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The entanglement entropy of two gapless non-interacting fermion subsystems is computed ap-
proximately in a way that avoids the introduction of replicas and a geometric interpretation of the
reduced density matrix. We exploit the similarity between the Schmidt basis wavefunction and
superfluid BCS wavefunction and compute the entropy using the BCS approximation. Within this
analogy, the Cooper pairs are particle-hole pairs straddling the boundary and the effective interac-
tion between them is induced by the projection of the Hilbert space onto the incomplete Schmidt
basis. The resulting singular interaction may be thought of as ”lifting” the degeneracy of the single
particle distribution function. For two coupled fermion systems of linear size L, we solve the BCS
gap equation approximately to find the entropy S ≈ (w2/t2) log L where w is the hopping amplitude
at the boundary of the subsystem and 2t is the bandwidth. We further interpret this result based
upon the relationship between entanglement spectrum, entropy and number fluctuations.

PACS numbers: 71.10.-w, 03.67.-a

I. INTRODUCTION

Quantum entanglement seems to provide an important connection between several distinct fields of physics ranging
from conformal field theory1 and topologically ordered phases in quantum field theories2 to quantum gravity3. One
important quantity is the entanglement entropy, computed for a finite subregion of a quantum field theory (QFT)
or many body system. If, in a QFT in d spatial dimensions, a distinguished region A of volume Ld is formed, it
follows that the degrees of freedom which reside exclusively in the region A will appear to be in a mixed state. The
degree of mixing may be characterized by the entanglement entropy, S = −trρ lnρ, where the reduced density matrix
ρ = tr/∈A|0〉〈0| has been formed by tracing over the degrees of freedom of the ground state, |0〉, exterior to the region
A.

Entanglement entropy typically obeys an area law and is proportional to the area of the bounding surface (Ld−1),
although several variants are possible depending on the underlying particle statistics (fermion or boson) and dimension-
ality. 1+1-dimensional CFTs—which describe critical spin chains, Luttinger liquids and other massless theories—have
pointlike bounding surfaces; however, the entanglement entropy was shown to depend universally upon the central
charge of the theory and to diverge logarithmically with the length of the distinguished region4,5. Specifically, the
entropy for an open chain is given by a universal expression, S = c

3 lnL/ǫ where c is the central charge and ǫ is a
spatial cut-off.

Entanglement related quantities have also become a way of characterizing strongly correlated and topologic phases
in condensed matter physics. Entanglement entropy diverges at a critical point and has been used to identify critical
phases6. Topologic entanglement entropy (a subdominant term in the entropy) and the entanglement spectrum (the
complete set of eigenvalues of the reduced density matrix) have been shown carry information about the statistics of
the underlying quasiparticles in topologic phases7. Recently, the entanglement spectrum of free fermion models has
been linked to the spectrum of edge modes in topologic insulators8. Lastly, important connections between noise,
full-counting statistics and entanglement in free fermion models has emerged9.

The universal expression for entanglement entropy of a CFT has a purely geometric origin. As originally discovered
by Callan and Wilczek4 (based upon work by Cardy and Peschel10) entanglement entropy, computed through a kind
of replica trick, is equivalent to thermal entropy of a CFT mapped to a conical manifold with a periodic imaginary
time coordinate. The appearance of central charge in the expression for the entropy is a consequence of the conformal
anomaly and the curvature singularity at the cone apex. The logL entropy dependence may be thought of as an
extensive factor arising from the ”volume” of a one dimensional gas that is quantized along radial equal time slices.
In effect, radial degrees of freedom are quantized in a box of size logL.

But there are several exceptions to the ”geometry-entropy” connection—that is, 1-d systems exhibiting entropy
proportional to logL but lacking any obvious geometrical constructions for the entropy (specifically they lack trans-
lation invariance or even expression as a continuum QFT; see the discussion in reference1, section 3.3.) The most
striking example is found in the work of Refael and Moore11 who examined entanglement in spin chains at the infinite
disorder fixed point. In this limit, the wavefunction is hierarchically organized into products of maximally entangled
RVB-like singlets, and the entropy may be computed by enumerating the pairs that straddle the boundary between
subsystems. For the disordered XY model (disordered fermions), the entropy is found to be c

3 ln 2 lnL.
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This raises the question of whether it is possible to generally understand the logarithmic behavior for 1-d entropy
by enumeration of entangled pairs (of something). In this manuscript we explore building entanglements by weakly
coupling two fermion systems, and enumerating the entangled pairs of fermions as a function of coupling. In particu-
lar, for two coupled gapless fermi systems (see figure 1), states within an energy w (the coupling strength) of the fermi
surface should be hybridized and contribute to the entropy. This approach suggests expressing the entropy as a pertur-
bation series in w. However, the remarkable exact solution by Eisler and Peschel12 shows that this is impossible—the
entropy is not analytic about w = 0, preventing a simple perturbative expansion. In this manuscript we suggest that
the appropriate description at weak coupling is a collective, many-body effect similar to a phase transition, and to
compute the entanglement entropy we adopt a procedure analogous to a BCS mean field calculation.

t

w
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FIG. 1: Two coupled fermi chains. Fermions hop between sites with hopping amplitude, t, and hop between chains with
hopping amplitude, w.

