interactions. In the zigzag Wigner crystal, next-nearest neighbor interactions as well as ring
exchange processes become important and lead to rich spin physics.53 However, these additional interactions become
important only once the lateral extent of the crystal is sufficiently large. Close to the transition, they are negligible,
and the spin interactions are still described by the Heisenberg Hamiltonian,

Hs = J
∑

j

~Sj · ~Sj+1, (11)

where the coupling constant J is exponentially small in 1/(naB).26

Due to the exponential dependence of the spin interactions on the inter-particle distance, fluctuations of the electron
positions immediately result in a modulation of J and, therefore, give rise to a magnetoelastic coupling between the
spins and the charge modes. Specifically, the interaction energy Jj between electron j and j + 1 depends on the
position of both electrons,56 Jj = J(rj , rj+1) ≃ J(|rj+1 − rj |). In order to investigate the coupling between spin
and charge modes perturbatively, we expand the interaction energy Jj in small fluctuations around the equilibrium

positions of the electrons using |rj+1 − rj | = a
√

(1 + uxj+1 − uxj)2 + (uyj+1 − uyj)2. Thus,

Jj ≃ J(a) + aJ ′(a)

(

uxj+1−uxj +
1

2
(uyj+1−uyj)

2

)

.

Note that the expansion of the coupling J in the longitudinal fluctuations uxj starts in linear order, yielding

H‖
sc = −g‖

∑

j

(uxj+1 − uxj)~Sj · ~Sj+1, (12)

with g‖ = −aJ ′(a). By contrast, due to the symmetry of the one-dimensional Wigner crystal, the expansion in the
transverse fluctuations uyj begins only in second order, i.e.,

H⊥
sc = −g⊥

∑

j

(uyj+1 − uyj)
2~Sj · ~Sj+1, (13)



7

with g⊥ = −aJ ′(a)/2.
The linear coupling to the longitudinal mode (12) is familiar from the spin-Peierls problem.13 In particular, the

mode u
‖
π with momentum q = π, uxj = u

‖
π(−1)j , couples to the staggered part of ~Sj · ~Sj+1,

H‖
sc ≈ −2g‖

∑

j

u‖
π(−1)j ~Sj · ~Sj+1. (14)

If the u
‖
π mode was sufficiently soft, this term would lead to a spin-Peierls transition. The crystal distorts such that

the mode u
‖
π assumes a non-vanishing expectation value giving rise to an alternation of weak and strong bonds, J±δJ .

The system then gains magnetic energy by forming singlets on the strong bonds.58 In our case, however, the magnetic

energy is exponentially small such that it never can compete with the charge gap of the u
‖
π mode, that is on the order

of (n/m)
√

n/aB ln(nd). We can, thus, conclude that the interaction (12) of the spin degrees of freedom with the
longitudinal modes does not influence the critical properties of the charge sector.

We now turn to the coupling to the transverse mode (13). The most singular contribution is attributed to the
critical u⊥

π mode. Substituting uyj = u⊥
π (−1)j , we obtain

H⊥
sc ≈ −4g⊥

∑

j

(u⊥
π )2~Sj · ~Sj+1. (15)

It turns out, however, that this interaction is also irrelevant as far as the critical properties of the Ising transition is
concerned. This conclusion follows from a straightforward power counting analysis of the Ising operator, (u⊥

π )2 ∼ Ψ†Ψ,

and the non-staggered spin-spin operator, ~Sj · ~Sj+1.
Both magnetoelastic couplings, g‖ and g⊥, therefore do not modify the transition to the zigzag Wigner crystal

described by the model (8). The transition happens only in the charge sector and the spin sector acts as a spectator.
The spin and charge degrees thus remain essentially decoupled at the transition and the analysis of Ref. 31 still applies.
We now turn to the analysis of the transition in the weak-coupling limit naB ≫ 1.

IV. MULTIBAND QUANTUM WIRE

At large densities, naB > 1, there exists a regime at sufficiently small oscillator length, x0 <
√

aB/n, where the
quantum wire contains well-defined single-particle subbands, see Fig. 2. In this regime, we can use the single-particle
basis of the Hamiltonian (1), deriving from the kinetic energy and the confining potential, T̂ + V̂conf , and expand the

interaction V̂int in that basis.
In second quantized form, the resulting Hamiltonian reads

H =
∑

n,k,σ

(

k2

2m
− µn

)

c†nkσcnkσ (16)

+
1

2

∑

n1,n2,n3,n4

k,k′,q;σ,σ′

Un1n2n3n4(q)c
†
n1k+qσc†n2k′−qσ′cn3k′σ′cn4kσ,

where the electron operators cnkσ destroy an electron with subband index n (i.e., the quantum number of the harmonic

oscillator defined by V̂conf), momentum k in x-direction along the wire, and spin σ =↑, ↓. Two consecutive chemical
potentials differ by the oscillator frequency, µn − µn+1 = Ω.

The electrons interact with an interaction amplitude U that depends on the transfered (longitudinal) momentum q
and the subband indices ni. Its value is given by matrix elements of the screened Coulomb interaction in the basis of
oscillator wavefunctions,

Un1n2n3n4(q) =

∫

dqy

2π
U(q, qy)Γn1n2n3n4(qy), (17)

where the Fourier transform of the interaction is given by

U(q, qy) =

∫

dr e−iqr U(r) (18)

=
e2

ǫ

2π
√

q2 + qy
2

(

1 − e−2d
√

q2+qy
2
)
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FIG. 3: Energy spectrum as a function of the longitudinal momentum k of a two subband quantum wire with a lower subband
1 and a higher subband 2. We consider the quantum phase transition when the chemical potential reaches the bottom of the
second subband, µ2 = 0. Depending on the position of chemical potential µ2, we apply different approaches in sections IVC,
IVD, IVE, IVF, and IV G as indicated in the figure. The energy scale Ep is defined in Eq. (39).

and the matrix elements read

Γn1n2n3n4(qy) = (19)
∫

dy1dy2 eiqy(y1−y2)φ∗
n1

(y1)φ
∗
n2

(y2)φn3(y2)φn4(y1)

with the nth 1D oscillator wavefunctions φn(y). Restricting ourselves to the low-energy properties of the system, only
interaction matrix elements Un1n2n3n4 where the indices ni are pair-wise equal will appear.

In the following, we focus on the situation where the first subband is filled, µ1 > 0, and the density of electrons
in the second subband is very dilute, |µ2| ≪ µ1, i.e., the second subband is close to the quantum phase transition
occurring at µ2 = 0, see Fig. 1(a). In this regime, we can neglect all higher subbands so that the band index is
restricted to n = 1, 2. The corresponding oscillator eigenfunctions are

φ1(y) =

(

mΩ

π

)1/4

e−
1
2mΩy2

, (20a)

φ2(y) =
√

2mΩ

(

mΩ

π

)1/4

y e−
1
2mΩy2

. (20b)

The reduced Hamiltonian for the two subband system is, thus,

H = H1 + H2 + H12, (21)

where Hi represent the two (interacting) subbands, i = 1, 2, and H12 captures the inter-subband interactions. The

condition x0 <
√

aB/n, that is fulfilled below the dotted line in Fig. 2, implies that the dimensionless interaction

ν1Un1n2n3n4(q) ≪ 1 is small, where ν1 = (2/π)
√

m/(2µ1) is the density of states of the filled first subband.

