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We calculate the frequency-dependent longitudinal (σxx) and Hall (σxy) conductivities for two-
dimensional metals with thermally disordered antiferromagnetism using a generalization of a theo-
retical model, involving a one-loop quasistatic fluctuation approximation, which was previously used
to calculate the electron self energy. The conductivities are calculated from the Kubo formula, with
current vertex function treated in a conserving approximation satisfying the Ward identity. In order
to obtain a finite DC limit, we introduce phenomenologically impurity scattering, characterized by
a relaxation time τ . σxx(Ω) satisfies the f -sum rule. For the infinitely peaked spin correlation
function, χ(q) ∝ δ(q−Q), we recover the expressions for the conductivities in the mean-field theory
of the ordered state. When the spin correlation length ξ is large but finite, both σxx and σxy show
behaviors characteristic of the state with long-range order. The calculation runs into difficulty for
Ω . 1/τ . The difficulties are traced to an inaccurate treatment of the very low energy density of
states within the one-loop quasistatic approximation for the self energy. The results for σxx(Ω) and
σxy(Ω) are qualitatively consistent with data on electron-doped cuprates when Ω > 1/τ .

PACS numbers:

I. INTRODUCTION

Long-range antiferromagnetic order can have a profound effect on the electronic excitation spectrum of metals,
opening a gap over some or all of the Fermi surface.1 By continuity, it seems reasonable to believe that even in the
absence of long-range order, finite-range correlations may also have an important effect on the electronic excitation
spectrum. The effects may be expected to be particularly large in two-dimensional systems with Heisenberg symmetry,
because in this case long ranged order can only exist at temperature T = 0. Even in the presence of weak coupling
into a third dimension or weak Ising anisotropy, a wide range of temperatures will exist where the physics is controlled
by the thermally disordered magnetic state. Such a state, which following the usual conventions we refer to as a spin-
density wave (SDW), is believed to occupy a significant portion of the phase diagram of electron-doped cuprates.2

Extensive experimental studies, including optical conductivity,3–5 Hall effect,6,7 and infrared magnetotransport,8 of
these materials in the doping range where the ground state has long-range SDW order, have revealed signatures
characteristic of partial gap opening starting at a temperature high compared to the Néel temperature TN . This gap
seems to be closely related to that in the SDW state, since the measured quantities evolve smoothly across TN .7,8

Furthermore, a recent inelastic neutron scattering study9 on the Nd2−xCexCuO4±δ materials found that the spin
correlation length ξ remains large for temperatures high above TN . This motivates the theoretical proposal10,11 that
the scattering of electrons off thermal spin fluctuations may hold the key to understanding the transport data over
the wide range of dopings where TN (x) is less than room temperature, so that the materials are in the thermally
disordered regime. Similar physics may occur in the hole-doped cuprates.12,13

While the experimental phenomenology is clear, our theoretical understanding of this regime is incomplete. In
a seminal paper, Lee, Rice, and Anderson14 (LRA) proposed a model for the study of electron dynamics in the
presence of long but finite ranged density wave order. In this model, electrons are coupled to quasi-static (relevant
frequencies less than kBT ) order-parameter fluctuations, resulting in suppression of the single-particle density of
states at low energies, a phenomenon sometimes referred to as a “pseudogap”. The Lee-Rice-Anderson analysis was
generalized by Sadovskii15 and then was extended to two-dimensional systems close to the antiferromagnetic instability
by Vilk, Tremblay, and co-workers,10,11 who argued that such long but finite ranged antiferromagnetic fluctuations
controlled important aspects of the physics of the electron-doped cuprates. In a further theoretical development,
Schmalian et al argued that the electron Green’s function can be exactly calculated for the two-dimensional LRA
model of electrons with a cuprate band dispersion scattered from antiferromagnetic spin fluctuations,16 generalizing
the method first used by Sadovskii in the study of one-dimensional charge-density fluctuations.15 Tchernyshyov17

analyzed the underlying assumptions of the Sadovskii’s solution, and argued that it should be used with caution in
the generical two-dimensional situation. However, he concluded that in particular regions of momentum space termed
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“hot spots”, the method could be safely applied, and it is near these momentum points that Schmalian et al found
pseudogap behavior in agreement with the previous work of Vilk and Tremblay.10,11 There has been an attempt to
calculate the conductivity using this method.18 However, the restriction to the vicinity of the hot spots makes the
Sadovskii solution unsuitable for the study of transport properties in two-dimensional systems, because a summation
over the entire Brillouin zone is needed. A generalization of the LRA theory to transport phenomena is required.

In this paper, we provide the missing generalization. We use the two-dimensional LRA model in which electrons
are coupled to themal (quasi-static) antiferromagnetic spin fluctuations to study the optical and Hall conductivities of
electron-doped cuprates at temperatures above TN . As in Refs [10,11,14], we calculate the electron self-energy in the
leading order of perturbation theory. The new feature of our work is a calculation of the current vertex function in a
conserving approximation.19,20 We find that although the vertex function corresponding to the LRA self energy leads
to a conductivity which fulfills the f -sum rule, the dynamic (+−) current vertex function has unphysical features
at low frequencies; leading in some cases to an unphysical negative conductivity in the very low frequency region.
The difficulty is traced to an incorrect treatment of the subgap density of states in the LRA calculation. We discuss
ways of curing the difficulty and also present results at higher frequencies which are not significantly affected by the
problem.

In this paper, we assume that the spin fluctuation propagator is peaked at Q = (π, π), as is observed in the electron-
doped materials.2,9 This situation is theoretically simpler than that occurring in the hole-doped materials, where the
fluctuations presumably occur about a “striped” state12,21 with a spin susceptibility peaked at incommensurate wave
vectors Qδ = (π − δ, π). The potential fluctuations about a striped sate are significantly more complicated, such
that while we believe that our qualitative conclusions apply also to fluctuations above the stripe ordered phase in
hole-doped materials, we have not obtained useful results.

