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In this paper, we describe a mechanism by which the destruction of the Kondo coherence at
the same time gives rise to antiferromagnetic ordering. This picture is in contrast to the Doniach
picture of the competition of Kondo coherence and antiferromagentic orderring. Our study is done
in the honeycomb lattice at half-filling, where Kondo coherence gives rise to a Kondo insulator.
We go beyond mean-field (large N) formulation of Kondo coherence in Kondo lattices and consider
excitations we call Kondo vortices. A Kondo vortex is a configuration where at its core the Kondo
amplitude vanishes while far away from the core it retains the uniform Kondo amplitude. A Kondo
vortex in our model brings 4 zero modes to the chemical potential. The zero modes play a crucial
role as they allow us to construct spin-1 operators. We further study the transformation of these
spin-1 Kondo vortex operators under various symmetry transformations of the Kondo Hamiltonian,
and find a class of operators that transform like an antiferromagnetic order parameter. This gives
a novel picture of how one can create antiferromagnetic ordering by proliferating Kondo vortices
inside a Kondo coherent phase. We finish by studying the universality class of this Kondo vortex
mediated antiferromagnetic transition, and conclude that it is in the O(3) universality class.

I. INTRODUCTION

Understanding the evolution between the non-
magnetic Fermi liquid and the antiferromagnetic metal
in heavy fermion materials is one of the major challenges
in the field of strongly correlated electrons1,2. Much at-
tention has focused on the possibility of a direct second
order quantum critical point (QCP) separating these two
phases3–5. In some cases there is good evidence1,2,7 –
from the studies of the evolution of the Fermi surface –
pointing to the simultaneous collapse of Kondo screening
and anti-ferromagnetic (AF) scales at the QCP. Such a
direct second order phase transition is rather hard to un-
derstand theoretically. Instead one might have expected
an intermediate phase with coexistence (see Fig. 1) of
both Kondo screening and magnetic order or novel inter-
mediate phases with neither Kondo screening nor mag-
netic order9 (see Fig. 2). These more natural possibilities
are in fact realized in some cases10–12. But the apparent
direct second order transition between the heavy Fermi
liquid and magnetic metal seen in some cases remains a
mystery, and may well play a key role in understanding
of the observed strong non-Fermi liquid physics in the
quantum critical region above the QCP (see Fig. 3).

The conventional approach in formulating the compe-
tition between Kondo screening and magnetic ordering is
to construct a mean-field theory by introducing Kondo
coherence and anti-ferromagnetic order parameters. This
framework (from the the well-known work of Doniach8)
leads to the phase diagram of Fig. 1, where the AF tran-
sition happens inside the Kondo screening phase. The
theory of quantum critical modes at this antiferromag-
netic QCP is known as the Hertz-Millis theory.13 The
Hertz-Millis theory (in the light of new experiments) fails
on two fronts. First, it fails14 to explain the strong non-
Fermi liquid behavior (i.e. linear temperature resistiv-
ity) above the AF critical point seen in the wide variety
of experiments.2 More importantly, the Hertz-Millis pic-

ture is in direct contradiction with the new experiments
where the sudden change in Fermi surface topology at the
critical point is observed.6,7 This is because a nonzero
Kondo hybridization at the AF quantum critical point
guarantees a continuous change in Fermi surface across
the QCP. To incorporate the sudden change in Fermi
surface topology one is forced to consider the scenario
depicted in Fig. 3.
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FIG. 1: Hertz-Millis picture of AF quantum critical point in
heavy fermions: The AF transition happens inside the Kondo
phase. b characterizing the Kondo coherence is defined in the
next section.

Despite the proposal of Fig. 3, we do not have a the-
oretical understanding of why Kondo and AF phases
should collapse at a single point. The root of the prob-
lem is that, in present theories, destruction of the Kondo
coherence has nothing to do with emergence of AF or-
dering. They are just two completely different phases
which are competing with each other and in this frame-
work an overlap is unavoidable. We need to find a way
to “unify” these two distinct phases. By unification of
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FIG. 2: In this scenario AF and Kondo transitions are sepa-
rate giving rise to an exotic metal phase in the intermediate
region. One possibility is local moments form spin liquid while
c-electrons form small Fermi surface.9
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FIG. 3: Simultaneous collapse of AF and Kondo scales: A
new paradigm for AF transition consistent with the sudden
jump in Fermi surface topology at the QCP. There are no
established theories that explain why this simultaneous col-
lapse should happen. We need to find a way to unify these
two distinct phases.

Kondo and AF phases we mean finding a mechanism in
which the destruction of Kondo coherence at the same
time gives birth to AF ordering, or vice versa. The yet
to be developed unification picture will complement the
competition picture of Doniach. But the unified theory
is the theory that would matter to understand the QCP
itself.

In Ref. 16 we took a step in this direction by studying
excitations we called Kondo vortices inside the Kondo
coherence phase. Kondo vortex (KV) is a configuration
where at its core the Kondo amplitude vanishes while
far away from the core it retains the uniform mean-field
value. In the model we have studied we have shown that
we can localize a spin-1 at the vortex core. Now we
can imagine destroying the Kondo phase by proliferat-
ing Kondo vortices while at the same time giving birth
to a magnetic ordering.

This approach in destroying the Kondo phase by pro-
liferating Kondo vortices is quite novel, and to make
progress we have focused on a very specific model, i.e.
the honeycomb lattice at half-filling. What is special

(but not necessarily exclusive) to this model is that in the
presence of a KV 4 zero modes are brought to the chem-
ical potential. The presence of zero modes allows us to
construct spin-1 vortex creation operators, since we have
the freedom to occupy the zero modes. In the absence of
zero modes we are forced to occupy the Dirac sea with up
and down spins and the resulting state would be a mag-
netically featureless spin singlet state. After studying
the transformation of the spin-1 vortex operators under
various lattice symmetries, we find a class of these KV
operators that transform like an AF order. This gives
a plausible scenario of how one might be able to unify
the Kondo phase and AF phase, since we can destroy
the Kondo phase (by proliferating Kondo vortices) and
at the same time create AF ordering.