A. Low-energy limit of the Hamiltonian

In the following, we discuss the different parts of the two-subband Hamiltonian (21) separately before turning to
the analysis of the full Hamiltonian in subsequent sections.

1. First subband

The Hamiltonian H1 in Eq. (21) represents the electrons in the first subband at finite µ1 > 0, interacting via
the potential U1111(q). At low temperatures T ≪ µ1, we can approximate the first subband by a Luttinger liquid,
linearizing the dispersion around the two Fermi points at ±kF1 = ±√

2mµ1. Introducing right- and left-moving fields,
denoted R and L, respectively,

c1σ(x) = eikF1xR1σ(x) + e−ikF1xL1σ(x), (22)
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the Hamiltonian H1 takes the standard form

H1 =

∫

dx
[

− ivF1

∑

σ

(

R†
1σ∂xR1σ − L†

1σ∂xL1σ

)

(23)

+g1cρ1Rρ1L − g1s
~S1R.~S1L

]

.

Here the particle and spin densities of right (r = R) and left (r = L) moving electrons are given by

ρ1r =
∑

σ

r†1σr1σ, ~S1r =
1

2

∑

σ,σ′

r†1σ~σσ,σ′r1σ′ , (24)

where σi are Pauli matrices. The interaction constants describing scattering processes in the vicinity of the Fermi
surface are given by

g1c = U1111(0) − U1111(2kF1)

2
, g1s = 2U1111(2kF1). (25)

Their magnitude is evaluated and discussed in Sec. IVA4. Here chiral interactions which only renormalize the
velocities of the charge and spin modes are neglected. The Hamiltonian H1 describes decoupled charge and spin
modes, and has been intensively studied.13 The charge mode is gapless whereas the fate of the spin mode depends on
the sign of g1s. If g1s were negative, the spin mode would acquire a gap. In the present case, however, g1s is positive,
see Eq. (25), and, therefore, for a single subband quantum wire, the spin sector remains gapless.

2. Second subband

The electrons in the second subband are close to the band bottom, µ2 ≈ 0, and a clear distinction of left- and right-
movers and subsequent linearization of the spectrum is in general not possible. Furthermore, due to the low particle-
density at the band bottom only interactions between electrons of different spin polarizations are of importance. Local
interactions among electrons with the same spin are suppressed due to the Pauli principle. The residual interaction
contains gradients of the electron fields; it is irrelevant in the RG sense at the critical point µ2 = 0 and, therefore,
will be neglected. The resulting Hamiltonian for the second subband reads

H2 =

∫

dx
[

∑

σ

c†2σ(x)

(

− ∂2
x

2m
− µ2

)

c2σ(x) (26)

+ V c†2↑(x)c†2↓(x)c2↓(x)c2↑(x)
]

,

where

V = U2222(0). (27)

For small µ2, the Hamiltonian H2 represents a strongly interacting system even for infinitesimally small interaction
V . This is best seen for negative chemical potential, µ2 < 0, where the ground state of Eq. (26) is empty of particles.
In this case, the retarded two-particle Green function,

D2(x − x′, t − t′) = (28)

− iθ(t − t′)〈[c2↑(x, t)c2↓(x, t), c†2↓(x
′, t′)c†2↑(x

′, t′)]〉,

can be straightforwardly evaluated at T = 0 because it only requires the solution of a two-particle problem. The bare

retarded two-particle function, D(0)
2 , in the absence of interactions has the form

D(0)
2 (k, ω) = −i

√
m

2
√

ω − k2

4m + 2µ2 + i0
= − i

2

√

m

ε + i0
, (29)

where ε = ω − k2

4m + 2µ2 is the distance to the two-particle mass shell.
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(a)

T= +

(b)

T += ...+

FIG. 4: (a) Two-particle Green function (30) of two electrons with opposite spin polarizations in the second subband. (b) The
repeated scattering of the two electrons leads to the T-matrix, Eq. (31), where the wiggly line represents the interaction V .

In the presence of the interaction V , the two particles repeatedly scatter off each other. The exact retarded two-
particle Green function is then obtained by summing the interaction ladder in the particle-particle channel, see Fig. 4,
resulting in

D−1
2 (k, ω) = D(0)−1

2 (k, ω) − V. (30)

Alternatively, this Green function can be expressed in terms of the two-particle T-matrix, D2(k, ω) = D(0)
2 (k, ω) +

D(0)
2 (k, ω)T (k, ω)D(0)

2 (k, ω), where

T (k, ω) =
V

1 − V D(0)
2 (k, ω)

. (31)

Due to the inverse square-root singularity of D(0)
2 (k, ω), the T-matrix takes a universal form as the two-particle mass

shell is approached, ε → 0,

T (k, ω) → −2i

√

ε + i0

m
. (32)

This corresponds to unitary scattering with phase shift δ = π/2. In particular, note that the same limit obtains from
Eq. (31) for infinitely strong repulsion V → ∞. As the low-energy limit k, ω → 0 close to criticality µ2 = 0 coincides
with the limit ε → 0, the second subband is populated by a strongly interacting electron gas (irrespective of the
value of V ), where two electrons with opposite spin polarization cannot occupy the same state. As a consequence, the
two-particle wavefunction has not only nodes for electrons with the same spin as required by the Pauli principle, but
also for electrons with opposite spin polarizations. Such a strongly interacting gas has been dubbed an impenetrable
electron gas.59–62 The impenetrable electron gas is the fixed point theory that describes the quantum phase transition
in the second subband at µ2 = 0 in the absence of inter-subband interactions.

At positive µ2, the ground state of the system is a Luttinger liquid. For small 0 < µ2 < Ep = mV 2, the strong
correlations of the emerging impenetrability of electrons are reflected in largely different energy scales governing the
charge and spin sector. While the characteristic energy scale for charge excitations is the Fermi energy µ2, the one for
spin excitations, J , arises from corrections to the unitary limit (32) and is given by33 J ∼ µ2/(ν2V ) ≪ µ2, where ν2 is
the density of states in the second subband. As a consequence, the system remains in the Luttinger liquid state only
at temperatures T < J . In the intermediate temperature range, J < T < µ2, spin excitations are incoherent, and the
system can be described again as an impenetrable electron gas. This phase has also been dubbed a “spin-incoherent
Luttinger liquid” in the literature.33,34,63

Thus, the Hamiltonian (26) close to the quantum phase transition at µ2 = 0 is governed by the physics of the
impenetrable electron gas almost in the whole phase diagram except in the spin-coherent regime, T . µ2/(ν2V ),
where the large spin entropy is released.