The rest of the paper is organized as follows. In Sec. II, we use the spin-fermion model to motivate the LRA model,
calculate the electron self-energy in the leading-order perturbation theory, and discuss the pseudogap phenomenon in
the resulting single-particle spectral function. In Sec. III, we study the optical conductivity with a proper treatment
of the current vertex function. In Sec. IV, we study the Hall conductivity, developing a calculation scheme which can
reproduce the mean-field result in the proper limit. In Sec. V, we summarize our results, and discuss the implications.
Some technical details and a brief summary of the mean-field theory can be found in various Appendices.

II. MODEL AND ELECTRON SELF-ENERGY
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FIG. 1: Quadrant of two-dimensional Brillouin zone showing the Fermi surface (solid line) for electron-doped cuprates, its
translation (‘backfolding’) by wavevector Q = (π, π) (dashed line), ‘hot spot’ p∗ and other Fermi surface points referred to in
subsequent discussions.
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In this section, we present the model, the basic approximation we use, and results for the self energy. The results
for the self energy reproduce those previously derived10,11,14–17 and are presented here to establish notation.

Our starting point is electrons moving with a two-dimensional dispersion chosen, for concreteness, to resemble that
believed to be relevant to high-Tc superconductors:22

εp = −2t(cospx + cos py) + 4t′ cos px cos py − 2t′′(cos 2px + cos 2py) − µ, (1)

where t = 0.38eV, t′ = 0.32t, t′′ = 0.5t′, and µ is the chemical potential. Figure 1 shows the resulting Fermi surface
for electron doping x ≈ 0.16 (solid line). Throughout this paper, we choose units such that the lattice constant a = 1,
~ = 1, and measure energy in units of t, unless otherwise stated. We note that many-body effects not explicitly
included in our calculation renormalize the band width. This effect is accounted for by renormalizations of t and t′,
and all of our results are presented in units scaled to t. We also note that there are variations among different band
calculations. These variations are not important for our considerations–they merely change for example the locations
in momentum space of the ‘hot spots’ where there is partial gapping of the Fermi surface.

We represent the effects of magnetism via the spin-fermion model, which has been used extensively in the study of
itinerant electrons in systems close to or in long-range magnetically ordered states.23–30 It is a low-energy effective
theory (other interactions are subsumed into renormalizations of the band and spin fluctuation parameters) with an
intrinsic cutoff energy Λ, and is conveniently formulated as an effective action27

S = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

pσ

c†pσ(τ)G−1
0 (p, τ − τ ′)cpσ(τ ′)

+
1

2

∫ β

0

dτ

∫ β

0

dτ ′
∑

q

χ−1
0 (q, τ − τ ′)Sq(τ) · S−q(τ

′)

+ g

∫ β

0

dτ
∑

q

S−q(τ) · sq(τ),

(2)

where cpα is the fermionic field operator, G−1
0 (p, τ) is the inverse of the bare fermionic Green’s function, Sq is an

emergent field describing collective antiferromagnetic spin fluctuations which are important to the low-energy physics,
χ0(q, ω) = χ0/[ξ−2 + (q − Q)2 − (ω/vs)

2] is the bare susceptibility in the spin-fermion model with Q = (π, π),

sq =
∑

p c†p+qασαβcpβ is the spin density operator of electrons with σ the Pauli matrices, and g is the effective
coupling constant between electrons and spin fluctuations.

G0(p, τ) is the Fourier transform of

G0(p, iǫn) =
1

iǫn − εp + i
2τ sgnǫn

, (3)

where ǫn = (2n + 1)πT , and we have explicitly introduced the impurity scattering rate 1/2τ , which will be discussed
in the next section. Eq (3) has been extensively used in studies of the fluctuation conductivity close to the Peierls
transition31,32 and the superconducting transition.33,34 When two different scattering processes, spin fluctuations and
impurities, are present, it is necessary to consider their interference.35,36 The renormalization of the spin-fermion
interaction vertex g by impurity scattering and that of the impurity scattering relaxation time τ by the spin-fermion
interaction are discussed in Appendix A, where it is demonstrated that both renormalizations are finite. Thus, as
long as we keep g and τ as adjustable parameters of the calculation, we can neglect their mutual renormalizations.

The third term in Eq (2) represents the interaction between electrons and spin fluctuations, and effectively arises
from an interaction Hamiltonian,

Hsf = g
∑

p,q

S−q · c†p+qασαβcpβ . (4)

In this paper, we consider the state without long-range order, < Sq >= 0, and assume that the spin fluctuations are
isotropic. As a result, the spin indices on electrons are irrelevant for the calculation of charge transport coefficients.
After properly redefining g to account for the three S directions and two electron spin projections, the interaction
Hamiltonian can be written as

Hsf = g
∑

p,q,σ

S−qc
†
p+qσcpσ, (5)

which bears the form of the electron-phonon interaction with Sq playing the role of the phonon field operator Aq =

aq+a†
−q.

37 There are important differences between the spin-fermion model in Eq (5) and the electron-phonon problem.
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The phonon degrees of freedom are extrinsic to electrons. Because of the large mass of nuclei compared to electrons,
the Migdal’s theorem applies, which allows the electron-phonon interaction in conventional metals to be treated in
a controlled manner.38 However, the spin-fluctuation degrees of freedom in the spin-fermion model are intrinsic to
electrons. For the Migdal’s theorem to be applicable, one usually resorts to one or another variant of the large-N limit
where N is the number of fermion flavors39 or the number of hot spots.27 As in the electron-phonon problem, the
bare spin-fluctuation propagator χ0(q, ω) is renormalized by creation and annihilation of electron-hole pairs, which
leads to the Landau damping term, iω/ωsf . In the random phase approximation, the renormalized spin-fluctuation
propagator has the form

χ(q, ω) =
χ0

ξ−2 + (q − Q)2 + iω/ωsf
, (6)

where ωsf/ξ2 sets the energy scale for spin fluctuations, and can be expressed as combinations of the parameters in
Eq (2) (see e.g. Ref [27]). We note that Eq (6) has the same form as that proposed phenomenologically by Millis
et al,40 can be obtained from the self-consistent renormalization theory,23,41 and has the generic form in the theory
of quantum phase transitions involving itinerant electrons.24,25,42 We thus argue that the applicability of Eq (6) is
independent of microscopic details and approximations involved in deriving it. The remaining question is to calculate
effects of the interaction in Eq (5) on fermions.