We chose half-filled honeycomb lattice for two reasons.
First, the particle-hole symmetry guarantees that the
chemical potential remains at zero for any Kondo and
gauge field configurations. The other is that the Dirac
spectrum near the (isolated) Dirac nodes enables us to
study the Kondo vortex in the continuum limit. How-
ever, the disadvantage of this model is that the Kondo
phase is not realized as a heavy fermi liquid phase, but
as a Kondo insulator. Furthermore since the honeycomb
lattice is a bipartite lattice the AF phase is also an insula-
tor. Therefore we do not have a Fermi surface in neither
of those phases, and we can not address the evolution of
the fermi surface (a central issue of the heavy fermion
QCP) in our model.

Here is the outline of the paper. In Sec. II we describe
the Kondo insulator phase, and construct the KV config-
uration in the Kondo insulator phase. In Sec. III we focus
on the spectrum of the Kondo Hamiltonian in the pres-
ence of a KV, and in particular we discuss the zero modes
the KV generate. In Sec. IV we construct spin-1 vortex
operators using the zero modes we have found, and in
Sec. V we study how these spin-1 vortex operators trans-
form under various symmetries of the Kondo-Heisenberg
Hamiltonian. Having this transformation table, we find a
class of these operators that transform like an AF order.
In Sec. VI we discuss the universality class of the AF
transition mediated by proliferation of Kondo vortices,
and show that (in our model) it is an O(3) transition.
We conclude by highlighting the main results of this pa-
per.

II. KONDO VORTICES IN THE KONDO

INSULATOR

Our starting point is the Kondo-Heisenberg Hamilto-
nian given by

Ĥ = −t
∑

〈ij〉α

(

c†iαcjα + H.c.
)

+JK

∑

i

si·Si+JH

∑

〈ij〉
Si·Sj,

(1)
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where c†iα is the conduction electron creation operator at
site i with spin flavor α ∈ {↑, ↓}, Si is the localized spin
and

si =
1

2
c†iασαβciβ (2)

is the conduction electron spin operator.
Let us identify the Hibert space of the localized spins

at site i by {|⇑〉i , |⇓〉i} and the one for the conduction
electrons by {|↑〉i , |↓〉i}. In the large JK limit the ground
state |GS〉 (at half-filling) is given by the direct product
of the singlets |0〉i = 1√

2
(|⇑〉i |↓〉i − |⇓〉i |↑〉i) at each site:

|GS〉 =
⊗

i

|0〉i . (3)

Since all conduction electrons are bound to localized
spins through the singlet formation, we end up with an
insulator ground state, known as the Kondo insulator. It
is worth noting that the ground state above is the strong
Kondo coupling ground state. However the ground state
remains an insulator as one decreases JK . To have a
mean-field picture of the Kondo coherence – and there-
fore the Kondo insulator – we write localized spin Si at
site i using slave fermions fi:

Si =
1

2
f †

iασαβfiβ . (4)

They are called slave fermions since to match the localized

spin Hilbert space, the Hilbert space of the f fermions
must be constrained:

∑

α

f †
iαfiα = 1. (5)

This constrained is enforced on average at the mean-
field level . In the slave fermion formulation of localized
spins, the spin-spin interactions of the Kondo-Heisenberg
Hamiltonian become 4-fermion interaction terms:

si · Si = −1

4

[(

c†iαfiα

)(

f †
iβciβ

)

+ H.c.
]

+
1

4
, (6)

Si · Sj = −1

4

[(

f †
iαfjα

)(

f †
jβfiβ

)

+ H.c.
]

+
1

4
, (7)

where the sum over the spin indices is understood. A
mean-field formulation can be obtained by decoupling
Kondo and Heisenberg interaction terms in the Kondo
and RVB channels respectively15:

ĤMF = − t
∑

〈ij〉α
(c†iαcjα + H.c.) + b∞

∑

iα

(c†iαfiα + H.c.)

+ χ
∑

〈ij〉α
(f †

iαfjα + H.c.)

(8)

The subscript ∞ in b∞ is because we are going to gen-
eralize above Hamiltonian to the Kondo-vortex configu-
ration. b∞ is going to be the Kondo amplitude far away
from the vortex core.

FIG. 4: The Brillouin zone of the honeycomb lattice. Corners
of the Brillouin zone are where the tight-binding gap vanishes.
The independent low-energy modes are denoted by the filled-
circles around the two Dirac nodes ±kD. The energy bands
(for the c and f tight binding bands and for the mixed bands)
near these two points are given in Fig. 5.

Let us first start with the c and f hopping (the first

and third term) part of the Hamiltonian ĤMF . As is well-
known in the honeycomb lattice, the tight-binding bands
touch at the 6 corners of the Brillouin zone (see Fig. 4).
At half-filling fermi surface shrinks to these 6 points, and
the independent low energy modes lie near the 2 indepen-
dent nodes ±kD shown schematically in Fig. 4. These are
known as the Dirac nodes due to the relativistic structure
of the low energy Lagrangian. The band structure of c
and f kinetic terms near these Dirac points are therefore
characterized by velocities (see Fig. 5):

vc = 3t/2, (9)

vf = 3χ/2. (10)

For b∞ 6= 0, c and f bands mix and a
gap will be opened. The mixed energy lev-
els near the Dirac nodes is given by Ecf (q) =

±
(

(vc − vf )q ±
√

(vf + vc)2q2 + (2b∞)2
)

/2. The gap

at the Dirac points (q = 0) is 2b∞, but as can be seen in
Fig. 5 (when vc 6= vf ) the minimum gap is not located
at Dirac points and is less than 2b∞.

We note20 that the sign of χ/t has to be positive for
the Kondo gap to open up. For χ/t < 0 we end up with a
Fermi ring around the Dirac nodes (see Eq. (33) of Ref.
20). This sign can be gauged away at the expense of a
non-uniform bi = (−1)ib∞, i.e. a b that alternates in sign
from A to B sublattices. The bi = (−1)ib∞ configura-
tions – though irrelevant for the remaining of the paper
– is a simple example to emphasize that a non-uniform
b can cause the spectrum to change very dramatically:
from a gapped spectrum to a spectrum with infinitely
many low energy excitation! Kondo vortices – the focus
of this paper – is another class of non-uniform b configu-
rations.