3. Interaction between subbands

Interactions between the subbands can be distinguished into three types. There is a repulsive density-density
interaction of electrons between the subbands with amplitude uc > 0, and a spin density-density interaction that is
generically ferromagnetic, us > 0. In addition, the amplitude ut describes pair-tunneling processes between the two
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µ

ε(k) 12

k

FIG. 5: Pair-tunneling process between the two subbands.

subbands, see Fig. 5. The corresponding Hamiltonian H12 reads

H12 =

∫

dx
[

ucρ2 (ρ1R + ρ1L) − us
~S2

(

~S1R + ~S1L

)]

+ut

∫

dx
∑

σ

(

c†2σc†2σ̄L1σ̄R1σ + h.c.
)

(33)

with σ̄ = −σ. Here ρ2 =
∑

σ c†2σc2σ and ~S2 = 1
2

∑

σ,σ′ c†2σ~σσ,σ′c2σ′ , analogous to Eq. (24). The values for the couplings

in terms of the interaction function U , Eq. (17), are given by

uc = U1221(0)− 1

2
U1212(kF1), us = 2U1212(kF1), (34a)

ut = U1122(kF1), (34b)

and are evaluated in the next section. As in Eq. (26), we neglected in (33) interaction processes involving additional
spatial gradient terms. In particular, we disregarded tunneling of electron pairs with the same spin polarization.

The analysis of the full Hamiltonian (21) is complicated by the fact that the quantum critical point at µ2 = 0 for the
interacting system has multiple dynamical scales.64,65 Whereas the Luttinger liquid has a dynamical exponent z = 1,
the spectrum of the second subband is characterized by z = 2. The multiple scales lead to the appearance of two
different types of infra-red divergences in perturbation theory. The linear spectrum of the first subband, z = 1, yields
logarithmic divergences while the quadratic spectrum of the second subband, z = 2, yields square-root singularities. In
order to understand the interplay between these two types of divergences, we start in Secs. IV B–IVD by considering
the case µ2 < 0, where the two-particle Green function of the decoupled second (empty) subband is known exactly,
see Eq. (30). Then, in Sec. IVE, we discuss the behavior of the system at the transition, µ2 ≈ 0, and finally address
the regime µ2 > 0 in Sec. IVF and Sec. IV G. The various regimes are indicated in Fig. 3.

4. Magnitude of the coupling constants

Before turning to the analysis of the full effective low-energy Hamiltonian, let us determine the magnitude of the
various coupling constants close to the phase transition. The Hamiltonian (21) contains six coupling constants. For
naB > 1, the transition happens at nx0 ∼ 1, i.e., k−1

F1 ∼ x0. Both these length scales are smaller than the distance

to the gate, k−1
F1 ∼ x0 ≪ d. Due to the long-range nature of interactions, the interaction constants corresponding to

processes with zero momentum transfer are enhanced by a large logarithm. Furthermore, the dependence of Un1n2n3n4

on the subband indices becomes negligible as d ≫ x0. Thus,

g1s, us, ut ∼
1

ν1naB
(35a)

g1c, V, uc ∼
1

ν1naB
ln

d

x0
. (35b)

Note that, when the Wigner crystal regime is approached, naB → 1, the dimensionless couplings ν1g become of order
one (apart from the logarithmic enhancement66), as expected.

B. Perturbative analysis in the dilute limit µ2 < 0

If the chemical potential of the second subband is negative, µ2 < 0, the ground state in the absence of inter-
subband interactions consists of a Luttinger liquid in the first subband, Eq. (23), and an empty second subband.
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(a) (b) (c)

FIG. 6: Vertex corrections that involve the two-particle Green function of the second subband and diverge as 1/
√

ε with
vanishing energy ε: correction to (a) the intra-subband interactions g1x, x = c, s; (b) the intra-subband interaction V , and (c)
the pair-tunneling ut. The dashed/solid lines represents the propagator in the first/second subband, the dot is the pair-tunneling
amplitude ut, and the wiggly line is the intra-subband interaction V .

In the following, we consider the perturbative renormalization of the intra- and inter-subband interactions. The
perturbation theory in the inter-subband interactions is particularly simple because particle-hole polarizations of the
second subband vanish exactly at T = 0. This allows to study the approach to the quantum phase transition for
µ2 → 0−.

Perturbation theory encounters various singular corrections that diverge in the low-energy limit for µ2 → 0−. Below,
we list these singular correction to the various couplings given at some finite energy scale ω. As mentioned above, due
to the multiple dynamics of the critical point, different types of divergences, logarithmic and square-root singularities,
can be distinguished. The type of divergence depends on the intermediate state. A square-root divergence requires
that in the intermediate state both particles are in the second subband. If at least one particle in the intermediate state
is in the first subband, a logarithmic divergence is obtained. Here one can further distinguish between logarithmic
divergences that are cut off by the chemical potential µ2, if one of the particles in the intermediate state is in the
second subband, and those that are not, when both particles are in the first subband.

The perturbative corrections to the intra-subband interactions in the occupied first subband are given by

δg1c =
1

2
u2

tD
(0)
2 (0, ω), (36a)

δg1s = − g2
1s

2πvF1
ln

E0

|ω| + 2u2
tD

(0)
2 (0, ω), (36b)

where E0 is a UV cutoff on the order of the Fermi energy of the occupied first subband, E0 ∼ EF1. Apart from the
standard logarithmic corrections,13 there are additional singular corrections due to the pair-tunneling ut between the
subbands. The corresponding diagram is shown in Fig. 6(a). These singular corrections yield square-root divergences

as they involve the bare two-particle Green function D(0)
2 (0, ω), see Eq. (29), that behaves as 1/

√
ω + 2µ2.

The interactions of particles within the empty subband obtains the singular correction

δV = V 2D(0)
2 (0, ω) − u2

t

πvF1
ln

E0

|ω| . (37)

The first term on the right hand side corresponds to the first term in the expansion of the two-particle T-matrix
(31) in powers of V , see Fig. 6(b). The second term due to pair-tunneling to the first subband lowers the effective
interaction. It is represented by a diagram similar to Fig. 6(a), but with the dashed and solid lines interchanged.

Finally, the corrections to the inter-subband interactions read

δuc =
u2

t

2πvF1
ln

E0

|ω + µ2|
, (38a)

δus = − u2
s

2πvF1
ln

E0

|ω + µ2|
, (38b)

δut =V utD(0)
2 (0, ω) − (g1c + 3

4g1s)ut

2πvF1
ln

E0

|ω|

+
2utuc

πvF1
ln

E0

|ω + µ2|
. (38c)

The two-particle Green function of the second subband enters also here, namely in the correction to the pair-tunneling
vertex, see Fig. 6(c).