To understand the origin of the weak coupling singularity, consider two weakly coupled fermi systems as depicted
in figure 1. If the fermi systems are noninteracting, Peschel15 has introduced a way of computing the reduced density
matrix, ρA, of subsystem A. Following15, ρA has the form of a free fermion density matrix with a modified lattice
kinetic energy

ρA =
1

Z
e−

∑

Kxyc†xcy (1)

where cx (c†x) destroys (creates) fermions in subsytem A and obeys the conventional fermion algebra. The eigenvalues
of the matrix Kxy may, in turn, be computed from the eigenvalues of the ground state free fermion correlation matrix

nxy ≡ 〈cyc†x〉 (2)

with x, y restricted to subsystem A. Denoting the eigenvalues of nxy by {nk}, the eigenvalues of Kxy are:

Kk = log (1/nk − 1) (3)

Figure 2 is a depiction of the spectrum of nk for w 6= 0 and w = 0. The form of nk is similar to the fermi function at
finite temperature (w 6= 0) and zero temperature (w = 0), although the index, k, is dimensionless. The entanglement
entropy, S, is proportional to the width of the distribution nk at the pseudo fermi surface of one subsystem (kF = L/2
for L fermions in 2L total sites) in analogy to thermal entropy at finite temperature. If the subsytems A and B are
disconnected, nxy is formed from the unperturbed eigenfunctions of the (disconnected) subsystem A:

nxy =

L/2
∑

m=1

φA
m(x)φA

m(y) (4)

The eigenfunctions of nxy are simply the complete set of unperturbed free particle eigenfunctions {φA
m(x)} with

eigenvalues 0 (for m > L/2) or 1 (for m < L/2). Consequently, the eigenvalues of Kxy are all singular, leading to the
non-analytic behavior of the density matrix (1).

The key to computing the entropy is then to describe how the extensive O(L) degeneracy in the eigenvalues of
nxy—in effect, the entanglement spectrum—is lifted for nonzero w. We will argue that the degeneracy is resolved
in a manner analogous to the weak coupling BCS superconducting instability. Although the original fermions are
noninteracting, the projective constraint of the Schmidt basis introduces an effective interaction between particles
and holes belonging to different subsystems. Since this pair interaction is singular in energy, a solution to the BCS
gap equation results in a gap with a logarithmic behavior: ∆ ∼ O(logL/L).

The goal of this manuscript is to compute the logL entropy common to many 1-d systems without resorting to
replicas and geometric interpretation of the partition function. To accomplish this we exploit the similarity between
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FIG. 2: Depiction of eigenvalues of correlation function matrix (eq. 2) for an L = 100 lattice. For w = 0, the distribution
is a step function (dotted line). For w 6= 0, the width of the distribution (shown greatly exaggerated) is proportional to the
entanglement entropy.

the Schmidt wavefunction and superfluid BCS wavefunction, where the ”glue” that stabilizes the BCS wavefunction
is a type of two particle forward scattering across the weak link. The weak link hamiltonian is introduced to organize
perturbation theory leading to an effective hamiltonian, which is then solved within a mean field BCS ansatz. Although
our solution accomplishes the stated goal—exhibiting the logL entropy—it fails in another way, when compared with
exact and numerical results for entanglement entropy. The entropy of fermionic systems with a weak link has been
studied in many ways13,16–18, culminating in the tour-de-force exact solution by Eisler and Peschel12 for noninteracting
fermion chains with arbitrary coupling strengths. For noninteracting chains, the exact solution shows that the entropy
remains logarithmic in L even for weakest couplings explored. Early numerical work suggested that entropy was
approximately quadratic in the weak link strength—O(w2) for w << t—but the exact solution exhibited a surprising
non-analytic feature,

S ≈ (w2/t2) log (t/w) logL (5)

in this limit. In contrast, our mean field solution, which relies on imposing a uniform (momentum independent) gap,
yields an entropy, S ≈ (w2/t2) logL. In our conclusion, we speculate on the cause of this discrepancy.