The established approach for the study of phase tran-
sition out of the Kondo phase is to construct a large
N Lagrangian to justify the mean-field in the N → ∞
limit. After this construction the self-consistent mean-
field b∞ is obtained, and the point where b∞ vanishes is
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FIG. 5: Energy bands of the mean-field Hamiltonian near
the Dirac nodes ±kD. Near the Dirac nodes the energy
spectrum just depends on q = |k ± kD|. The red dashed
bands are for the conduction electrons c: Ec(q) = ±vcq,
where vc = 3t/2. The blue dashed bands are for the slave
fermions f : Ef (q) = ±vfq, where vf = 3χ/2. The black
bands are the mized bands, i.e. when b∞ 6= 0: Ecf (q) =

±
“

(vc − vf )q ±
p

(vf + vc)2q2 + (2b∞)2
”

/2.

the Kondo transition point. The critical properties near
the transition point is studied using the renormalization
group machinery, where 1/N serves as the small param-
eter controlling the expansion. We followed this route in
Ref. 20 and studied the critical theory of the Kondo in-
sulator phase of Fig. 5 to an algebraic spin liquid, as the
phase transition of a Kondo phase to an algebraic spin
liquid is of current interest.9,21 Of course the main prob-
lem with this approach is is that it is only fully justified
in the large N limit. The qualitative picture the large N
expansion gives might extend to smaller N . However it
is not at all clear if the large N expansion gives a useful
qualitative picture for the heavy fermion QCP, and the
main reason one would resort to large N is because the
N = 2 problem is intractable.

However in this paper we use the simplicity the half-
filled honeycomb lattice provides to approach the N = 2
problem directly and we go beyond the mean-field (large
N) treatment of the Kondo problem. We do this by ex-

tending the ĤMF to a more general quadratic Hamilto-

nian Ĥ2:

Ĥ2 = −t
∑

〈ij〉α
(c†iαcjα + H.c.)

+ χ
∑

〈ij〉α
(eiaij f †

iαfjα + H.c.)

+
∑

iα

(bic
†
iαfiα + H.c.),

(11)

where we have relaxed the condition of a unform bi field
and a zero-flux aij configuration. We note here that in

writing ĤMF , and Ĥ2 we ignored the chemical potential
terms

Ĥµ = −µc(
∑

iα

c†iαciα −N ) −
∑

i

µf
i (f †

iαfiα − 1), (12)

where N is the number of lattice sites. In Appendix A we

show that the chemical potentials µc and µf
i are indeed

zero in the half-filled case.
A general bi and aij configuration can be seen as an

excitation over the uniform mean-field case, as the total
energies of the occupied states will be larger than the uni-
form mean-field configuration. The uniform mean-field
case in the honeycomb lattice was studied in Ref. 20,
and it was shown that the KI phase is stabilized for any
JH ≥ 0 beyond a finite Kondo coupling Jc

K . As far as the
mean-field case is concerned, the role of Heisenberg cou-
pling JH is to push the critical Kondo coupling to larger
values as it is increased. We emphasize that the study of
these configurations (i.e. “exciation fields”) can be fruit-
ful for any Kondo lattice model, and their proliferation
may lead to interesting phases.

Here we focus on a class of these exciation configu-
rations we call Kondo vortices. They are identified in
continuum limit as b(r) = |b(r)|e±iθ(r), where |b(r)| ∝ r
as r → 0 and converges to the mean-field value b∞ as
r → ∞. Furthermore due to the presence of |(∂µ+iaµ)b|2
in the action20 (which is dictated on gauge-invariance
ground), the finite energy configurations are obtained by
inserting a ∓2π gauge flux extended around the vortex
core.17,18 An example of such a configuration is

b(r) = b∞tanh(r/ξb)e
+iθ(r), (13)

aθ(r) = −tanh2(r/Λ)/r, (14)

where the following gauge

a(r) = aθ(r)θ̂ (15)

is chosen for the gauge field. Now that we have defined
the Kondo vortex configuration we are going to study
how it affects the energy spectrum.

III. ZERO MODES IN THE PRESENCE OF A

KONDO VORTEX

The KV excitation is special since in its presence 4 zero

modes appear right at the chemical potential in the KI
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phase. In the approach we have taken, the zero modes
will later play a big role in giving a spin-1 structure to
our Kondo vortices. In the absence of zero modes we
are forced to occupy the Dirac sea with up and down
spins and the resulting state would be a magnetically
featureless spin singlet state.

We first analyze the zero mode equations in the con-
tinuum limit. To find the zero modes we expand the
Hamiltonian near the Dirac nodes, and set energy=0.
The quadratic Hamiltonian of Eq. (8) near ±kD node is
given by the following matrix

H± =

(

vc(q1τ2 ± q2τ1) b
b∗ −vf [(q1 + a1)τ2 ± (q2 + a2)τ1

]

)

,

(16)
where a = a1x̂ + a2ŷ is the spatial component of the
gauge field, and τµ are Pauli matrices acting on the AB
flavors. The zero mode equations is therefore given by

H±π± = 0, (17)

where π± is the column vector

π± =







cA±
cB±
fA±
fB±






. (18)

In Appendix B we analyze the zero mode equations in
real space after replacing qj = i∂j . There are 2 × 2 zero
modes labeled by their {+,−} Dirac node and {↑, ↓} spin
flavors. The energy spectrum of the mean-field state and
in the presence of the vortex is shown schematically in
Fig. 6.

Next we analyze the energy spectrum of the lattice

Hamiltonian of Eq. (11) in the presence of a KV. We
use a “ring” geometry – an example of which is given in
Fig. 7. The center of the figure is the r = 0 point. bi

for each lattice site is then obtained using the continuum
limit expression given in Eq. (13) by replacing r with
ri. We spread the 2π flux uniformly over a NΛ number
of rings, and find aij ’s that enclose the needed flux per
plaquette. Since in the KI phase b∞ 6= 0 different gauge
choices to enclose the flux results in different spectrums
- however they all lead to emergence of 4 zero modes as
one takes the number of rings Nr → ∞.