The singular vertex corrections listed above are either regularized by a finite energy ω or a finite chemical potential
µ2. We will first focus on the singular corrections that survive in the limit of large negative µ2.
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C. Perturbative regime at large negative µ2: dilute weakly interacting Fermi gas in the second subband

For large negative chemical potential of the second subband, the vertex corrections involving the two-particle Green
function of Fig. 6 can be treated perturbatively. The relevant energy scale is found by estimating the value of the

square-root corrections in the limit ω → 0 and requiring δx/x < 1, where x = g1c, g1s, V, ut. Using D(0)
2 ∝

√

m/µ2,
one obtains |µ2| ≫ Ep ≡ max{mu4

t/g2
1c, mu4

t /g2
1s, mV 2}. Thus, for our model parameters, Eqs. (35), the energy scale

Ep is determined by the intra-subband scattering V ,

Ep = mV 2. (39)

Similarly, for |µ2| ≫ Ep, the logarithmic corrections involving the chemical potential µ2 in their argument will reduce
to small perturbative corrections only. The remaining logarithmic corrections to g1s, V, ut that are singular in the
limit ω → 0 derive from exciting the Luttinger liquid and can be summed up with the help of the conventional RG
approach. After integrating out modes within an energy shell (E0/b, E0) with the scaling parameter b > 1, we obtain
the RG equations

∂g1s

∂ ln b
= − g2

1s

2πvF1
, (40a)

∂V

∂ ln b
= − u2

t

πvF1
, (40b)

∂ut

∂ ln b
= − (g1c + 3g1s/4)ut

2πvF1
. (40c)

The solution of these equations is straightforward. The first equation is the standard RG equation for the spin mode
of a Luttinger liquid.13 The coupling g1s is marginally irrelevant so that it vanishes logarithmically, g1s(b)/(πvF1) ∝
1/ ln b, for vanishing energies, b → ∞. The last two equations describe the renormalizations of the interaction V in
the second subband and the pair-tunneling ut due to the interaction with the Luttinger liquid.

Although the latter two interactions, V and ut, involve high-energy excitations to the second subband that is far
away in energy (|µ2| ≫ Ep), it is nevertheless important to consider them in order to check for consistency. In
particular, if |V | flows to large values, the condition |µ2| ≫ Ep = mV 2 may be violated during the RG flow. The
pair-tunneling ut leads to a reduction of the interaction V and could potentially drive it to large negative values. A
change of sign of V from repulsive to attractive is accompanied by the appearance of a two-particle bound state at
energies below the bottom of the second subband. In that case, the transition at µ2 = 0 could be preempted by the
condensation of bound pairs.

However, it turns out that the RG flow of the interaction V is rather short. The pair-tunneling ut which drives
the flow of V suffers an orthogonality catastrophe, i.e., it is suppressed by the interactions in the Luttinger liquid.
Thus, ut is irrelevant and flows to zero with a scaling dimension that approaches g1c/(2πvF1) in the low-energy limit,
b → ∞. It is straightforward to solve Eqs. (40) for the effective coupling Veff at the lowest energies. Namely,

Veff = V − u2
t

g1c
φ
(g1s

g1c

)

, (41)

where the function φ has the limits φ(0) = 1 and φ(x) ≈ 4/x for x → ∞. Using the initial values of the interaction
constants, Eq. (35), one obtains δV/V ∼ 1/(lnd/x0)

2, i.e., for d ≫ x0 the correction is logarithmically small.
Thus, the effective interaction Veff remains repulsive and in the perturbative regime, and, consequently, the condition
|µ2| ≫ mV 2

eff still holds.
To summarize, in the limit of large negative chemical potential, |µ2| ≫ Ep, the ground state of the system is not

affected by the inter-subband interactions which remain perturbative. The first subband is a Luttinger liquid while
the second subband corresponds to a weakly-interacting dilute Fermi gas whose population is exponentially small in
µ2/T for |µ2| ≫ T .

D. Quantum phase transition at µ2 = 0: Lifshitz transition of impenetrable polarons

If the negative chemical potential µ2 < 0 increases and passes the threshold |µ2| ∼ Ep, see Eq. (39), the square-root

singularities of the two-particle Green function D(0)
2 develop in the perturbative corrections to the couplings g1c, g1s, V ,

and ut, see Eqs. (36,37,38c) and Fig. 6. In the following, we consider the limit of small negative chemical potential,
|µ2| ≪ Ep, and, in particular, the approach to the quantum phase transition µ2 → 0−.



14

(a)

= + T

(b)

= +

FIG. 7: (a) Renormalization of the pair-tunneling vertex ut. Two electrons of the first subband (dashed lines) are transfered
to the second subband (solid lines). In addition to the bare pair-tunneling (black dot), the vertex receives renormalizations
from the repeated scattering of electrons in the second subband that is captured by the T-matrix, see Eq. (31) and Fig. 4. (b)
Renormalization of the intra-subband interactions g1x with x = c, s within the first subband. The black square represents the
bare interaction; the renormalization is due to pair-tunneling into the second subband with the renormalized pair-tunneling
vertex defined in (a).

1. Formation of an impenetrable electron gas in the second subband

In the limit |µ2| ≪ Ep, the inverse square-root singularities that appear in the perturbation theory become of order
one for energies ω ∼ Ep, while the logarithmic corrections are still small. So it is permissible to consider first the
stronger inverse square-root singularities deriving from the two-particle Green function of the second subband. In
order to identify the class of most divergent diagrams, we have to consider processes that contain as many two-particle

propagators D(0)
2 as possible. These processes are associated with the repeated scattering of particles in the second

subband. The summation of this class of diagrams corresponds to the formation of an impenetrable electrons gas in

the second subband as discussed in Sec. IVA2. As a consequence the bare two-particle propagator D(0)
2 appearing in

Eqs. (36,37,38c) has to be replaced by the full two-particle propagator D2.
Consider first the renormalization of the intra-subband interaction V in the second subband. The summation of

repeated two-particle scattering processes promotes the interaction V to the T-matrix, V → Veff = V +V 2D2(k, ω) =
T (k, ω), see Eq. (31) and Fig. 4. As discussed in Sec. IVA 2, the effective interaction thus becomes explicitly energy
dependent and, as the distance ε = ω − k2/(4m) + 2µ2 to the two-particle mass shell further decreases, |ε| < Ep, it

assumes the universal form T (k, ω) ≈ −1/D(0)
2 (k, ω), which is characteristic for an impenetrable electron gas.

The formation of an impenetrable electron gas in the second subband has the consequence that the pair-tunneling
becomes inefficient because the probability to find two electrons at the same position in space is strongly suppressed.
The singular vertex corrections for the pair-tunneling are shown in Fig. 7(a). In the limit ε → 0, summation of these
diagrams gives

ut(ε) = ut + V utD2(k, ω) → − ut

V D(0)
2 (k, ω)

. (42)

Thus, the effective pair-tunneling vanishes as

ut(ε) ∼ ut

√

ε

mV 2
for ε → 0, (43)

i.e., pair-tunneling is suppressed by a factor
√

ε/Ep.
Furthermore, the renormalizations of the Luttinger liquid interactions due to pair-tunneling, Eqs. (36), are now

regularized by the strong interactions in the second subband, see Fig. 7(b). Replacing D(0)
2 by D2 in Eqs. (36) and

taking the limit ε → 0, one obtains

geff
1x = g1x − Cx

u2
t

V
, (44)

where x = c, s and the constants Cc = 1/2, Cs = 2.
Thus, the pair-tunneling ut leads to a negative correction to the Luttinger liquid interactions. If ut is sufficiently

large, it may lead to a sign change of the interaction constants and, thus, induce attractive (anti-ferromagnetic)
interactions in the Luttinger liquid. In particular, the smaller effective coupling geff

1s , that controls the spin sector,
turns negative if

u2
t

V g1s
& O(1). (45)
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FIG. 8: Self-energy for electrons in the second subband. The dot represents either the charge or spin inter-subband interaction
vertex, uc or us, respectively.