When the temperature T is relatively large compared to ωsf/ξ2, the dynamic term in Eq (6) can be neglected (for
more discussion, see Appendix B, and for a related discussion in the context of superconducting fluctuations, see Ref
[33]). In terms of Matsubara frequencies, the static spin-fluctuation propagator is written as

χ(q, iωn) =
χ0

ξ−2 + (q − Q)2
δn,0, (7)

which is the two-dimensional generalization of the LRA model.

(a) (b)

(c)

+

+

FIG. 2: Feynman diagrams used in this paper. (a) The Lee-Rice-Anderson approximation to the electron self energy, (b)
the current vertex function corresponding to the Lee-Rice-Anderson self energy and (c) diagrams needed for the longitudinal
conductivity. The thin solid lines in (a) and (b) represent the bare electron Green’s function G0 in Eq (3), the thick solid lines
in (b, c) represent the dressed Green’s function G in Eq (16), the wavy lines are the spin-fluctuation propagator χ in Eq (7),
and the solid circle in (c) represents the current vertex function ΓJ and is calculated according to (b).

Using Eq (3) and Eq (7), we calculate the electron self energy to leading order in g, shown in Figure 2 (a),

Σ(p, iǫn) = g2T

∫

dq

(2π)2
χ0

(q − Q)2 + ξ−2

1

iǫn − εp+q + isgnǫn/(2τ)
. (8)

As discussed above, there is a cut-off energy scale Λ below which the spin-fermion model is defined. Since the
above integral is convergent at large q, we assume that all energies under consideration are below Λ. To proceed,
we change q → q + Q and write q = (q‖, q⊥) where q‖ and q⊥ are the components parallel and perpendicular to
vp+Q, respectively. The q‖-integral can be done by the residue method, and the remaining q⊥-integral is elementary.
The retarded self energy is obtained by analytical continuation to the real axis via iǫn → ω + iδ with δ a positive
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infinitesimal,

ΣR(p, ω) =
λ

iε0
F
(ω − εp+Q + i/2τ

iε0

)

. (9)

Here we introduce the effective coupling constant λ and energy scale ε0 defined by

λ = g2Tχ0/(2π), (10)

ε0 = vp+Qξ−1, (11)

where the weak p-dependence of ε0 will be neglected in subsequent calculations. The function F is given by

F (z) =

∫ ∞

0

dx√
x2 + 1

1

z +
√

x2 + 1
=

1√
z2 − 1

ln
1 + z +

√
z2 − 1

1 + z −
√

z2 − 1
. (12)

In the limit 1/τ → 0, we reproduce the result of Refs [10,11],

ΣR
if (p, ω) =

λ
√

(ω − εp+Q)2 + ε2
0

{

sgn(ω − εp+Q) ln
ε0

√

(ω − εp+Q)2 + ε2
0 − |ω − εp+Q|

− iπ/2
}

.

(13)

We note that ImΣR
if (p, ω) < 0 as expected and have verified that ReΣR

if (p, ω) and ImΣR
if (p, ω) are related by the

Kramers-Krönig relation,

ReΣR
if (p, ω) =

1

π
P
∫ ∞

−∞

dω̄
ImΣR

if (p, ω̄)

ω̄ − ω
. (14)

Using the one-dimensional analogue of Eq (8), one obtains the result of Lee et al,14

ΣR
1D(p, ω) =

∆2

ω − εp+Q + i/2τ + iε0
, (15)

where ∆2 = g2Tχ0ξ/2. We note that ΣR
1D(p, ω) has a simple pole at ω = εp+Q − i/2τ − iε0 in the lower-half ω-plane,

as expected.
We now discuss the physical content of the results. The retarded Green’s function is

GR(p, ω) =
1

ω − εp + i/2τ − ΣR(p, ω)
, (16)

and the spectral function A is

A(p, ω) = −2ImGR(p, ω). (17)

For comparison to previous results, we will sometimes present results based on Eq (13) (i.e. for the model without
an explicit additional impurity scattering). We denote the corresponding Green’s function and spectral function as
GR

if and Aif , respectively.
The situation is particularly simple in the one-dimensional case. If we linearize the dispersion near the Fermi level

εp → vp, εp+Q → −vp, measure momenta relative to the Fermi momentum ±kF , and assume Q = 2kF , then

GR
1D(p, ω) =

ω + vp + i
2τ + iε0

ω2 − (vp)2 − ∆2 + i
(

1
2τ + ε0

)

(ω − vp) + i
2τ (ω + vp)

, (18)

exhibiting a gap of size
√

∆2 + (vp)2 broadened by the impurity scattering rate and by the finite correlation length
(parametrized by ε0). In obtaining this result, it is crucial to use the bare Green’s function in Eq (8). Self-consistent
one-loop approximations (and related approximations such as the fluctuation-exchange approximation (FLEX)) do
not obtain a pseudogap.

In the two-dimensional case of main interest here, the situation is more complicated because the Green’s function
depends both on position on the Fermi surface and on displacement of the momentum away from it. However, a few
general statements can be made. We note that Eq (13) can be written as ΣR

if (p, ω) = ε0

[

(λ/iε2
0)F (ω/iε0−εp+Q/iε0)

]

.
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FIG. 3: (a): comparison of the spectral functions A(p∗, ω) (solid line) and Aif (p∗, ω) (dashed line, red online) at one hot-spot,
p∗ (see Fig. 1). The parameters are ε0 = 0.2t, λ = 2.5ε2

0, and 1/2τ = 0.05t. Note that ε0 has the meaning of an inverse
correlation length and λ characterizes the coupling between electrons and spin fluctuations. (b): the spectral function Aif (p, ω)
at p∗ (solid line, black online), pc = (π/2, π/2) (dashed line, green online), p1 = (0.43π, π/2) (dash-dotted line, blue online),
and p2 = (0.57π, π/2) (dotted line, red online). The parameters are ε0 = 0.1t and λ = 10ε2

0.