We can imagine an adiabatic process on the lattice
where the zero modes are created adiabtically as one
gradually inserts the vortex. This is done by introducing
the parameters κ1 and κ2, where we consider enclosing
2πκ1 flux and also take bi = |bi|eiκ2θi . In Fig. 8 we con-
sider the case κ1 = κ2 in the [0, 1] interval. This artificial
way of adiabatically inserting the flux (apart from show-
ing the gradual emergence of zero modes) will be useful to
elaborate on some conceptual points in the next section.

In Fig. 9, we have also provided the finite size scal-
ing plot of the closest energy to the zero ε0 as function
of 1/Nr, which is a very convincing evidence for the ex-
istence of the zero modes: ε0 → 0 as Nr → ∞. This

2N

2N

↑ ↓

↓↑

(a)

↑ ↓

↓↑ 2N − 2

2N − 2

(b)

FIG. 6: 6(a) The schematic figure of the energy levels of the
mean-field Hamiltonian of Eq. (8). The occupied states are
colored by blue. N is the number of lattice sites. There are
two types of fermions {c, f}, and two spin flavors {↑, ↓} –
therefore 4N states in total, half of which is occupied. 6(b)
The schematic figure of the energy levels of the Hamiltonian
of Eq. (11) in the presence of a KV background. 2 states
from the Dirac sea and 2 states form the unoccupied states
are brought to zero energy, where the chemical potential is
located. Due to charge conservation half of these 4 zero modes
has to be occupied. An example of this zero mode occupation
is shown in this figure. There are (4 × 3)/2 ways to occupy
these zero modes. We later classify this 6 ways of occupying
zero modes as 3 spin-triplet nodal-singlet, plus 3 spin-singlet
nodal-triplet states.

∗∗

FIG. 7: An example of a gauge-symmetric (ring) geometry
(with Nr number of rings) to study the energy spectrum of

the Hamiltonian Ĥ2 [Eq. (11)] and to find how vi†
ξ [Eq. (21)]

transforms under the π/3 rotation around the center of the
plaquette labeled ∗. The bold links are the links where the
gauge field is non-zero. We let the 2π flux to spread uniformly
over NΛ number of rings, and choose a symmetric gauge to
enclose the flux. The numerics is done in the open bound-
ary condition. Plaquettes with non-zero flux passing through
them are shaded with yellow. In this figure Nr = 4, NΛ = 3.

continuum limit is going to be discussed further in Ap-
pendix B. We have also confirmed that a KV with 2πn
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0 0.2 0.4 0.6 0.8 1
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-1
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3

t/χ = 2, b∞ = 1, Nr = 8, ξb = 4, NΛ = 8

ε/t

κ1 = κ2

FIG. 8: The evolution of energy levels ε (in units of t), as a
function of κ for one spin flavor. κ1 is a fraction of 2π flux
enclosed, and κ2 characterizes the phase “twist” of the b field
bi = |bi|e

iκ2θi . They are parameters to control the evolution
of the spectrum from mean-field state (κ1 = κ2 = 0) to the
KV state (κ1 = κ2 = 1). In the example shown here we vary
κ1 = κ2 in the [0, 1] interval.

0 0.05 0.1 0.15 0.2 0.25

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

t/χ = 2, b∞ = 1, ξb = Nr/2, NΛ = Nr

1/Nr

ε0/t

FIG. 9: ε0 is the nearest energy in the Dirac sea to the chem-
ical potential (i.e. zero energy). ε0 is plotted (in units of t)
as a function of 1/Nr, where Nr is the number of rings in the
geometry we used for our numerics (See Fig. 7). ε0 → 0 in
the continuum limit Nr → ∞.

phase twist in the b field has n zero modes per node and
per spin flavor, a property that we would expect on topo-
logical grounds.

IV. SPIN-1 VORTEX OPERATORS

After establishing the zero modes, we can now dis-
cuss the construction of a spin-1 vortex creation operator.
We define vortex creation operators as operators that in-

crease the gauge flux by 2π. If we only limit ourselves
with states that are connected to the mean-field state,
the 2π flux-increasing operator contains two terms:

m+†
(aα)(bβ) = z+†

aαz+†
bβ |DS, +〉 〈G| , (19)

m−†
(aα)(bβ) = |G〉 〈DS,−| z−bβz−aα, (20)

where a, b ∈ {+,−} are nodal, and α, β ∈ {↑, ↓} are spin
flavors. |G〉 is the MF ground state, |DS+〉 is the Dirac
sea of negative energy states in the presence of the +2π
gauge flux, z+†

aα is the zero mode creation operator (with
aα flavor) for the state with +2π gauge flux, and z−aα is
the zero mode annihilation operator for the state with

−2π gauge flux. In words what m+†
(aα)(bβ) does is to add

a 2π vortex to the mean-field state, and what m−†
(aα)(bβ)

does is to add a 2π flux to the −2π vortex state thus
bringing it back to the ground state. They both have
the effect of adding a 2π flux, therefore a 2π flux vortex
creation operator should contain both terms. There are
4×3
2 ways to occupy the zero modes. We classify these 6

KV creation operators into spin-triplet nodal-singlet op-

erators vi†
ξ , and spin-singlet nodal-triplet operators ui†

ξ :

vi†
ξ =

[

(iσ2)σi
]

αβ
(iµ2)abm

+ †
(aα)(bβ)

+ ξ
[

σi(iσ2)
]

αβ
(iµ2)abm

− †
(aα)(bβ)

(21)

ui†
ξ =

[

(iµ2)µi
]

ab
(iσ2)αβm+ †

(aα)(bβ)

+ ξ
[

µi(iµ2)
]

ab
(iσ2)αβm− †

(aα)(bβ)

(22)

Since we are interested in the magnetically ordered
phases that can arise by condensing Kondo vortices we

focus on vi†
ξ operators. From

(

[

(iσ2)σi
]