If the effective coupling were driven negative, geff
1s < 0, the interactions between the residual low-energy degrees

of freedom would drive the interaction to strong coupling and generate a spin gap in the first subband,13 see also
discussion in the next section. However, for the parameters of Eqs. (35) we have u2

t /(V g1s) ∼ 1/ ln(d/x0) so that the
criterion (45) is never fulfilled for d ≫ x0. Thus, the Luttinger liquid in the first subband remains gapless.

So far we considered the effect of repeated scattering of particles in the second subband yielding the most singular
corrections. We found that, as a consequence, an impenetrable electron gas forms in the second subband at energies
ω ∼ Ep, and the pair-tunneling between the subbands becomes ineffective due to the formation of nodes in the two-
particle wavefunctions. However, the remaining interaction still leads to interesting physics that develops for even
smaller energies, ω ≪ Ep, as we show below.

2. Polaron formation at lowest energies

Due to the formation of an impenetrable electron gas in the second subband, the pair-tunneling is suppressed by
a factor

√

ω/Ep, see Eq. (43), and consequently becomes ineffective for energies ω . Ep. At the lowest energies,
ω ≪ Ep, the pair-tunneling may therefore be neglected. However, logarithmic divergences in Eqs. (36b,38b) survive
and lead to a residual flow of the remaining vertices. A perturbative treatment of the vertex corrections at energies
ω < Ep yields the one-loop RG equations

∂g1s

∂ ln b
= − g2

1s

2πvF1
, (46a)

∂us

∂ ln b
= − u2

s

2πvF1
. (46b)

Whereas the first equation derives from processes in the Luttinger liquid of the first subband only, the flow of us is
caused by the virtual excitation of a particle to the empty second subband. Contrary to the pair-tunneling process,
there is only a single particle involved which – as the second subband is empty – cannot repeatedly scatter from other
particles. As a result, us is not suppressed by the formation of an impenetrable electron gas in the second subband
even for ω < Ep.

To solve the RG equations, it is sufficient to consider the logarithmic renormalizations arising at the lowest energies,
i.e., the effective cut-off can be chosen as E0 . Ep. Consequently, the initial values for the RG flow are given by the
values of the coupling constants at the energy scale Ep, namely the effective coupling geff

1s of Eq. (44) and the bare
inter-subband coupling us.

Eq. (46a) is the standard RG equation for the Luttinger liquid. Depending on the sign of geff
1s , the flow is either

to weak or strong coupling. As discussed in the context of Eq. (44), for d/x0 ≫ 1 the coupling geff
1s is positive,

corresponding to ferromagnetic spin-spin interactions, and thus flows to weak coupling.
Eq. (46b) for the inter-subband spin-spin interaction has the same form as Eq. (46a). Thus, the (positive) coupling

constant us(ω) also decreases logarithmically with decreasing ω,

us(ω) =
us

1 + us

2πvF1
ln

Ep

max{ω,|µ2|}

, (47)

i.e., the ferromagnetic inter-subband spin-spin interaction is marginally irrelevant. Contrary to the intra-subband
spin-spin interaction, here the flow is stopped for a finite (negative) chemical potential |µ2| ≪ Ep.

Even though the pair-tunneling is suppressed by the strong interactions in the second subband, the low-energy limit
of the system does not correspond to two decoupled subbands, namely a Luttinger liquid and an impenetrable electron
gas. The inter-subband charge and spin density interactions, uc and us, respectively, lead to a polaron effect.28 The
particles of the second subband occupy states close to the band bottom, see Fig. 3, and as a consequence, they
propagate very slowly: their velocity vanishes close to the band bottom. By comparison, the density fluctuations
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in the filled first subband are rather fast, and the density can adiabatically adjust to screen the particles in the
second subband. This adjustment is reflected in logarithmically singular corrections to the residue Z of the fermionic
single-particle Green function in the second subband, G−1

2 (ω, k) = ω − k2/(2m) + µ2 − Σ(ω, k), that only appears in
two-loop order. Evaluating the self-energy diagram shown in Fig. 8, one obtains

Σ(ω, k) =

(

ω − k2

2m
+ µ2

)

2u2
c + 3

8u2
s

(2πvF1)2
(48)

× ln
E0

ω − k2

2m + µ2

.

Note that Fig. 8 represents the only important two-loop self-energy diagram for µ2 < 0 and T = 0. In particular,
contributions arising from intra-subband scattering V are exponentially suppressed in µ2/T , see Ref. 61. The loga-
rithmically singular self-energy Σ results in an RG flow for the residue Z giving rise to an anomalous dimension for
the electrons in the empty second subband. The flow can be integrated after also taking into account the two-loop
vertex corrections.28 Note that not only charge but also spin excitations (absent in the spin polarized case considered
in Ref. 28) contribute to screening and consequently to the logarithmic singularity in Eq. (48).

3. Universality class of the quantum phase transition

After all, we can identify the quantum phase transition occurring at µ2 = 0 as a Lifshitz transition corresponding
to the filling of an empty subband as a function of the chemical potential µ2. The electrons that fill this empty
subband are, however, strongly interacting, characterized by unitary scattering. Furthermore, each of these electrons
is screened by the density and spin excitations of the Luttinger liquid in the filled first subband. As a result, the
quantum phase transition is a Lifshitz transition of impenetrable polarons.

In the following, we discuss a regularization scheme for the square-root singularities that allows for an unbiased
renormalization group analysis and confirms the physical picture for the quantum phase transition developed above.

E. Regularization of the z = 2 singularities at the quantum critical point µ2 = 0

The two subband Hamiltonian, Eq. (21), has previously been considered by Balents and Fisher in Ref. 35 in
the context of the two-chain Hubbard model. In order to deal with the logarithmic and square-root singularities
encountered in perturbation theory, see section IVB, they considered a generalized dispersion for the electrons in
the second subband, ε(k) = |k|1+ǫv1−ǫ/(2m)ǫ, where v is an artificial parameter with the dimension of velocity. The
physical quadratic dispersion of the Hamiltonian (26) is recovered for ǫ = 1 whereas ǫ = 0 corresponds to a linear
spectrum. Treating ǫ as a small parameter the square-root singularities are regularized and RG equations for the
Hamiltonian close to criticality, µ2 ≈ 0, can be derived. In lowest order in ǫ, one obtains35

∂g1c

∂ ln b
= − u2

t

4πv
, (49a)

∂g1s

∂ ln b
= − g2

1s

2πvF1
− u2

t

πv
, (49b)

∂V

∂ ln b
= ǫV − V 2

2πv
− u2

t

πvF1
, (49c)

∂uc

∂ ln b
=

u2
t

2π(vF1 + v)
, (49d)

∂us

∂ ln b
= − u2

s

2π(vF1 + v)
, (49e)

∂ut

∂ ln b
=

(

ǫ

2
− V

2πv
+

2uc

π(vF1 + v)
− g1c + 3

4g1s

2πvF1

)

ut. (49f)

Here the RG equations are derived under the assumption that all dimensionless coupling constants are much smaller
than ǫ.