Thus, the spectral function shows scaling behavior: ε0Aif (p, ω/ε0) is invariant if energies and frequencies are measured
in units of ε0 at fixed p and λ/ε2

0.
Precise results can be obtained in the limit that the spin-fluctuation propagator χ(q) is infinitely peaked at Q (the

Kampf-Schrieffer model43)

χKS(q, iωn) = χ0δn,0δ(q − Q). (19)

Eq (8) gives

ΣR
KS(p, ω) =

∆2
s

ω − εp+Q + i/2τ
, (20)

where ∆2
s = g2Tχ0/(2π)2. Substituting this self-energy into Eq (16), one obtains the Green’s function in the mean-

field theory of the SDW state (the diagonal matrix elements in Eq (C3)) without introducing a condensate.44 In the
next two sections, we shall extend this conclusion to the optical and Hall conductivities; the mean-field expressions
for σxx and σxy can be obtained from Eq (19) in the leading-order perturbation theory.

An important role in subsequent discussions is played by the “hot spots”, momenta p∗ such that both p∗ and
p∗ + Q are on the Fermi surface (Figure 1). At these points, the density of states is most strongly reduced from the
non-interacting value. The structure of the spectral function at the hot spots is parameterized by a gap scale ∆pg

and the scaling arguments of the previous paragraph show that ∆pg/ε0 depends only on λ/ε2
0. In the limit λ/ε2

0 ≫ 1,
∆pg/ε0 ≫ 1, and is determined by the equation

∆pg = ReΣR
if (p∗, ∆pg). (21)

To leading logarithmic accuracy, we find

∆pg ≈
√

λ

(

ln

√

4λ

ε2
0

)1/2

. (22)

Thus in the two-dimensional case, in the limit λ/ε2
0 ≫ 1, ∆pg is determined mainly by

√
λ with a (weak) logarithmic

dependence on ε0. This equation should be contrasted to the one-dimensional result ∆2 = g2Tχ0ξ/2.
Panel (a) of Figure 3 shows the spectral functions A(p∗, ω) (including impurity scattering, solid line) and Aif (p∗, ω)

(no impurity scattering, dashed line) at one hot spot p∗, for 1/2τ = 0.05t, ε0 = 0.2t, and λ = 2.5ε2
0. Both curves

show suppression of the spectral weight at low frequencies. We define the pseudogap ∆pg as half the distance between
the two peaks on the corresponding curve and see that the two curves have roughly equal pseudogap values, ∼ 0.4t,
slightly larger than that predicted by the asymptotic result in Eq (22), ≈ 0.35t. This panel thus demonstrates that
we can use either Eq (9) or Eq (13) in discussions of the pseudogap in the single-particle spectral function if impurity
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FIG. 4: The spectral function A(p∗, ω) at the hot spot p∗ for 1/τ = 0.1t and µ = 0.175t. (a): λ/t2 = 0.1 and different values
of ε0. (b): λ/t2 = 0.3 and different values of ε0.

scattering is reasonably weak. We emphasize that this gapping occurs only in the vicinity of the hot spot; Fermi
surface regions far from the hot spot have approximately the same behavior as in the absence of spin fluctuations.

Panel (b) of Figure 3 shows Aif (p, ω) for several p (see Fig. 1), including a hot spot (solid trace, black online),
a point pc which would be at the center of the “hole pocket” in the SDW state (dashed trace, green online), a
momentum p1 far from the hot spot but on the noninteracting Fermi surface and a momentum p2 which would be
near the back side of the hole pocket. At the hot spot, one observes two peaks, symmetrically disposed around the
chemical potential. At the center of the “hole-pocket”, one also sees two identical peaks, but this time not centered
at the chemical potential. At the other two momenta, one sees a large peak indicative of a conventional Fermi liquid
quasiparticle and a small ‘shadow peak’ at the location of the other quasiparticle state. All of these features may be
understood in terms of a broadening of the mean-field solution.

In Figure 4 we investigate the dependence of the spectral function on the parameters λ and ε0. Each panel shows
the spectral function at the hot spot, computed for a fixed λ and several different ε0. The gap scale (defined from
the peak to peak distance at the smallest ε0) increases with increasing λ. As ε0 is increased, the low-energy density
of states increases (gap fills in) and at larger ε0, the gap magnitude (defined from the peak separation, when visible)
decreases, but at a rate slower than the increase of the low-energy density of states. Thus the suppression of the
pseudogap has more to do with the gap filling in than with a gap decrease.

Comparing our results to data suggests that it is reasonable to associate an increase in temperature with an increase
in the parameter ε0 (i.e. a decrease in the correlation length ξ as observed in Ref [9]), while the increase of λ produces
effects similar to those observed in electron-doped cuprates when doping is decreased. To qualitatively relate theory
to experiment, we therefore fix the chemical potential and model changes in doping by changes in λ and changes in
temperature by changes in ε0.

III. CURRENT VERTEX FUNCTION AND FREQUENCY-DEPENDENT LONGITUDINAL
CONDUCTIVITY

The longitudinal conductivity σxx is given in terms of the polarization function Π as37

σxx(iΩn) =
ΠP (iΩn) + ΠD

Ωn
(23)

where the paramagnetic P and diamagnetic D contributions to the polarization function are given in terms of the
current vertex ΓJ as

ΠP (iΩn) = 2σQ lim
q→0

T
∑

ǫn

∫

dp

(2π)2
vx

pG(p, iǫn)ΓJ
x(p,p + q, iǫn, iǫn + iΩn)G(p + q, iǫn + iΩn), (24)
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where σQ = e2/~ is the conductance quantum and vx
p = ∂εp/∂px, and

ΠD = 2σQT
∑

ǫn

∫

dp

(2π)2
εxx

p G(p, iǫn), (25)

where εxx
p = ∂2εp/∂p2

x.