II. THE SCHMIDT BASIS FOR FERMIONS

In this manuscript, we study the entanglement entropy of a 1-d noninteracting fermion system (A) connected by a
weak link to a second identical system (B). The model hamiltonian is:

H = −t
∑

〈i,j〉;α=A,B

(cα†
i cαj + cα†

j cαi ) (6)

− w(cA†
1 cB1 + cB†

1 cA1 )

where i and j are site indices and A and B denote the two identical systems coupled through a hopping amplitude,
w. Each subsystem consists of L sites and is taken to have fixed boundary conditions at its ends. Furthermore, we
will restrict our calculations to the case of L fermions in 2L sites. This 1-d model may also be thought of as the
effective 1-d model obtained by coupling two higher dimensional models by a weak link and identifying left/right
moving modes with in/out s-wave scattering states13,14. The Schmidt decomposition theorem guarantees that the
groundstate of the hamiltonian (6) can be written as a sum with the form:

|ψ〉 =
∑

α

aα|α〉A|α〉B (7)

where |α〉A, for instance, are specially chosen states (the Schmidt basis) consisting of linear combinations of states
drawn exclusively from subsystem A.

It has been known for some time that a system of free fields (bosonic fields or fermionic fields) partitioned into
two nonintersecting spatial subsystems has a coherent state wavefunction that resembles the BCS wavefunction of
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superconductivity. This wavefunction dates back to earliest explorations quantum fields in curved space and black
hole quantum mechanics by Fulling, Parker, Unruh and Hawking19. Klich and others have independently developed
this type of wavefunction in connection with entanglement entropy and noise in condensed matter systems20,21, and
the density matrix renomalization group22.

First consider the hamiltonian (6) with w = t, a single, contiguous, tight binding fermion system with length 2L.
We will denote by φm(x) the eigenfunction of the correlation function, nxy, with x and y restricted to subsystem A
and eigenvalue nm:

L
∑

y=1

nxyφm(y) = nmφm(x) (8)

Klich20 has shown that the groundstate wavefunction may be written in the Schmidt form:

|ψ〉 =

L
∏

m=1

(
√

1 − nm +
√
nmf

A†
m fB

L−m)|0〉A|0̄〉B (9)

where the fermion operator, f
A(B)†
m , creates a fermion in mode φm(x) in subsystem A (B); the vacuum states |0〉A

and |0̄〉B are the zero particle state of subsystem A and the completely filled state of subsystem B, respectively. Thus
the groundstate may be thought of as a BCS condensate of particle hole pairs, but with free particle wavefunctions
that are the eigenstates of nxy. From this wavefunction, it can shown that the entanglement entropy is proportional
to the width of the distribution nm.

Based on the similarity between equation (9) and the BCS wavefunction, we attempt to compute the entangle-
ment entropy from an appropriate BCS, mean-field starting point. For a 1-d fermion chain, this would amount to
showing that the distribution, nm, akin to the superconductivity coherence factor, |vk|2, has a width that depends
logarithmically on the system size, L.

There is, of course, a significant difference between the interacting fermions in the BCS superfluid and the system of
free fermions described by the hamiltonian (6). Attractive interactions between fermions in the superfluid destabilize
the fermi sea and lead to the BCS coherent state. Before turning to the question of the pairing ”glue” that stabilizes
this wavefunction, we mention a peculiarity of the Schmidt basis that is suggestive of an effective interaction between
pairs. Since the correlation function, nxy, depends implicitly upon the total number of fermions, N , the Schmidt basis
is a representation of free fermions only for a specific N . Consider the hamiltonian (6) transformed to the Schmidt
basis through:

fA†
l =

∑

x∈A

φl(x)c
A†
x (10)

The free particle wavefunctions, φl(x), and eigenvalues, nl, also depend implicitly upon N ; it follows that the kinetic
energy matrix of the transformed hamiltonian depends upon N . Within this representation, adding or removing a
fermion shifts the energies of all of the other fermions—an effect we typically ascribe to interactions between fermions.

III. PROJECTION ONTO SCHMIDT BASIS AND THE PAIRING INTERACTION

In this manuscript, we argue that an effective particle-hole pairing interaction stabilizing the wavefunction (9)
arises from projective constraints imposed upon the free fermion hilbert space. There are many examples of effective
interactions arising this way, leading to some of the most interesting phenomena in condensed matter physics: The
fractional quantum Hall effect, resonating valence bond antiferromagnetism and superexchange. In the latter case,
strong coulomb repulsion removes from the hilbert space states in which two fermions (of opposite spin) occupy the
same atomic orbital. The effective low energy theory is the isotropic Heisenberg interaction between the spin degrees
of freedom. In some sense, free particle kinetic energy and the projective constraint of no double occupancy have
been ”traded in” for an interaction between particles.