The parameter ǫ appears in the equations for the intra-subband interaction in the second subband, V , and the pair
tunneling, ut, i.e., the coupling constants that acquire corrections due to the interaction V . Both V and ut initially
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have a positive scaling dimension, ǫ and ǫ/2, respectively, i.e., they are both relevant. However, the scaling dimension
of V is larger and, thus, the intra-subband scattering V is the most relevant perturbation. Initially, V therefore grows
exponentially as a function of ln b. As a consequence, the intra-subband scattering quickly reaches an attractive fixed
point V/(2πv) → ǫ. This fixed point can be identified with the impenetrable electron gas within the second subband.

The pair-tunneling initially increases as well but with the smaller scaling dimension ǫ/2. As V approaches the strong-
coupling fixed-point, the scaling dimension of the pair tunneling changes from relevant to irrelevant as ǫ/2−V/(2πv) →
−ǫ/2, corresponding to a suppression of pair-tunneling due to the formation of nodes in the two-particle wave function,
see also Eq. (43). As a consequence, the pair-tunneling quickly flows to zero and the remaining RG flow reproduces
the one given in Eqs. (46).

The approximations of section IVD 1 with the expressions (44) for the effective couplings are exactly recovered if
the initial exponential flow of V and ut is reduced only to the first two terms on the right hand side of Eqs. (49c)
and (49f). Plugging the obtained result for ut(b) into Eqs. (49a) and (49b), one recovers Eq. (44) with the same
coefficients Cx.

It is interesting that the reduction of the effective interactions (44) quantified by Cx can be mainly attributed to
an approximate unstable fixed-point of the RG flow (49). The interactions g1c and g1s are substantially renormalized
when the pair-tunneling reaches its maximal value. This occurs at scales b ≈ bm when the flow of ut is approximately
stationary, i.e., when the intra-subband scattering reaches half of the fixed point value, V (bm)/(2πv) = ǫ/2. Close to
this stationary point, the flow of ut can be approximated by

ut(b) ≈ utmaxe
− ǫ2 ln2(b/bm)

8 . (50)

The maximal value of the pair-tunneling, utmax, is obtained from the approximate RG invariant of the initial flow.
Considering the coupled equations (49c) and (49f), and keeping only the dominant first two terms in Eq. (49f), one
finds the approximate RG invariant I = (ǫV − V 2/(2πv))πvF1/u2

t + 2 lnut. With V (bm)/(2πv) = ǫ/2, the maximal

pair tunneling then obtains utmax ≈ ut

√

πvǫ/(2V ), i.e., the pair-tunneling close to bm is enhanced by the large factor
√

πvǫ/(2V ).
Consequently, the pair-tunneling correction will dominate the renormalization of g1s close to bm so that we can

approximate its flow by ∂g1s/∂ ln b ≈ −u2
t /(πv) with ut(b) given by Eq. (50). Integrating this equation one obtains

an effective intra-subband interaction

geff
1s = g1s −

√
π

u2
t

V
. (51)

The stationary point of the RG flow thus accounts already for a reduction with a prefactor
√

π as compared to Cs = 2
obtained in section IVD1. Needless to say that we arrive at the same conclusion concerning the stability of the
Luttinger liquid as in the previous section, see the criterion of Eq. (45).

This is to be contrasted with the results of Ref. 35, where a Hubbard ladder was considered. In that case, all
interactions are of the same order, namely on the order of the Hubbard interaction U . Thus, for Hubbard initial
conditions the criterion (45) is fulfilled, and a spin gap can be generically expected in agreement with Ref. 35. For
the quantum wire with screened Coulomb interaction, however, the system remains gapless.

F. Dense limit of large positive chemical potential, µ2 > Ep

The square-root singularities of the perturbation theory at µ2 = 0 can also be regularized by considering a finite
positive chemical potential larger than the strong-coupling scale, µ2 > Ep, defined in Eq. (39). For a positive chemical
potential, the ground state contains a finite density of particles in the second subband. At lowest temperatures,
T ≪ µ2, we can then linearize the quadratic spectrum of the second subband and map its Hamiltonian H2, Eq. (26),
to a Tomonaga-Luttinger model.

Analogous to the treatment of the first subband in Sec. IVA2, we introduce right- and left-movers, cf. Eq. (22), to
find the standard Luttinger Hamiltonian Hlin

2 , cf. Eqs. (23,24), with interaction constants g2c, g2s. In the dense limit,
EF1 ≫ µ2 ≫ Ep, the values of the coupling constants are

g2c =
V

2
, g2s = 2V. (52)
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In terms of the new fields, the inter-subband interactions (33) can be written as Hlin
12 = Hlin

12cs + Hlin
12t with

Hlin
12cs = uc

∫

dx (ρ1Rρ2L + ρ2Rρ1L) (53)

−us

∫

dx
(

~S1R · ~S2L + ~S2R · ~S1L

)

and

Hlin
12t =

∫

dx
[

utc (TRTL + h.c.) − uts

(

~TR · ~TL + h.c.
)]

, (54)

where Tr =
∑

σ r†1σr2σ and ~Tr =
∑

σ r†1σ~σσ,σ′r2σ′/2. For µ2 ≪ EF1, the charge and spin pair-tunneling interactions
are related to the couplings defined in Eq. (33) by utc = ut/2 and uts = 2ut.

The resulting Hamiltonian H1+Hlin
2 +Hlin

12 , with H1 of Eq. (23), was previously analyzed by Varma and Zawadowski
in Ref. 36 and subsequently by other authors.35,37 Integrating out modes in an energy shell (E0/b, E0) with b > 1,
where the cut-off here is on the order of the small chemical potential, E0 ∼ µ2 ≪ EF1, one obtains the following RG
flow for the coupling constants,36

∂g1c

∂ ln b
= − 1

2πvF2

(

u2
tc +

3

16
u2

ts

)

, (55a)

∂g1s

∂ ln b
= − 1

πvF2

(

utc +
1

4
uts

)

uts −
1

2πvF1
g2
1s, (55b)

∂g2c

∂ ln b
= − 1

2πvF1

(

u2
tc +

3

16
u2

ts

)

, (55c)

∂g2s

∂ ln b
= − 1

2πvF2
g2
2s −

1

πvF1

(

utc +
1

4
uts

)

uts, (55d)

∂uc

∂ ln b
=

1

πvF1

(

u2
tc +

3

16
u2

ts

)

, (55e)

∂us

∂ ln b
= − 1

πvF1

(

u2
s − 2

(

utc −
1

4
uts

)

uts

)

, (55f)

∂utc

∂ ln b
= − 1

2πvF2

(

g2cutc +
3

16
g2suts

)

(55g)

− 1

2πvF1

(

(g1c−4uc)utc +
3

16
(g1s−4us)uts

)

,

∂uts

∂ ln b
= − 1

2πvF2

(

g2sutc +

(

g2c +
1

2
g2s

)

uts

)

− 1

2πvF1
(g1s − 4us)utc (55h)

− 1

2πvF1

(

g1c +
1

2
g1s − 4uc + 2us

)

uts.