The magnitude of the current vertex function ~ΓJ is related to the relative sizes of the frequency and momentum
dependence of the self energy. We have seen in the previous section that the momentum dependence of the self
energy is not negligible and thus expect the current vertex correction to be important. An important constraint on
calculations is the Ward identity following from current conservation; this ensures that the conductivity obeys the

“f -sum” rule. The Ward identity relates the density vertex Γρ and current vertices ~ΓJ to the electron propagator via

G−1(p + q, iǫ + iΩ) − G−1(p, iǫ) = iΩΓρ(p,p + q, iǫ, iǫ + iΩ) − q · ~ΓJ(p,p + q, iǫ, iǫ + iΩ). (26)

Taking the q → 0 limit with Ω fixed to 0 gives

lim
q→0

~ΓJ(p,p + q, iǫ, iǫ) = vp +
∂Σ(p, iǫ)

∂p
. (27)

To obtain the vertex function, we follow the procedure outlined in Refs [45,46]: insert the free vertex on each
bare electron line in the diagrammatic expansion of the electron Green’s function, and then amputate the resulting
diagrams. The diagrammatic expansion for the current vertex function is shown in Fig 2 (b), and the corresponding
analytic expression is (henceforth we drop the superscript J and remove one of the two momentum arguments because
we deal only with the current vertex in the q → 0 limit)

Γx(p, iǫn, iǫn + iΩn) = vx
p + g2T

∫

dq

(2π)2
χ0

ξ−2 + (q − Q)2

× G0(p + q, iǫn)G0(p + q, iǫn + iΩn)vx
p+q. (28)

Approximating vp+q ≈ vp+Q, Eq (28) is evaluated as

Γx(p, iǫn, iǫn + iΩn) = vx
p +

Σ(p, iǫn) − Σ(p, iǫn + iΩn)

iΩn + i[sgn(ǫn + Ωn) − sgnǫn]/2τ
vx

p+Q, (29)

which is consistent with Eq (27) because Eq (9) shows that ∂Σ(p, iǫn)/∂pα = −vα
p+Q∂Σ(p, iǫn)/∂(iǫn). We therefore

conclude that Eq (29) for the current vertex function is a conserving approximation.
In the study of the fluctuation conductivity near the superconducting transition, the Aslamazov-Larkin (AL) con-

tribution is important (see e.g. Ref [33]). The Aslamasov-Larkin term vanishes trivially for quasi-static fluctuations
such as those assumed in Eq (7). Its calculation requires the inclusion of frequency dependence in the spin-fluctuation
propagator χ(q, ω). We included a Landau-damping term and calculated the AL contribution (which involves two
triangle diagrams connected by two spin fluctuation propagators), finding that it is negligible. This result is in agree-
ment with previous analyses by Grilli et al.47,48 These authors show that a non-zero result is obtained if, in addition
to Landau damping, a quadratic frequency dependence is included. In the model we consider, this term would involve
a high energy scale, and would give a negligible contribution to the conductivity; in the charge-density wave model
considered in Refs [47,48] the corresponding energy scale was argued to be very low and the physics was accordingly
different.

The physics of the vertex correction may be understood by comparison to the mean-field solution in the ordered
state. To demonstrate the main issues with a minimum of notational complexity, we discuss the one-dimensional
model, in which we linearize the dispersion about the Fermi energy, measure momenta from the Fermi momentum,
and assume the ordering wave vector Q = 2kF . The mean-field solution is characterized by normal (GMF ∼< c†pcp >)

and anomalous (F ∼< c†pcp+Q >) Green’s functions given for right (a = +) and left (a = −) moving electrons by

Ga
MF (p, iω) = − iω + avp

ω2 + v2p2 + ∆2
, (30)

F a
MF (p, iω) = − ∆

ω2 + v2p2 + ∆2
, (31)

and the conductivity is given schematically by

σ ∝ 1

Ω
Tr [GG − FF ] , (32)
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with the trace over frequency, momentum and left/right index a.
Turning now to the theory in the fluctuation regime, we have (for ω > 0)

GLRA(p, iω) = − iω + vp + i
2τ + iε0

ω2 + v2p2 + ∆2 − i[(iω − vp)( 1
2τ + ε0) + 1

2τ (iω + vp)]
. (33)

The absence of long-range order means that F = 0, so that σ is evaluated directly from Eq (23) while use of Eq (29)
for the vertex function and Eq (15) gives

Γ++ = v

(

1 − ∆2

(

iω + iΩ + vp + i
(

1
2τ + ε0

)) (

iω + vp + i
(

1
2τ + ε0

))

)

, (34)

if sgn(ω + Ω) = sgn(ω) = +, and

Γ−+ = v



1 −
∆2
(

1 + 2ε0

Ω+ 1
τ

)

(

iω + iΩ + vp + i
(

1
2τ + ε0

)) (

iω + vp − i
(

1
2τ + ε0

))



 , (35)

if sgn(ω + Ω) = + but sgn(ω) = −.
Substituting into Eq (23), we see that the first of the two terms in the vertex function reproduces the GG term. The

second of the two terms reproduces the FF contribution, which, in the ordered state, carries the coherence factors
which for example distinguish antiferromagnetism from superconductivity. Thus the vertex correction does what is
required to produce the correct form of the near gap conductivity. However, we see that in addition, in the physically
crucial sgn(ω +Ω) 6= sgn(ω) regime there is an extra term, of order ε0/(Ω+1/τ) which diverges as Ω+1/τ → 0 but is
unimportant for |Ω + 1/τ | > ε0. The structure of this term is a defect of the Lee-Rice-Anderson approximation. We
believe it occurs because this theory produces an incorrect form for the subgap density of states, which should vanish
as frequency ω → 0. Indeed in the one-dimensional case it is known that the low-frequency density of states is due to
amplitude singularities in the flucuating order parameter, which become exponentially rare at low frequencies.49

The problem can also be cured by a self-consistent treatment such as FLEX, but this is known to give an incorrect
form for the pseudogap density of states.49 We have not been able to identify a consistent and physically reasonable
cure for the divergence which is applicable also in two dimensions, so we adopt the expedient of introducing an impurity
scattering which cuts off the divergence. We shall see, however, that the theory can still produce an unphysical dip
in the low-frequency conductivity.