Our central result is that the logarithmically divergent entanglement entropy of the 1-d fermion system (6) may be
derived from a weak coupling limit (w ≈ 0) by introducing a constraint on the hilbert space of the combined A and
B subsystems; namely, it is forced to conform to the many-body Schmidt basis. The importance of the Schmidt basis
for entanglement is that each noninteracting many body fermion state for subsystem A appearing in the wavefunction
(a product of fA†’s) is correlated with exactly one unique complementary fermion state for subsystem B (a product
of fB†’s).
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When the two systems are decoupled (w = 0), the Schmidt state is trivially:

L/2
∏

k=1

cA†
k cB†

k |0〉A|0〉B (11)

where

cα†
k =

√

2

L+ 1

L
∑

x=1

sin
kπx

L+ 1
cα†
x (12)

(Note that the condition fα
k = cαk may be chosen when the systems are decoupled.) Equation 11 corresponds to the

first state depicted in figure 3. Since the state (11) continues to contribute to ground state when w 6= 0, the next
contributions must be states of the type depicted in the second and third states of figure 3. For instance, the first
state depicted in figure 4 cannot contribute to the ground state because the zero particle-hole state for system B
already appears in the ground state, uniquely correlated with the zero particle-hole state for system A. Similarly, the
second state in figure 3 precludes the second state in figure 4, and so on.

+

+ + ...

A B A

A A

B

B B

FIG. 3: States allowed in the Schmidt basis for w 6= 0. The presence of the first state (NA = NB = 0) forces NA − NB to be
even for all other states contributing to the groundstate, where Nα is the number of particle-hole pairs in system α (= A, B)

Denoting the number of particle-hole pairs in system α (= A,B) by Nα, the projective constraint on the Hilbert
space is

NA −NB = even integer (13)

Of course, the total number of particles must also be conserved.
This constraint is most naturally expressed kinematically. Figure 5 depicts two possible processes allowed by the

weak link term of the hamiltonian (see eqn. (18) below): the scattering of a positive energy particle in A into a positive
energy state in B, and the scattering of a negative energy hole in A into negative energy state in B. If these two
processes (and their time reversed counterparts) are blocked, scattering occurs only within the constrained subspace.
Next we consider how to make an effective hamiltonian that is consistent with the constrained hilbert space.

Following a technique introduced by Anderson for the renormalization group in the Kondo problem23, an interaction
between particles is introduced that preserves the Dyson equation for the many-body T-matrix in the projected hilbert
space.

The details of the projective RG are given in23; here we aim to give only a brief summary as it applies to the present
case (which does not involve RG.) The T -matrix, T (ω), is one way of linking the bare green’s function G0(ω) to the
exact one, G(ω), and is defined by the following equation:

G(ω) = G0(ω) +G0(ω)T (ω)G0(ω) (14)
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FIG. 4: States not allowed in Schmidt basis. The first state is not allowed because NB = 0 already appears uniquely correlated
with NA = 0 in figure 3. Similarly, the second state is not allowed because the state depicted for B (also an NB = 0 state)
already appears correlated with a different state of A.

X

X

A B

FIG. 5: The constraint, NA − NB even, may be implemented kinematically by blocking the scattering of positive (negative)
energy states in A into positive (negative) energy states in B, and vice versa.

Here, the green’s function is taken to be the full, many-body, resolvent operator: G−1 = ω−H . The T -matrix satisfies
a Dyson equation:

T (ω) = Hw +HwG0(ω)T (ω) (15)

Following23 we try to find a new interaction operator, V , replacing the weak link hamiltonian, Hw, so that the Dyson
equation is satisfied in a projected hilbert space satisfying the constraint (13). Consider the projection operator, P ,
which projects a state onto the subspace satisfying (13), and with a fixed total number of particles equal to L. Denote
by Ō an operator O that has been projected onto this subspace; that is, Ō = POP . It is shown in23 that the T -matrix
restricted to the projected subspace satisfies a Dyson equation also restricted to the subspace,

T̄ (ω) = V̄ + V̄ G0(ω)T̄ (ω) (16)

where the effective interaction, to O(w2), is:

V̄ = PHwP + PHw(1 − P )G0HwP + . . . (17)

The first term of equation (17) describes the creation of a particle hole pair that straddles the A/B subsystems. The
second term of (17) describes fluctuations out of the projected subspace. Singular behavior in energy of the second
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FIG. 6: A-B particle-hole pair at (L − m, m) scatters into a state (m′, L − m′). The intermediate state consists of a particle
hole pair, (m′, L − m), in A, existing out of the projected subspace.

(fluctuation) term in the effective interaction V̄ is the feature that ultimately leads to the logarithmic dependence of
the entanglement entropy on L.