Note that this perturbative approach necessarily breaks down as the phase transition µ2 → 0 is approached because
the vanishing Fermi velocity vF2 =

√
2mµ2 causes terms on the right hand side of the RG equations to diverge. The

perturbative treatment is controlled as long as all the terms on the right hand side of Eqs. (55) are smaller than the
coupling constants they renormalize. For the parameters of our model, Eqs. (35), the largest term is ∼ g2

2s/vF2 in
Eq. (55d). Thus, we obtain the condition g2s/vF2 ≪ 1 or, equivalently, µ2 ≫ Ep with the strong-coupling energy
scale Ep = mV 2 of Eq. (39).

Close to the transition µ2 & Ep, the initial RG flow is determined by the terms that are enhanced by factors of the
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inverse Fermi velocity, v−1
F2 .36 Keeping only such terms, the flow can be approximated as

∂g1c

∂ ln b
= − 1

2πvF2

(

u2
tc +

3

16
u2

ts

)

, (56a)

∂g1s

∂ ln b
= − 1

πvF2

(

utc +
1

4
uts

)

uts, (56b)

∂g2s

∂ ln b
= − 1

2πvF2
g2
2s, (56c)

∂utc

∂ ln b
= − 1

2πvF2

(

g2cutc +
3

16
g2suts

)

, (56d)

∂uts

∂ ln b
= − 1

2πvF2

(

g2sutc +

(

g2c +
1

2
g2s

)

uts

)

. (56e)

This initial flow shares similarities with the one obtained at large negative chemical potential |µ2| ≫ Ep in section
IVC, but with the role of the two subbands reversed: here only processes contribute where both particles in the
intermediate state are in the second subband. The equation for the intra-subband spin interaction g2s decouples. As
g2s > 0, the flow is to weak coupling. The pair-tunneling reduces the intra-subband interactions of the first subband,
g1c and g1s, making them less repulsive. This renormalization is, however, limited because the pair-tunneling again
suffers an orthogonality catastrophe – now due to the interactions in the second subband. Eqs. (56d,56e) show that
the pair-tunneling is irrelevant with scaling dimension g2c/(2πvF2) and, thus, quickly decreases. Introducing linear
combinations of coupling constants, Eqs. (56d) and (56e) can be recast in the form ∂utα/∂ ln b = −g2αutα/(2πvF2),
where xα = xc + αxs and α = −1/4, 3/4. Using the identifications with the coupling constants of the Hamiltonian
(21), one finds the initial conditions ut(3/4) = 2ut = 2U1122(kF1) and ut(−1/4) = 0, so that the latter does not flow.
Solving consecutively the RG equations for g2s, ut(3/4), and then g1s, the finite renormalizations of the intra-subband
scattering g1s during this process can be written as

geff
1s = g1s −

1

2

(utc + 3
4uts)

2

g2c
φ
(g2s

g2c

)

= g1s − 4φ(4)
u2

t

V
(57)

with the same function φ as in Eq. (41). Here φ(4) ≈ 0.34.
As above, the value of geff

1s determines the fate of the subsequent flow governed by terms that are not enhanced
by the inverse velocity: While for positive geff

1s the flow is towards weak coupling, run-away flow obtains for negative
geff
1s , signaling the opening of gaps. The coupling changes sign if u2

t /(V g1s) > O(1) so that we reproduce again the
stability criterion (45).

In principle, the corrections to the RG flow due to terms that are not enhanced by v−1
F2 could induce other insta-

bilities. The pair-tunneling, that is irrelevant during the initial flow (56), renormalizes the charge coupling g2c and
could drive it attractive. This could, in turn, make the pair-tunneling relevant, resulting in an instability. However,
in our case the criterion for this second scenario of run-away flow is even weaker than Eq. (45). Thus, we conclude
that in the regime µ2 > Ep the ground state of two Luttinger liquids in the two subbands is stable.

G. Small positive chemical potential: 0 < µ2 < Ep

So far, we discussed all regimes in Fig. 3 close to the phase transition except the one for finite positive but small
chemical potential, 0 < µ2 < Ep. The physics in this regime is already strongly influenced by the strong-coupling
fixed point of the impenetrable electron gas that controls the quantum phase transition. Whereas in the regime of
small and negative µ2 of section IVD a theoretical description in terms of only two interacting particles within the
second subband was sufficient, now a finite density of strongly-interacting electrons populate the second subband
which eludes a perturbative description. As the charge sector of the impenetrable electron gas corresponds to a
spinless Fermi gas,60 we can only speculate that the physics within this strongly-interacting regime shares certain
similarities with a system of spinless fermions.

In a two-subband system of spinless fermions, one generically finds an instability for small but finite µ2 because
pair-tunneling becomes relevant and leads to the opening of a gap.29 The main reason is that, for the spinless case,
the intra-subband interaction of the weakly populated second subband is of order O(v2

F2) due to the Pauli principle,
whereas pair-tunneling is only suppressed by a factor vF2, namely ut = U1122(kF1 − kF2) − U1122(kF1 + kF2). As a
result, the orthogonality catastrophe arising from adding particles to or removing particles from the second subband
is substantially weakened: the RG flow does no longer contain terms of order v−1

F2 as in Eqs. (55) while the remaining
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terms make the pair-tunneling marginally relevant. The flow of the pair-tunneling to strong coupling signals the
appearance of a gap due to a locking of the relative charge mode. Importantly, for spinless fermions there does not
exist any energy scale Ep that limits the range of validity of the perturbative RG in contrast to Eqs. (55).

It is not unlikely that a similar kind of relevant pair-tunneling mechanism might be at work in the spinfull case as
well in the regime 0 < µ2 < Ep where the physics is already influenced by the impenetrable electron gas fixed-point,
maybe giving rise to a gap in the charge sector.

V. SUMMARY & DISCUSSION

We analyzed the quantum phase transition in a quantum wire from a one-dimensional to a quasi-one-dimensional
state assuming that electrons interact via a long-range Coulomb potential screened by a nearby gate. The model of
the quantum wire was defined in section II, and a mean-field phase diagram was presented in Fig. 2.