Returning to the two-dimensional model of primary interest in this paper, we combine Eqs. (23,24,25,29), perform
the analytical continuation, and obtain

Reσxx(Ω) = Reσ(I)
xx (Ω) + Reσ(II)

xx (Ω) + Reσ(III)
xx (Ω), (36)

where

Reσ(I)
xx (Ω) = σQ

∫

dp

(2π)2
(

(vx
p )2 − vx

pvx
p+Q

)

∫ ∞

−∞

dω

2π

f(ω) − f(ω + Ω)

Ω
A(p, ω)A(p, ω + Ω), (37)

Reσ(II)
xx (Ω) = σQ

1/τ

Ω2 + 1/τ2

∫

dp

(2π)2
vx

pvx
p+Q

×
∫ ∞

−∞

dω

2π

f(ω) − f(ω + Ω)

Ω

[

A(p, ω) + A(p, ω + Ω)
]

, (38)

and

Reσ(III)
xx (Ω) = 2σQ

1/τ2

Ω2 + 1/τ2

∫

dp

(2π)2
vx

pvx
p+Q

×
∫ ∞

−∞

dω

2π

f(ω) − f(ω + Ω)

Ω

ReG(p, ω + Ω) − ReG(p, ω)

Ω
, (39)

where f(x) is the Fermi function. In the calculation, we assume that the most important effect of temperature is on
ξ (or ε0), and neglect thermal broadening of the Fermi function. As a result, f(x ≤ 0) = 1 and f(x > 0) = 0. In
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FIG. 5: The longitudinal conductivity per plane evaluated from Eq (36) with 1/τ = 0.1t and µ = 0.175t. (a): λ/t2 = 0.1 and
different ε0. (b): λ/t2 = 0.3 and different ε0. To convert to physical units, one must multiply the calculated result by the
conductance quantum, σQ = e2/~, and divide it by the inter-plane distance.

the limit τ → ∞, Reσ
(I)
xx remains finite, Reσ

(II)
xx = ∆Sδ(Ω), and Reσ

(III)
xx (Ω) → 0. Thus, Reσ

(II)
xx is the divergence

discussed above. Its weight ∆S is given by

∆S = 2πσQ

∫

dp

(2π)2

∫

dω

2π

(

−df(ω)

dω

)

vx
pvx

p+QA(p, ω). (40)

We find that ∆S < 0 for the band dispersion appropriate to cuprates, since vx
pvx

p+Q < 0 in most part of the Brillouin

zone where A(p, 0) is appreciable.
Figure 5 shows Reσxx(Ω) calculated from Eq (36) with 1/τ = 0.1t and µ = 0.175t for different values of λ and

ε0. All curves in Figure 5 show anomalous low-frequency behavior, arising from Eq (38). Since ∆S < 0, the DC
limit can be made negative (not shown here) for larger values of λ or τ . As Ω increases, this anomalous contribution

is quickly suppressed due to the prefactor 1/τ
Ω2+1/τ2 . In Figure 5, we see that Reσxx(Ω) behaves as expected for

Ω & 3/τ , and we shall concentrate on this regime. In this regime, for small ε0 (ε0/t = 0.05, 0.1, 0.2 in panel (a) and
ε0/t = 0.1, 0.2, 0.3, 0.4 in panel (b)), there are peaks around 2∆pg as determined from Figure 4. This peak structure
is reminiscent of that in mean-field calculations,50 as shown in Figure 10 (a). The peak becomes weaker for larger ε0

(smaller ξ). We now use the association of λ and ε0 with x and T as discussed in Sec. II to relate these results to
experimental observations. Comparing the two panels in Figure 5 suggests that at low temperatures, Reσxx has an
optical peak, the peak position decreases with doping, the peak vanishes at some temperature T ∗, T ∗ increases with
underdoping, and for fixed doping, there is a spectral weight transfer from high-frequency region to low-frequency
region, as T is increased.

We have verified numerically that the calculated conductivity obeys the f -sum rule
∫ ∞

0

dΩReσxx(Ω) =
π

2
ΠD. (41)

To see this analytically, we consider the case of small 1/τ , such that Reσ
(III)
xx (Ω) can be neglected and

∫∞

−∞
dΩ
π Reσ

(II)
xx (Ω) can be approximated as

∫ ∞

−∞

dΩ

π
Reσ(II)

xx (Ω) ≈ ∆S/π. (42)

At the same time,
∫∞

−∞
dΩ
π Reσ

(I)
xx (Ω) can be evaluated using the Kramers-Krönig relation between A(p, ω) and

ReG(p, ω), and the result is
∫ ∞

−∞

dΩ

π
Reσ(I)

xx (Ω) = −2σQ

∫

dp

(2π)2
vx

p (vx
p − vx

p+Q)

∫ ∞

−∞

dǫ

π
f(ǫ)A(p, ǫ)ReG(p, ǫ). (43)
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ΠD is found to be equal to the sum of the above two equations. Since Reσxx(Ω) is an even function of Ω, we obtain
Eq (41).

The conductivity σxx(Ω) in the mean-field theory of the SDW state (Eq (C4)) can be obtained in the present
leading-order perturbation theory, by simply substituting Eq (20) into various Green’s functions in Eq (36). The
vertex corrections are crucial in this derivation; if we had neglected the vertex corrections, we would effectively have
neglected the off-diagonal terms in Eq (C3) (the terms proportional to ∆). The conductivity in the mean-field SDW
state for ∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line) is shown in Fig 10 (a). The low-frequency parts of these
curves are well described by a Drude peak without any anomalous dip. One possible reason is that in the limit τ → ∞,
both A and GR in the mean-field theory are singular, unlike Eqs (9, 16) which are finite due to scattering from spin
fluctuations.