To analyze this effective interaction, we rewrite Hw in momentum space:

Hw = −w 2

L+ 1

L
∑

m,m′=1

Mm,m′(cA†
m cBm′ + cB†

m cAm′) (18)

where

cA,B(x) =

√

2

L+ 1

L
∑

m=1

sin
mπx

L+ 1
cA,B
m (19)

and Mm,m′ = sin mπ
L+1 sin m′π

L+1 . The kinetic energy, H0, is:

H0 =
L

∑

m=1

ǫm(cA†
m cAm + cB†

m cBm) (20)

where ǫm = −2t cos mπ
L+1 .

We consider a situation, as depicted in figure (6), where an A-B particle-hole pair at (L−m,m) scatters into a state
(m′, L −m′). The intermediate state consists of a particle hole pair, (m′, L−m), in A, existing out of the projected
subspace. Restricting the scattering as described, the relevant term in the effective interaction (17) is:

Ṽ =
4w2

(L + 1)2

∑

m,m′>0

M2
m,m′

cA†
L−mc

B
L−m′c

A†
m′cBm

ω − (ǫm + ǫm′)

=
∑

m,m′

Vm,m′cA†
L−mc

B
L−m′c

A†
m′c

B
m (21)

This interaction, as in the phonon mediated BCS-theory, is a frequency dependent retarded interaction, and we
concentrate on the low frequency behavior ω ≈ 0 where the interaction is attractive.

IV. BCS SOLUTION OF THE EFFECTIVE HAMILTONIAN

When the two subsystems are disconnected (w = 0), the wavefunction (9) degenerates to two disconnected fermi
seas as expected. The eigenfunctions of nxy, as described above in (8), become the free particle eigenfunctions of the
half-chain, and nm = θ(L/2 −m). The wavefunction (9) then becomes

|ψ〉 =
∏

(
√

1 − nm +
√
nmc

A†
m cBL−m)|0〉A|0̄〉B (22)

where cm, c
†
m create and destroy simple band fermions in the disconnected subsystems. For weak coupling, w ≈ 0,

the pairing approximation of BCS theory assumes that only the coherence factors
√

1 − nm and
√
nm in (22)—these
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are the familiar uk and vk coefficients of superconductivity—are modified from their discontinuous distributions at
w = 0, and the wavefunctions corresponding to cm, c

†
m are not.

Following the BCS procedure, we take the wavefunction (22) as a variational wavefunction for the hamiltonian,

H = H0 + Ṽ . To simplify the notation, constants and the singular part of the effective interaction have been grouped
into the scattering amplitude Vm,m′ on the second line of (21). Defining a ”gap” function,

∆m = −
∑

m′

Vm,m′

√

nm′(1 − nm′), (23)

the variational energy becomes:

U =
∑

m

(2ǫmnm − ∆m

√

nm(1 − nm)) (24)

Minimizing the energy, U , with respect to nm and solving for nm gives coherence factors that take the usual BCS
form:

nm =
1

2
(1 − 2ǫm

Em
) (25)

where E2
m = ∆2

m + (2ǫm)2.
Next we turn to solving the gap equation (23). Although the scattering amplitude, Vm,m′ , is an energy dependent

interaction, we will seek an approximate uniform solution to the gap equation. Vm,m′ has a maximum value when
m,m′ ≈ L/2; that is, when scattering events are close to the fermi points of subsystems A and B. We evaluate the
scattering amplitude in the static limit, ω ≈ 0, and for a low energy initial pair state (ǫm ≈ 0). Linearizing about the
fermi point, m = L/2, the kinetic energy is

ǫp ≈ 2πt

L
p p = ±1,±2 . . . (26)

and the effective interaction, Vm,m′ , becomes:

Vm,m′ ≈ −w
2

Lt

1

m′
(27)

where L+ 1 has been replaced by L and a numerical factor has been absorbed into w.
Following the standard BCS procedure and choosing a uniform solution for the gap, ∆ = ∆m, the gap equation

(23) becomes:

1 =
1

2

w2

Lt

∑

m

1

m

1

Em
(28)

To solve the gap equation, we convert the sum (28) to an integral and cut off the energy integration at a scale, αt,
where α(< 1) is a numerical constant, giving:

1 =
1

4

w2

Lt

∫ αt

t/L

dǫ

ǫ

1
√

ǫ2 + (∆/2)2
(29)

Looking for a self-consistent solution, we approximate the integrand by 2/(∆ǫ) and integrate to get:

∆ ≈ 1

2

w2

Lt
lnL+ c(α) (30)

where c(α) is a constant depending upon the cut-off. This solution is self-consistent in that ∆ is comparable to the
energy cut-off (justifying truncation of the integrand) for large L.