αβ
(iµ2)abm

+ †
(aα)(bβ)

)†

=
[

(iσ2)(σi)∗
]

αβ
(iµ2)abm

+
(aα)(bβ)

= −
[

σi(iσ2)
]

αβ
(iµ2)abm

+
(aα)(bβ),

(23)

vi
ξ is given by

vi
ξ = −

[

σi(iσ2)
]

αβ
(iµ2)abm

+
(aα)(bβ)

− ξ∗
[

(iσ2)σi
]

αβ
(iµ2)abm

−
(aα)(bβ)

(24)

The proof that vi†
ξ transforms like a spin 1 under SU(2)

spin rotation is straightforward. Let us assume a SU(2)
spin rotation with angle 2φ:

c†aα → c†aα′(e
−iφ·σ)α′α (25)
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Under this transformation

[

(iσ2)σi
]

αβ
m+ †

(aα)(bβ) →
[σi(iσ2)]αβ(e−iφ·σ)β′β(e−iφ·σ)α′αm+ †

(aα′)(bβ′)

= [e−iφ·σσi(iσ2)e−iφ·σT

]α′β′m+ †
(aα′)(bβ′)

= [e−iφ·σσie+iφ·σ (iσ2)]αβm+ †
(aα)(bβ),

(26)

which is to say vi†
ξ rotates as a spin-1 under SU(2) spin

flavor rotations. The invariance of vi†
ξ under nodal rota-

tions (with angle 2θ) is also given below:

[(iµ2)]abm
+ †
(aα)(bβ)

→ [(iµ2)]ab(e
−iφ·µ)b′b(e

−iφ·µ)a′am+ †
(a′α)(b′β)

= [e−iθ·µ(iµ2)e−iθ·µT

]a′b′m
+ †
(a′α)(b′β)

= [e−iθ·µe+iθ·µ (iµ2)]abm
+ †
(aα)(bβ)

= [(iµ2)]abm
+ †
(aα)(bβ).

(27)

This finishes our discussion of classifying KV creation
operators.

V. KONDO VORTEX TRANSFORMATIONS

In this section we study how vi†
ξ transforms under var-

ious symmetry transformations of the quadratic Hamil-
tonian Ĥ2 of Eq. (11). We already know that conden-

sation of vi†
ξ leads to a magnetic phase, since it picks a

direction and breaks the SU(2) spin rotation symmetry.
We however would like to know what kind of a magnetic
phase it is. The strategy is to find out the transformation

properties of vi†
ξ , and compare them with the transfor-

mation properties of various magnetically ordered states
under various symmetry operations. This method has
been used beforehand for the studying the effect of in-
stantons in the gapless phase of the U(1) algebraic spin
liquid.22–24

Some symmetry transformation generators of the
Hamiltonian Ĥ2 is given in Table I. We have not ex-
plicitly written the transformations under reflection and
translations, as they act exactly like R∗

π/3– in that they

only act on the site indices i → i′.

We note that that the definition of vi†
ξ is only well-

defined if the phases of single particle states of the mean-
field states are locked to their counterparts in the vortex
state. A simple way to guarantee this phase locking is
through the “artificial” adiabatic process outline in the
previous section (see Fig. 8).

Now we are going to discuss how vi†
ξ trasnform under

time-reversal T , charge-conjugation C, rotation R∗
π/3 ,

and translations Tai
.

ciα fiα bi aij

T (iσ2)αβciβ (iσ2)αβfiβ b∗i −aij

C ǫi(iσ
2)αβc†iβ −ǫi(iσ

2)αβf†
iβ b∗i −aij

R∗
π/3

ci′α fi′α bi′ ai′j′

TABLE I: The table of the transformation of lattice fields un-
der time-reversal T , charge-conjucation C, and a π/3 rotation
around the center of a plaquette (labeled ∗) R∗

π/3 . Primed i′

etc, is just the transformed index under R∗
π/3. Other lattice

space-group transformations (translations, rotations, and re-
flections) acts in the same way as in R∗

π/3 – in that they only

act on the site indices i → i′.

A. Time reversal

From the transformation bi → b∗i , and aij → −aij

under time-reversal, it is clear that T send any state in
the + KV configuration to its corresponding state in −
KV, in addition to rotating its spin according to (iσ2)
factor in Table I:

T :z+†
aαz+†

bβ |DS, +〉 〈G| →
(iσ2)αα′(iσ2)ββ′z−†

aα′z
−†
bβ′ |DS,−〉 〈G| ,

(28)

Therefore the first term of vi†
ξ [Eq. (21)] transforms to:

T : [(iσ2)σi]αβ(iµ2)abm
+†
(aα)(bβ)

→ [(iσ2)(σi)∗]αβ(iµ2)ab(iσ
2)αα′(iσ2)ββ′m−

(aα′)(bβ′)

=
[

−(iσ2)(iσ2)(σi)∗(iσ2)
]

α′β′
(iµ2)abm

−
(aα′)(bβ′)

= −[(iσ2)σi]αβ(iµ2)abm
−
(aα)(bβ).

(29)

Similar algebra for the second term results in

T : vi†
ξ →− [(iσ2)σi]αβ(iµ2)abm

−
(aα)(bβ)

− ξ∗
[

σi(iσ2)
]

αβ
(iµ2)abm

+
(aα)(bβ)

(30)

We demand that under time reversal vi†
ξ transforms to vi

ξ
except for a possible phase factor. Comparing the above
equation with vi

ξ given in Eq. (24) results in ξ∗2 = 1.
Therefore vortex creation operators are classified by their
transformation under time reversal – they can only be
either odd or even under time reversal:

T : v
†
± → ±v±. (31)

B. Charge conjugation

To find how v
†
± transforms under charge-conjugation,

let us first define γ+†
εα as the creation operator of the
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states with energy ε with spin α and in the presence of
+ KV. The expansion of γ+†

εα is given by:

γ+†
εα =

∑

i

C+
εic

†
iα + F+

εi f
†
iα, (32)

where C+
εi , and F+

εi are complex numbers which are ob-
tained by the looking at the eigenvectors of the Hamil-
tonian matrix Ĥ2 with eigenvalue ε. Let us also define
γ̃+†

εα , derived from γ+†
εα

γ̃+†
εα :=

∑

i

ǫiC
+
εic

†
iα − ǫiF

+
εi f

†
iα, (33)

where ǫi = (−)i, that is to say, it is −1 on A sublattices,
and is +1 on B sublattices of the honeycomb lattice. In
Appendix A we show that

γ̃+†
εα = γ+†

−εα. (34)

Under charge conjugation (see Table II):

C : γ+†
εα → (iα2)αβ γ̃+∗

εβ = (iσ2)αβγ+∗
−εβ = (iσ2)αβγ−

−εβ .