IV. FREQUENCY-DEPENDENT HALL CONDUCTIVITY IN THE PERTURBATION THEORY

In this section, we develop the formalism for calculating the Hall conductivity σxy in the leading order perturbation
theory. The calculation of σxy in the self-consistent Born approximation can be found in Refs [51–53]. At the level
of approximation employed here, we find it easier to apply the method developed in Ref [54] to the conductivity
diagrams shown in Fig 2 (c). Rewriting the diagrams in Fig 2 (c) in terms of the bare Green’s functions, replacing
every electron momentum p in the loop, according to the minimal coupling rule, by p − e

cA, and expanding the
resulting diagrams to first order in A, we obtain the diagrams shown in Figure 6, in which the intersections where
the magnetic field lines denoted by B meet the dressed Green’s functions G(p, iǫn) represented by thick solid lines
are the dressed magnetic vertices, which are calculated according to Fig 2 (b).

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)
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J
J

J

JJ

J

JJ

J

J
J

E

FIG. 6: Diagrams for the Hall conductivity. Thick solid lines represent the dressed Green’s function G(p, iǫn), thin solid lines
represent the bare Green’s function G0(p, iǫn), and wavy lines represent the spin-fluctuation propagator. The vertices with
one dashed line are associated with vα

p = ∂εp/∂pα, the vertices with two dashed lines are εαβ
p = ∂2εp/∂pα∂pβ, and the vertices

with three dashed lines are εαβγ
p = ∂3εp/∂pα∂pβ∂pγ . The Greek indices, α, · · · , refer to directions of the external fields, E, J,

and B.

Summing all the diagrams in Figure 6 and expanding the resulting expression up to first order in k, we find that
(1) the terms independent of k vanish, and (2) the terms of first order in k depends on B = ik × A = Bẑ, signaling
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FIG. 7: The Hall conductivity per plane divided by B, Imσxy(Ω)/B, calculated from Eq (D1) with 1/τ = 0.1t and µ = 0.175t.
(a): λ/t2 = 0.1 and different values of ε0. (b): λ/t2 = 0.3 and different values of ε0. To convert to physical units, one must
multiply the calculated result by the conductance quantum and the in-plane unit cell area, and divide it by the superconducting
flux quantum, Φ0 = hc/2e, and the inter-plane distance.

gauge invariance. The Hall conductivity on the Matsubara axis can be expressed as

σxy(iΩn) =
π

2
σQ

Ba2

Φ0

1

iΩn

∫

dp

(2π)2

{

S1 − S2 + S3 + S4 − S5

}

, (44)

where Φ0 = π~c/e is the superconducting flux quantum,

S1 = T
∑

iǫn

(

∂yΓx
pvy

p − ∂yΓy
pvx

p

)(

G∂xG(+) − G(+)∂xG
)

, (45)

S2 = T
∑

iǫn

(

∂xΓx
pvy

p − ∂xΓy
pvx

p

)(

G∂yG(+) − G(+)∂yG
)

, (46)

S3 = T
∑

iǫn

(

Γx
pvy

p − Γy
pvx

p

)(

∂xG(+)∂yG − ∂xG∂yG(+)
)

, (47)

S4 = g2T 2
∑

iǫn

vy
pGG(+)

∫

dq

(2π)2
χ(p− q)(εxx

q vy
q − εxy

q vx
q )
(

G0(+)G2
0 − G0G0(+)2

)

, (48)

and

S5 = g2T 2
∑

iǫn

vx
pGG(+)

∫

dq

(2π)2
χ(p − q)(εxy

q vy
q − εyy

q vx
q )
(

G0(+)G2
0 − G0G0(+)2

)

. (49)

In writing these equations, we have used short-hand notations: G = G(p, iǫn), G(+) = G(p, iǫn + iΩn), Γx
p =

Γx(p, iǫn, iǫn + iΩn), G0 = G0(q, iǫn), and G0(+) = G0(q, iǫn + iΩn). Using the spin-fluctuation propagator in the
Kampf-Schrieffer model, Eq (19), after a lengthy calculation, we can show that Eq (44) reduces to that in the mean-
field theory of the SDW state (Appendix C).55 The proper treatment of the vertex functions as discussed here is
crucial in arriving at this conclusion.

The frequency summation in Eq (44) is standard.37 The physical observable σxy(Ω) is obtained by analytical
continuation iΩn → Ω + iδ. The expression for Imσxy(Ω) is quite cumbersome. Here, we focus on the results, leaving
detailed expressions to Appendix D.
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FIG. 8: The Hall conductivity per plane divided by B, Imσxy(Ω)/B, calculated from Eq (D1) with 1/τ = 0.1t and µ = 0.175t.
(a): ε0/t = 0.1. (b): ε0/t = 0.3. To convert to physical units, see Figure 7.

Figures 7 and 8 show Imσxy(Ω) calculated from Eq (D1) for 1/τ = 0.1t, µ = 0.175t, and various values of λ and ε0.
The frequency scales in Figures 7 and 8 are selected to highlight the frequency window most relevant to experiments55

where σxy was measured for Ω > 0.3t ≈ 1000cm−1. The low-frequency part ( Ω . 1/τ) of Imσxy(Ω) suffers from the
same difficulty as does Reσxx(Ω) due to the perturbative nature of the calculation and we do not show results in this
region.

Comparing to Ref [55] suggests that the present calculation captures important features of data. First, Imσxy can
be made negative at low frequencies, although we start with a single-band model with a hole-like Fermi surface. A
previous study suggested that the appearance of the negative Imσxy in electron-doped cuprates is a signature of the
long-range spin-density wave order.55 Our findings here suggest that fluctuating order can also explain this behavior.
The vertex corrections shown in Figure 6 are important for this conclusion. We found that Imσxy remains positive
in the entire frequency range, if only the diagrams 1-4, 11, and 12 in Figure 6 are kept and the vertex corrections
to magnetic vertices are neglected. Kontani and co-workers, using the FLEX approximation, also emphasized the
importance of the magnetic field vertex corrections.56 As shown in Figure 7, Imσxy(ω) has relatively sharp peaks for
small ε0 (ε0/t = 0.05, 0.1 in panel (a), and ε0/t = 0.1, 0.2 in panel (b)) around 2∆pg, showing precursor effect to
that obtained from a mean-field calculation shown in Figure 10 (b). The peak gradually vanishes as ε0 increases.
Furthermore, fixing λ (or doping x) and increasing ε0 (or temperature T ), Imσxy(Ω) increases from negative to
positive at low frequencies and decreases at high frequencies. This is qualitatively consistent with the trend observed
experimentally in electron-doped cuprates in the underdoped regime.55 From Figure 8, we see that at fixed ε0,
Imσxy(Ω) decreases with increasing λ (or decreasing x) from positive to negative at low frequencies, and increases
with increasing λ at high frequencies, again qualitatively consistent with data.55 However, in our study, Imσxy(Ω)
remains positive at high frequencies, inconsistent with data.55 More quantitatively, if (following the discussion of the
longitudinal conductivity above) we assume that λ/t2 = ε0/t = 0.1 is a reasonable representation of cuprates at 0.12
electron doping, we see that the predicted zero crossing in σxy occurs at Ω ∼ 0.15 − 0.2eV, again semiquantitatively
consistent with data. However, our calculation exhibits more temperature dependence than is found in data.