Within the Sommerfeld approximation, the entropy is proportional to the product of the gap and the density of
states at the fermi point, N0 = L/2πt, and we arrive at:

S ≈ ∆N0 ≈ w2

t2
lnL (31)

This result agrees qualitatively with numerical computations of the entanglement entropy for 1-d fermions in a weak
link geometry16. Specifically, the entropy is logarithmic and the prefactor is approximately quadratic in w. Other
numerical computations of entropy for 2-d and 3-d systems with weak links (i.e. quasi-one dimensional systems) have
also exhibited approximately quadratic behavior13. However, the exact solution (and earlier work) informs us that
the prefactor is non-analytic and approximately proportional to w2 ln (1/w)12. Even in the original numerical work16,
Peschel noted a very small, persistent deviation from quadratic dependence upon the prefactor. We return to this
point in the Discussion section.
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V. NUMBER FLUCTUATIONS AND ENTROPY

In a 1-d translation invariant fermion system, it has been rigorously established that the entanglement entropy of
a subsystem is proportional to the number fluctuations in that subsystem9,20,21,24. For such a continuum 1-d system,
the entanglement entropy of a length L domain is proportional to logL with a universal prefactor that depends upon
the central charge of the underlying CFT. For subsystems separated by a bond or site defect, the entropy remains
logarithmic but with a modified pre-factor12.

However, in such systems lacking translation invariance the relationship between entropy and number fluctuations—
more generally, the complete set of cumulants—becomes complicated. Klich and Levitov9 studied entanglement
entropy in a gated quantum point contact (QPC) and have shown that entropy may be expressed as an asymptotic
series in the cumulants (see also reference25 for refinements.) For a QPC with perfect transmission, all but the first
and second cumulants vanish, and entropy is simply proportional to number fluctuations. For barriers with nonzero
reflection coefficients, relevant to the weak link geometry, the FCS generating function is non-Gaussian and all even
cumulants generally contribute to the entropy.

In this section we explore the number fluctuation-entropy connection based upon perturbation theory applied to
weakly coupled fermion chains. The number fluctuations in one subsystem δN2 ≡ 〈N2〉 − 〈N〉2 is proportional to
logL, but with a prefactor that is analytic as w → 0 (a result derived earlier in26). Since the entropy in this limit
is known through the exact solution to depend nonanalytically on w, number fluctuations and entropy cannot be
proportional. The ratio of entropy to number fluctuations turns out to be

S

δN2
∝ ln

t

w
(32)

and is divergent as w → 0. This result suggests that the nonanalytic behavior of the entropy can only be captured
by resumming the logarithmic terms in the cumulant series for the entropy to all orders in w.

Fluctuations in N may be computed perturbatively in w using straightforward canonical methods. Defining the
density-density correlation function

Π(x, y, t) = 〈Tρ(x, t)ρ(y, 0)〉 (33)

where ρ(x, t) ≡ cA†(x, t)cA(x, t), the number fluctuations may be computed from

〈N2〉 =

L
∑

x,y=1

Π(x, y, 0) (34)

Denoting by G the single particle propagator for system A (not to be confused with the many-body resolvent operator
G(ω)), G may be written in the interaction picture,

G(x, y, t) = −i〈TcA(x, t)cA†(y, 0)e
−i

∫

∞

−∞
Hw(t′)dt′〉 (35)

where T is the time-ordering symbol and 〈. . .〉 refers to average taken in the ground states of the disconnected
subsystems A and B. Expanding the propagator to O(w2),

G2(x, y, 0
−) = −w

2

2

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2G0(x, 1,−t1)

× G0(1, y, t2)G0(1, 1, t1 − t2) (36)

where G0 is the unperturbed propagator

G0(x, y, t) = −i〈TcA(x, t)cA†(y, 0)〉 (37)

Inserting the expansion of G up to second order into Π, we obtain

Π(x, y) = G0(x, y)G0(x, y) +G0(x, y)G2(x, y) + . . . (38)

where we have dropped the time argument, t = 0. The covariance to O(w2) is then:

δN2 ≡ 〈N2〉 − 〈N〉2 =
∑

x,y

G0(x, y)G2(x, y) (39)
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Expressing G2 in spectral form, the covariance may be written:

δN2 = 2(
w

L+ 1
)2

L/2
∑

m=1

L
∑

m′=1

δm′

M2
m,m′

(ǫm − ǫm′)2
(40)

where δm ≡ sgn(ǫm) and the resonant terms m = m′ are excluded. The sum (40) may be turned into an integral and
evaluated to give

δN2 = C
w2

t2
lnL (41)

Note that this result is qualitatively the same as the logarithmic behavior found for the number fluctuations in an
L site subsystem of a translationally invariant chain. Using (41) and (5) to compute the ratio of entropy to number
fluctuation establishes the result (32).