(35)
In words (in addition to (iσ2)αβ spin rotation) charge

conjugation sends the particle creation operators in the
Dirac sea of a + vortex to the destruction operators of
the unoccupied states of the − vortex. However since
charge conjugation also sends the empty (vacuum) state
to the fully occupied state the net effect is to send Dirac
sea of + vortex to the Dirac sea of − vortex. For the zero
modes this involves two spin flips one coming from the
(iσ2)αβ factor in the definition of the charge conjucation,
and other for going from occupied states to unoccupied

states. Therefore the first term of vi†
ξ transforms to:

C : [(iσ2)σi]αβ(iµ2)abm
+†
(aα)(bβ)

→ [(iσ2)(σi)]αβ(iµ2)abm
−
(aα)(bβ).

(36)

Similar algebra for the second term results in

C : vi†
ξ →[(iσ2)σi]αβ(iµ2)abm

−
(aα)(bβ)

+ ξ
[

σi(iσ2)
]

αβ
(iµ2)abm

+
(aα)(bβ).

(37)

Compare this with vi
ξ [Eq. (24)] for ξ = ±1:

C : v
†
± → ∓v±. (38)

C. Rotation R∗
π/3, and Translations Tai

To obtain the transformation of vi†
ξ under R∗

π/3 we

resort to numerics. This is done by diagonlizaing the
Hamiltoniain Ĥ2 in a ring geometry (See Fig. 7) using
a symmetric gauge. Each single particle state is then
transformed according to R∗

π/3. Let us take the column

vector corresponding to the single particle state with en-
ergy ε (where we ignore the vortex ±, and spin index
since rotation does not change the vorticity or spin) :

|ε〉 = [C1 · · ·CNF1 · · ·FN ]T , (39)

and N is the number of sites. Under R∗
π/3, |ε〉 transforms

to

R∗
π/3 : |ε〉 → [C1′ · · ·CN ′F1′ · · ·FN ′ ]T , (40)

where i′ the index of the lattice site obtained by rotat-
ing lattice site with index i. In a symmetric gauge the
transformed |ε〉 is going to be proportional to |ε〉 except
for a uniform phase factor on the weights for f orbitals:

|ε〉 → eiθε [C1 · · ·CN eiπ/3F1 · · · eiπ/3FN ]T . (41)

The eiπ/3 phase factor is the trivial phase to compensate
the constant π/3 shift in the phase of the b field. Trans-

formed vi†
ξ is then obtained by multiplying all the eiθε

phase factors of the single-particle states that make up

vi†
ξ [See Eq. (19)– (21)]. We find

R∗
π/3 : vi†

ξ → −vi†
ξ . (42)

The minus sign above is independent of lattice sizes and
vortex configurations! This is quite a nontrivial result as
all the states in the Dirac sea and 2 zero modes contribute
to this minus sign.

To find how vi†
ξ transforms under lattice translations

we use the following identity in the honeycomb lattice

R∗
π/3Ta1

Ta2
R∗−1

π/3 T−1
a2

= 1, (43)

where a1 = (0,
√

3), and a2 = (−3/2,−
√

3/2) in the

units of nearest neighbor links. Demanding v
†
ξ to be an

eigenvector of Tai
results in

Ta1
: v

†
ξ → v

†
ξ (44)

The same result holds for Ta2
.

v
†
± v± + v

†
± i(v± − v

†
±) iv± × v

†
±

T ±v± ± ± +

C ∓v± ∓ ± −

R∗
π/3 −v

†
± − − +

Tai
+v

†
± + + +

TABLE II: The table of the transformation of the spin-1
vortex creation operator v

†
ξ , and 3 Hermitian operators con-

structed from it. Time reversal dictates ξ to be either ±1.

It would have been ideal to also find the transformation
of v

†
ξ under lattice reflections. The problem in using the

numerics – the way we used it for studying the action of
R∗

π/3 on vortex operators – is that reflections change vor-

tices to anti-vortices. We note that in diagonalizing the
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Hamiltonian Ĥ2 there is an arbitrary phase associated
with each single particle state. The arbitrary phase eiϑ

for the + vortex state, appears as e−iϑ in the − vortex
state and causes an arbitrary e2iϑ phase accumulation!
This problem could have been circumvented by locking
the phase of each single particle state with its “corre-
sponding” state in the mean-field spectrum. However we
do not have a way of “locking” these phases, and there-
fore can not trust our numerical results for reflections.

The results of the symmetry transformations we stud-
ied are summarized in table II. We see that Re(v−) =

v− + v
†
− transforms identically to the standard two sub-

lattice antiferromagnetic Neel order parameter. Thus its
condensation will lead to the usual Neel order. In the
next section we discuss the nature of the AF phase tran-
sition mediated by the condensation of the Re(v−).

VI. KONDO VORTEX CONDENSATION AND

THE O(3) TRANSITION

In this section we discuss the universality class of the
AF phase transition mediated by the KV condensation.
To describe the universality of the resulting AF phase
transition it is convenient to pass to a dual descrip-
tion25,26 directly in terms of the Kondo vortices. As the
Kondo hybridization field b is coupled to a gauge field,
its vortices do not have any long range interactions. The
dual free energy may then be readily written down by
demanding invariance under all physical symmetries and
is given by:

F =
∑

ξ=±1

(

tξ|vξ|2 + rξ(v
2
ξ + v∗2

ξ ) + uξ|vξ|4

+sξv
2
ξv∗2

ξ + wξ|vξ × v∗
ξ |2 + · · ·

)

.