In the limit of strong interactions, naB ≪ 1, the ground state is determined by the charge degrees of freedom. The
charges minimize the Coulomb energy by forming a Wigner crystal. Exchange processes between electrons give rise
to an exponentially small exchange coupling between the spins so that the spin sector is well approximated by the
nearest-neighbor Heisenberg model. The phonons of the Wigner crystal and the spin excitations of the Heisenberg
model thus account for a gapless charge and spin mode in the one-dimensional limit giving rise to a C1S1 phase in
the notation of Ref. 35. At the transition to a quasi-one-dimensional state, the 1D Wigner crystal deforms and splits
into two rows, see section III and Fig. 1(b). The transition is characterized by a (non-local) Ising order parameter.
The exponentially small spin exchange between nearest neighbors depends sensitively on the distance between charges
which results in a magnetoelastic coupling between the spin and phonon excitations of the Wigner crystal. We found
that due to the Ising symmetry the spin exchange can only couple inefficiently to the square of the order parameter
so that the universality class of the transition remains unaffected by the spin sector. As a consequence, the analysis
of the spin-polarized case also applies here,31 and the transition is an Ising transition with logarithmic corrections
resulting from the coupling of the critical Ising modes to the longitudinal phonons. Although this latter coupling was
found to be marginally irrelevant, its RG flow leads to an enhanced SU(2) symmetry accompanied by a suppression
of the velocity of the excitations.31 Right after the transition to a deformed zigzag Wigner crystal, the resulting state
possesses a single gapless longitudinal phonon and a gapless spin mode, corresponding to a C1S1 phase. If the electron
density increases further, the fate of the spin sector depends on the strength of ring exchange processes.53

In the limit of weak interactions, naB ≫ 1, the transition can be analyzed in terms of a two-subband model
of interacting electrons, see section IV. In the one-dimensional limit, only the lowest subband is filled, forming a
Luttinger liquid with a gapless charge and a gapless spin mode, i.e., it is a C1S1 phase. As the density increases, a
second subband starts being populated, see Fig. 1(a). This quantum phase transition is characterized by an interplay
of charge and spin degrees of freedom and, more importantly, multiple dynamical scales.31,64,65 The Luttinger liquid
within the first filled subband is Lorentz-invariant and thus has a dynamical exponent z = 1. The electrons in the
empty second subband, on the other hand, are characterized by Galilean invariance and the dynamical exponent is
z = 2. As explicitly shown in section IVB, the presence of two dynamical exponents is reflected in divergences in
perturbation theory of different strengths. Whereas perturbative corrections involving excitations of the Luttinger
liquid are accompanied by ubiquitous logarithms, the corrections involving electron-electron polarizations in the second
subband are more singular and diverge as the inverse square-root of energy. Indeed, the electrons at the bottom of
the second subband are strongly interacting. This is best understood by considering the dimensionless coupling ν2V ,
which diverges at the band bottom due to the diverging one-dimensional density of states ν2. As a result, the scattering
between two electrons of different spin polarizations is unitary, and the electrons become impenetrable. We found
that this emergent impenetrability in fact stabilizes the Luttinger liquid in the filled subband for the following reason.
The system is able to gain energy by pair-tunneling processes of electrons with different spin polarizations from the
filled first into the second empty subband. This effectively generates an attractive interaction in the Luttinger liquid
that increases the tendency towards the formation of a spin gap. However, due to the emergent unitary scattering
the probability to find two electrons at the same position in space decreases dramatically and pair-tunneling between
the subbands becomes inefficient. We showed that for electrons interacting via a screened Coulomb potential the
gapless spin excitations within the first subband survive at the transition, because the bare pair-tunneling between
the subbands is weaker than the intra-subband interaction, see the criterion in Eq. (45). This is in contrast to the
two-chain Hubbard model where both couplings are of the same order and pair-tunneling promotes the formation
of bound electron pairs.35 We showed in section IVE that the stability criterion of Eq. (45), that embodies the
competition between intra-subband interaction and pair-tunneling, can be attributed to a stationary, i.e., a repulsive
approximate fixed-point of the renormalization group flow. In addition, we found similarly as in the spinless case that
the impenetrable electrons are screened by plasmon and spinon excitations in the first subband. The quantum phase
transition at weak interactions is, thus, identified as a Lifshitz transition in terms of impenetrable polarons.
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We were not able to identify the phase and, in particular, the number of gapless modes for a small but finite filling
of the second subband, because close to the Lifshitz transition the physics is still strongly influenced by the strong
coupling fixed-point of the impenetrable electron gas that is beyond a perturbative treatment. We conjecture that
pair-tunneling processes – similar as in the spinless case29 – might play here an important role as well, maybe reducing
the number of gapless modes. If the density is further increased and the filling of the second subband is sufficiently
large, the interactions can again be treated perturbatively and the filled two subbands form two decoupled Luttinger
liquids (though not in the original basis) with two gapless charge and spin modes, i.e., a C2S2 phase.

Another open question concerns the connection between the strong and the weak coupling limit. There should
exist a multicritical point at intermediate densities that separates the Ising transition for naB ≪ 1 from the Lifshitz
transition encountered at weak coupling, naB ≫ 1. The corresponding effective theory has not been identified so far.
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42 K. Rodriguez, A. Argüelles, M. Colome-Tatché, T. Vekua, and L. Santos, Phys. Rev. Lett. 105, 050402 (2010).
43 S. Fishman, G. De Chiara, T. Calarco, and G. Morigi, Phys. Rev. B 77, 064111 (2008).
44 A. Retzker, R. C. Thompson, D. M. Segal, and M. B. Plenio, Phys. Rev. Lett. 101, 260504 (2008).
45 E. Shimshoni, G. Morigi, and S. Fishman, preprint arXiv:1008.2326; arXiv:1012.4332.
46 G. E. Astrakharchik, G. Morigi, G. De Chiara, and J. Boronat, Phys. Rev. A 78, 063622 (2008)
47 E. Wigner, Phys. Rev. 46, 1002 (1934).
48 H. J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).
49 A. V. Chaplik, Pisma Zh. Eksp. Teor. Fiz. 31, 275 (1980) [JETP Lett. 31, 252 (1980)].
50 R. W. Hasse and J. P. Schiffer, Ann. Phys. 203, 419 (1990).
51 G. Piacente, I. V. Schweigert, J. J. Betouras, and F. M. Peeters, Phys. Rev. B 69, 045324 (2004).
52 R. Cortes-Huerto, M. Paternostro, and P. Ballone, preprint arXiv:1005.4359.
53 A. D. Klironomos, J. S. Meyer, and K. A. Matveev, Europhys. Lett. 74, 679 (2006); A. D. Klironomos, J. S. Meyer, T.

Hikihara, and K. A. Matveev, Phys. Rev. B 76, 75302 (2007).
54 J. Ruhmann, E. G. Dalla Torre, S. Huber, and E. Altman, unpublished.
55 P. Pfeuty, Annals of Physics 57, 79 (1970).
56 The exchange interaction depends on the positions of all particles in the crystal. However, the effect of fluctuations in the

positions of the surrounding particles on the exchange constant is small.57
57 A. D. Klironomos, R. R. Ramazashvili, and K. A. Matveev, Phys. Rev. B 72, 195343 (2005).
58 M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).
59 M. Takahashi, Prog. Theor. Phys. 46, 1388 (1971).
60 M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).
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