We note that fluctuations in the number of fermions, N , in subsystem A may also be computed from the Schmidt
wavefunction (9) within our projective approach. Transforming

〈N2〉 =
∑

x,y∈A

〈ψ|cA†
x cAx c

A†
y cAy |ψ〉 (42)

to the Schmidt basis using the canonical transformation (10), the fermion number covariance is found to be:

〈N2〉 − 〈N〉2 =

L
∑

m=1

nm(1 − nm) ≈ ∆N0 (43)

Again, within the Sommerfeld approximation, the covariance is proportional to the width of the distribution nm(1 −
nm) appearing in the sum above, and gives the same result as found for the entanglement entropy in (31). Thus
within our approach, entropy and number fluctuations are simply proportional.

Lastly, we return to the perturbative number fluctuation results, equations (40) and (41) and interpret them in
a different way. The projective approach described previously was motivated by the observation that the extensive
degeneracy in the eigenvalues of the correlation function (they are all 0 or 1) is lifted for any non-zero w. From the
shift in degenerate eigenvalues of the correlation matrix (from 0 or 1), the entropy might be computed. Since G2 is
the first nonvanishing correction to the correlation function, the correction to the mth eigenvalue of the correlation
function, δnm, is found from degenerate perturbation theory

δnm =
∑

xy

φA
m(x)G2(x, y)φ

A
m(x) (44)

Note that
∑L/2

m=1 δnm is the same as the expression for the number fluctuations, (39), and leads to the same results,
equations (40) and (41).

Thus the perturbative expression for number fluctuations is really the same calculation as degenerate perturbation
theory applied to the extensive degeneracy of the correlation function eigenvalues for disconnected chains. However,
inspection of the numerical eigenvalues, nm, shows that the perturbative corrections to nm are not even qualitatively
correct, even though the final expression for entropy is correct. According to perturbation theory, δnm ∝ 1/m for
large m, whereas the behavior for δnm seen numerically—and by the BCS approach described in this manuscript—is
a ”gapped” behavior, where nm is given by the expression (25).

If higher order cumulants 〈N4〉c, 〈N6〉c etc. are also analytic functions of w about w = 0, it seems that the
distribution nm can only be obtained by resumming the cumulant series to all orders in w. Presumably each relevant
term is logarithmically divergent in L.

VI. DISCUSSION

The motivation of this work was finding an alternative explanation for the logL entanglement entropy—one that
does not rely upon replicas and a geometric interpretation of the resulting partition function. In the latter approach,
entanglement entropy appears as the fictitious thermal entropy associated with the partition function evaluated in
a conical geometry (or, equivalently in terms of corner transfer matrices.) In a conical geometry the logL behavior
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may be traced to the log-periodic coordinates that diagonalize the free particle kinetic energy in polar coordinates.
Schematically, the entropy is evaluated for a partition function,

Z =

∫

Dφe−Sα (45)

that follows from the free particle action on a cone with completion angle β (the inverse temperature):

Sα =

∫ β

0

dθ

∫ L

0

dr((∂rφ)2 +
1

r2
(∂θφ)2) (46)

The action is diagonalized by

φ(r, θ) ∼ eimφeik ln r/ǫ
ln L/ǫ (47)

where L is the radial length and ǫ is a radial cut-off.
The divergent logL entropy appears as a consequence of each momentum eigenvalue collapsing inversely proportional

to its quantization ”length,” logL/ǫ. Just as entropy in a massless quantum fluid at temperature 1/β is S ≈ L/β—the
aspect ratio of length and imaginary time dimensions—entanglement entropy becomes S ≈ 1

2π logL/ǫ.
In our calculation, entanglement entropy is computed from the number of particle hole pairs that straddle the

boundary between subsystems. The particle hole pairs have an effective attraction and form a BCS type condensate;
the product of the energy gap, ∆, and the density of states at the fermi level, N0, is a measure of the number of

participating pairs and, therefore, the entanglement entropy. Within our approximations, the gap, ∆ ≈ w2

Lt lnL, and
the density of states N0 ≈ L/t, giving our central result:

S ≈ w2

t2
lnL (48)

Although our calculation produces the logarithmic entropy in a novel way, it only agrees approximately with the
exact results of entanglement entropy in a fermion chain. Specifically, our result fails to produce the correct prefactor
in the entropy, the exact result being S ≈ (w2/t2) log (t/w) logL in the limit w << t.