(45)

We emphasize that, in contrast to the usual boson-vortex
duality, due to the rξ terms here the vorticity is not con-
served. In other words the free energy is not invariant un-
der a phase rotation of the vortex fields. This is because
the gauge field aij in the original description is compact.
This allows for instanton configurations where the gauge
flux can change in units of 2π. However the spin carried
by the vortices prohibits single instanton events; pairs of
vortices in a spin singlet can nevertheless be created or
destroyed as described by the rξ term.

If r− < 0, Re(v−) will condense first, while Im(v−)
remains zero. We identified Re(v−) as the Neel vector,
and this condensation describes the Kondo insulator to
AF transition. The free energy at the transition is then
given by

F = (t− + r−)Re(v−)2 + (u− + s−)Re(v−)4 + · · · ,

(46)

which describes an O(3) transition for Re(v−). There-
fore in our theoretical framework, this KV mediated AF
transition is an O(3) transition.

This result is perhaps not unexpected, because a
charge gap exists on both sides of the AF transition and
the notion of an onset of Kondo screening is an artifact
of mean field theory.

VII. CONCLUSION

In this paper, we have proposed destroying the Kondo
phase by proliferating Kondo vortices. To make analyti-
cal progress we have studied this proposal in the honey-
comb lattice at half-filling. The particle-hole symmetry
of the half-filled honeycomb lattice guarantees that the
chemical potential stays at zero. The relativistic struc-
ture of the low energy modes, furthermore, has allowed
us to study the Kondo vortices in the continuum limit,
and to find 4 zero modes right at the chemical poten-
tial. We have shown that spin-triplets can be created by
a Kondo vortex because of the zero modes it generates at
the chemical potential.

This gives us a nice picture that a magnetic transition
can be driven by proliferating Kondo vortices. We have
also identified a class of these spin-triplets that transform
like a Néel order. Due to the half-filled limitation of this
model, however, this Kondo-vortex-driven antiferroma-
gentic transition is in the O(3) universality class.
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Appendix A: Some lemmas regarding the

Hamiltonian Ĥ2

In this appendix we prove a few statements which we
used throughout the text. We suppress the spin flavor
index α since it is not relevant. The proofs made here
can be generalized to a more general Hamiltonian than
Ĥ2 where χeiaij is replaced with χij . The trasformation
aij → −aij throughout this appendix should then be
replaced with χij → χ∗

ij .

Lemma I. The spectrum S and −S of Ĥ2 are the same.
The proof is very simple as under the unitary transfor-
mation

ci → ǫici, (A1)

fi → −ǫifi, (A2)

Ĥ2 transforms to

Ĥ2 → −Ĥ2. (A3)

The proof also implies Eq. (34).
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Lemma II. Under vortex–antivortex transformation,
i.e. the simultaneous transformation:

bi → b∗i , (A4)

aij → −aij , (A5)

the densities 〈c†ici〉 remain unchanged:

〈c†i ci〉 → 〈c†i ci〉 (A6)

That is to say 〈c†i ci〉 for a vortex is the same as one for
an antivortex.

Proof:

Ĥ2 = Π†HΠ = Γ†EΓ, (A7)

where Π is the column matrix that includes both ci and
fi: Πic

= ci. H is the complex matrix corresponding

to Ĥ2, and Γ = U †Π are the eigen-modes (i.e. E is a

diagonal matrix of the energy levels). Expanding 〈c†ici〉
using matrix U results in:

〈c†i ci〉 = U †
m,ic

Uic,n〈Γ†
mΓn〉

= U †
m,ic

Uic,nδmnf(εm)

= |Uic,m|2f(εm),

(A8)

where f(εm) is the fermi disdribution function. Under
the transformation {bi → b∗i , aij → −aij} we have {H→H∗ ⇒ U → U∗}, and therefore

〈c†i ci〉 → 〈c†i ci〉 (A9)

The same proof goes for fi:

〈f †
i fi〉 → 〈f †

i fi〉 (A10)

Lemma III. 〈c†i ci〉 of a vortex is the same as 1−〈c†ici〉 for
an antivortex. Proof: We know accompany the vortex–
antivortex transformation with a particle–hole transfor-
mation:

bi → b∗i , (A11)

aij → −aij , (A12)

ci → ǫic
†
i , (A13)

fi → −ǫif
†
i . (A14)

Under this transformation Ĥ2 remains invariant. At the
same time

〈c†i ci〉 → 1 − 〈c†i ci〉. (A15)

Theorem. In the presence of a KV The chemical poten-

tials µc, and µf
i at half-filling is zero. Proof: In writing

Ĥ2, µc, and µf
i is already set to be zero. We just need to

prove that

∑

iα

〈c†iαciα〉 = N (A16)

∀i :
∑

α

〈f †
iαfiα〉 = 1. (A17)

The proof is immediately obtained after combining
lemma II and III, resulting in

〈c†iαciα〉 = 1 − 〈c†iαciα〉 ⇒ 〈c†iαciα〉 = 1/2, (A18)

〈f †
iαfiα〉 = 1 − 〈f †

iαfiα〉 ⇒ 〈f †
iαfiα〉 = 1/2, (A19)

where we have brought back the spin flavor index α.
Summing over spin flavors and lattice sites result in
Eqs. (A16) and (A17).