To understand this discrepancy we first return to the exact solution at the translationally invariant point (w = t)
and consider the reduced density matrix (1) and effective single particle eigenvalues, Kk (equation (3)) describing
subsystem A. In the translation invariant limit w = t, the single particle eigenvalues Kk appearing in the quasi
thermal fermi distribution (adopting the notation of reference27) may be thought of as the quotient of an effective
linearized energy, ωk ≈ πtk/L and an effective temperature T = πtL−1 lnL. (That is, Kk = ωk/T .) These results
follow from the asymptotics of Peschel28 and are convincingly demonstrated in the numerical work of Eisler et al (see
figure 1 of ref.29). The entropy is thus the product of the temperature, T , and density of states, L/πt, giving S ≈ logL.
Our result, although arrived at in a completely different way (and in a completely different limit, w << t), resembles
this result by identifying the effective temperature, T , with our gap, ∆. We also note that BCS type distribution, nk,
with gap ∆ in our result, and a fermi distribution with effective temperature T = ∆/2 agree to O(ǫ2k/∆

2) and thus
give the same result for the entropy in the limit L → ∞. The two distributions yield identical entropies in that that
their widths, which determine the entropy, both vanish as O(L−1 logL). In summary, our result for the distribution
nk, derived in weak coupling w << t, resembles the nk obtained in the exact solution for w = t.

The discrepancy of our result with the exact result at weak coupling (w << t) may be traced to a qualitative change
in the effective single particle eigenvalues, Kk, when w << t. In the exact solution, ωk develops a gap approximately of

the form ωk =
√

∆̃2 + ǫ2k, for w << t. The gap ∆̃ (distinct from our coherence gap, ∆), is approximately ∆̃ ≈ ln (t/w).

This is the origin of the ln (t/w) appearing in the prefactor of the entropy. In the BCS approach, the distribution
nk (comparable to the fermi distribution in the latter analysis), involves only the free particle kinetic energies of
the lattice fermions which are, of course, ungapped. Although this appears to be a fundamental limitation of our
calculation, perhaps an improved variational approach might capture the gap feature.

To summarize these relationships: the computation of both number fluctuations and entropy based upon the
Schmidt wavefunction amount to evaluating the width of the distribution nk. In the exact solution, when w = t,
nk has the form of a Fermi distribution with a linear single particle dispersion resembling that of free fermions and
an effective temperature T = πtL−1 lnL. Within the projective/BCS type approach described in this manuscript,
nk has a gapped behavior given by equation (25) with an approximate linear single particle dispersion given by the
original lattice fermions and a gap, ∆ ≈ (w2/t)L−1 lnL. Thus these two results qualitatively agree as w → t, given
the vanishing width of nk in both cases as L → ∞. On the other hand, the computation of number fluctuations (or
entropy) from canonical perturbation theory leads to a result proportional to logL, although nk has a qualitatively
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different behavior—algebraic rather than gapped. Our projective approach is then an improvement over perturbation
theory, and in qualitative agreement with nk in the translation invariant case, but, as discussed in detail above, fails
to agree with the exact solution when w << t.

One might argue that BCS theory of superfluidity is mean field theory and is only expected to agree approximately,
especially in the case of a one dimensional exact result. Specifically, BCS captures a thermodynamic phase transition,
where the order parameter (the phase of the wavefunction representing the condensate) becomes fixed, stabilized by
the free fluctuations in the conjugate variable, N , (the number of particles in a patch of size equal to the coherence
length.) The BCS approximation fails badly in one dimension and marginally in two dimensions because phase
fluctuations are too strong. Similarly, in a finite size sample, phase fluctuations are not frozen and, in fact, correspond
to the zero point motion of a massive rotator. Since our computation is aimed at finding the finite size scaling of
entropy, one might question using the mean field result where fluctuations of the order parameter have been frozen
out. Moreover, our BCS approach entails a solution to the energy dependent gap equation that imposes a uniform
gap; this also may be responsible for its failure to reproduce the correct nonanalytic singularity.

The main ingredient of our result is the projective constraint on the underlying hilbert space—an approach that
might be used in any system where a variational form of the Schmidt basis is postulated. Another advantage to
this approach is the focus upon computing nk, in particular finding a reasonable (and physical) approximation for
this highly singular distribution. For noninteracting fermions, {nk} encodes all eigenvalues of the reduced density
matrix and therefore the entire entanglement spectrum (a comparable argument exists for bosons). Understanding
how the degeneracy in nk is generically resolved at weak coupling might provide a path to computing entropy in higher
dimensions where specialized 1-d methods cannot be used. It is also interesting to consider if the non-analytic feature
in the entropy at weak coupling survives in higher dimensions. If fermions interact in such a way that the system
is still described as a fermi liquid, this technique might also provide an approach for computing the entanglement
spectrum in such systems. The approximation in this case might resemble the Bogolubov-de Gennes30 formalism
where interactions are decoupled into off-diagonal Hartree terms to describe superfluidity and diagonal Hartree terms
to describe residual interactions.

Lastly, our perturbative calculation of the second cumulant suggests an investigation of the cumulant series for
entanglement entropy. Since the second cumulant is analytic in w, it seems necessary to re-sum the series to all orders
to capture the nonanalytic behavior exhibited by the exact solution.
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