Appendix B: Analysis of the zero mode equations

In this appendix we analyze the zero mode equations
in the continuum limit. To simplify notations we do this
near +kD node. We also drop the spin and node flavors
for a cleaner notation. The quadratic Kondo Hamilto-
nian of Eq. (8) near kD node is given by the following
matrix

H =

(

vc(q1τ2 + q2τ1) b

b∗ −vf

[

(q1 + a1)τ2 + (q2 + a2)τ1

]

)

,

(B1)
where a1, and a2 are the spatial components of the gauge
field. We study the zero energy solutions

Hπ = 0 (B2)

using the following gauge choice:

b(r) = |b(r)|eiθ , (B3)

a(r) = aθ(r)θ̂ = aθ(r) [− sin θx̂ + cos θŷ] . (B4)

π is given by

π =











cA

cB

fA

fB











. (B5)

Eq. (B2) is analyzed in real space by replacing qj = i∂j .
It also turns to be more elegant to switch from x and y
to z and z∗:

z = x + iy (B6)

z∗ = x − iy (B7)

2∂z∗ = ∂x + i∂y (B8)

2∂z = ∂x − i∂y (B9)
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Above equations lead to

(q1 + a1)τ2 + (q2 + a2)τ1 =
(

0 2∂z∗ + e+iθa(r)

−2∂z + e−iθa(r) 0

)

(B10)

By a trivial scaling we set vf = 1, and replace vc with
ζ = vc/vf . A further scaling

(

cA

cB

)

→ 1√
ζ

(

cA

cB

)

, b →
√

ζb (B11)

eliminates ζ from the zero mode equations:











0 2∂z∗ b 0

−2∂z 0 0 b

b∗ 0 0 −2∂z∗ − aeiθ

0 b∗ 2∂z − ae−iθ 0





















cA

cB

fA

fB











= 0

(B12)
The above equations are decoupled into two sets of

(2-component) equations:











2∂z∗ b 0 0

b∗ 2∂z − ae−iθ 0 0

0 0 −2∂z b

0 0 b∗ −2∂z∗ − aeiθ





















cB

fA

cA

fB











= 0

(B13)
If a(r) = 0 only the upper-block leads to normalize-

able solution27. The zero mode equations we are going
to investigate are:

2
∂cB

∂z∗
+ bfA = 0 (B14)

b∗cB + (2
∂

∂z
− ae−iθ)fA = 0 (B15)

In polar coordinates z = reiθ

∂

∂z
=

e−iθ

2

∂

∂r
+

e−iθ

2ir

∂

∂θ
(B16)

∂

∂z∗
=

eiθ

2

∂

∂r
− eiθ

2ir

∂

∂θ
, (B17)

and zero mode equations become:

eiθ

(

∂

∂r
+

i

r

∂

∂θ

)

cB + b(r)fA = 0 (B18)

b∗(r)cB + e−iθ

(

∂

∂r
− i

r

∂

∂θ
− aθ(r)

)

fA = 0 (B19)

As we know from the Ref. 27 the gauge flux does not
change the number of zero modes, as gauge field can be
scaled away in that case. There is also a topological
proof using index theorem which shows the insensitivity
of the zero modes to the gauge flux28. However in the
Jackiw-Rossi case, the the gauge field is coupled to both

fermions, i.e.
(

∂
∂r + i

r
∂
∂θ

)

in Eq. (B18) is replaced with
(

∂
∂r + i

r
∂
∂θ − aθ(r)

)

. In contrast to the work of Jackiw
and Rossi, the gauge field here can not be scaled away
from the zero mode equations. This is because the gauge
field is only coupled to f fermions.

We analyze the robustness of zero modes numerically
where we fix κ2 (charecterizing the phase twist in the b
field) to be 1, and vary κ1 (the ratio of the gauge flux
to 2π) from 0 to 2. The numerical evidence (see Fig. 10
for an example) is a convincing evidence that gauge flux
does not affect zero modes in our problem as well. We
are able to show this analytically for 4π gauge flux. A
proof for any gauge flux is desirable.

0 1 2

-2

0

2

0 1 2

-5

0

5

t/χ = 2, b∞ = 1, Nr = 8, ξb = 4, NΛ = 8,κ2 = 1

x10
−3

κ1
κ1

ε/t ε0/t

FIG. 10: The evolution of energy levels ε (in units of t), as a
function of κ for one spin flavor. The left figure shows all the
energies. The right shows only the two modes which are going
to be zero modes in the infinite lattice limit. κ1 is a fraction
of 2π flux enclosed, and κ2 characterizes the phase “twist”
of the b field bi = |bi|e

iκ2θi . As can be seen from the right
figure the variation of these “zero” modes compared to the 0
flux limit is marginal. It is a convincing numerical evidence
that zero modes stay at zero for any gauge flux. We have an
anlytical proof on the existence of 1 zero mode per node and
per spin flavor for κ1 = 2 point.

r → 0 r → ∞

|b(r)| ∝ r b∞

aθ(r) ∝ r −1/r

TABLE III: The asymptotic forms of aθ and |b|. This infor-
mation is the only thing we need to prove the existence of
zero modes.

In the equations below we change aθ → 2aθ to discuss
the 4π flux case. After replacing b(r) = eiθ|b(r)| in above
equations, the phase factors e±iθ disappears from both
sides. Therefore we seek solutions for c and f without
any θ dependance:

∂cB

∂r
+ |b|fA = 0 (B20)

|b|cB +
∂fA

∂r
− 2aθfA = 0 (B21)
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These equations are regular as r → 0. We need to find
the solutions as r → ∞,

∂cB

∂r
+ b∞fA = 0, (B22)

b∞cB +
∂fA

∂r
+ 2fA/r = 0, (B23)

and show that a normalizeable branch exists.
The solutions for the above equations is given below:

cB(r) =
e−|b∞|rI1

r
+

e|b∞|rI2

2|b∞|r , (B24)

fA(r) =
e−|b∞|r

b∞

( |b∞|
r

+
1

r2

)

I1

+
e|b∞|r

2b∞

(

−1

r
+

1

|b∞|r2

)

I2. (B25)

Therefore 1 exponentially decaying normalizable branch
(I2 = 0) exist, which proves the existence of 1 zero mode
per spin per node flavor for the κ1 = 2 case.

What we have proved here is that for a 4π gauge flux,
(i.e. aθ → 2aθ) one zero mode per spin and node fla-
vor exists. We have also shown convincing numerical
evidence that the existence of zero modes does not de-
pend on the gauge flux, just like the classic Jackwi-Rossi
case, albeit we can not prove this analytically in this case.
Therefor we believe 1 zero mode per spin and node flavor
exist for the 2π flux case, which is the case of interest.
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