V. SUMMARY

In this paper, we used the Lee-Rice-Anderson model to study two-dimensional electrons scattered from static
antiferromagnetic spin fluctuations, with potential applications to electron-doped cuprates in the underdoped regime
where the long-range spin-density wave ground state is expected. Our theory is in a sense complementary to that of
Kontani et al who used a fluctuation-exchange approximation most applicable in the overdoped region.56,57 The theory
has two important parameters: λ which controls the gap amplitude, and ε0 which represents the effect of non-zero
temperature. The methods we employ would also be applicable to the hole-doped cuprates, but in these materials the
spin fluctuations are peaked at an “incommensurate” (i.e. not equal to (π, π)) wave vector. This situation requires a
treatment which is much more involved than the one we have given here and is beyond the scope of this paper, but
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we expect the qualitative conclusions to be similar.
We first discussed single-particle properties with the self-energy calculated in the leading-order perturbation theory.

There is pseudogap opening for relatively small ε0 which is related to the spin correlation length ξ via ε0 = vF /ξ where
vF is the Fermi velocity. As ε0 increases, the pseudogap is gradually filled in with a moderate change in the size of
the pseudogap. The value of the pseudogap is primarily determined by the coupling constant λ between electrons and
spin fluctuations. We assume that λ is increasing as underdoping, and ε0 is increasing as increasing the temperature.

The conductivity Reσxx(Ω) is calculated in a conserving approximation which respects the f -sum rule. The current
vertex has unphysical low-energy features. We found that in order to obtain a finite DC conductivity, it is necessary
to include impurity scattering. However, even with impurities, the low-frequency part of Reσxx(Ω) still behaves
anomalously. As frequency Ω increases larger than 1/τ , the anomalous contribution is quickly suppressed. Reσxx(Ω)
is characterized by a peak around twice the pseudogap value for relatively small ε0 (large ξ). This is reminiscent of
the peak in mean-field calculations for the long-range spin-density wave ordered state. For fixed λ (or doping), there
is a spectral weight transfer from the high-frequency region to the low-frequency region as increasing ε0 (or decreasing
ξ).

For the Hall conductivity Imσxy(Ω), we focused on the experimentally accessible frequency regime Ω > 0.3t, and
showed that Imσxy(Ω) can be either positive or negative at small frequencies, depending on parameters λ and ε0. A
negative Imσxy(Ω) is rather non-trivial, and is a consequence of current vertex corrections.56,57 For small ε0, Imσxy

has a peak structure, reminiscent of the mean-field calculations. For fixed λ (or doping), Imσxy increases at low
frequencies and decreases at high frequencies, as increasing ε0 (decreasing ξ, or increasing temperature). For fixed ε0,
Imσxy increases at low frequencies and decreases at high frequencies, as decreasing λ (or increasing doping).

The discussion above shows that the issues we have uncovered with the vertex correction mean that the theoretical
status of the calculated DC longitudinal and Hall conductivities is unclear. It is also clear that the longitudinal
conductivity, at least, is dominated by the regions of the Fermi surface which are far from the hot spots: the effects of
spin fluctuations are subleading. We have accordingly not presented results for DC conductivities. Instead, we focus
on frequency-dependent conductivities, which are both reliably calculated and show unambiguous features associated
with the spin fluctuation-induced pseudogap.

In comparison to experiment, σxx calculated in our theory is ∼ 2− 3 times larger than data in the 0.1 < Ω < 0.5eV
range (Figure 5). We believe that this reflects the inadequate treatment of Mott correlations. Our calculated σxy is
about 5 times larger than experiment (Figure 7 and Ref [55]). The structure, with a negative σxy at low frequencies
and a positive value at higher frequencies is qualitatively consistent with data,55 except that in our study, Imσxy

stays positive at high frequencies, unlike data.55 Another minor point of difference is that in the data there is little
temperature dependence of the zero crossing in σxy, while in the theory the zero-crossing point shifts with ε0.

One advantage of the approach in the present paper is that the results for the electron spectral function, the
longitudinal conductivity, and the Hall conductivity are directly related to the mean-field results if the spin propagator
takes the Kampf-Schrieffer form χ ∝ δ(q − Q). However, this approach is insufficient for the study of transport
properties in the low frequency limit.
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Appendix A: Renormalization of the impurity relaxation time and the spin-fermion interaction vertex

In our model, the fermions are scattered by both spin fluctuations, characterized by the interaction vertex g, and
impurities, characterized by the relaxation time τ . One important question is to study how one of the scattering
process affects the other. This issue is addressed in this Appendix. We find that both renormalizations can be
neglected in the sense to be discussed below.

1. Renormalization of the spin-fermion interaction vertex

In this subsection, we discuss the renormalization of the spin-fermion interaction vertex g in the presence of impurity
scattering. The leading order correction is given by Fig 9 (a),

δg/g = u2

∫

dp′

(2π)2
G0(p

′, iǫn)G0(p
′ + q, iǫn), (A1)
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(a) (b)

q

FIG. 9: (a): the leading order diagram for the renormalization of the spin-fermion interaction vertex g due to impurity
scattering. (b): the leading order correction to the impurity relaxation time due to spin-fermion interaction. The dashed line
is the impurity line, the solid line is the bare electron propagator G0, and the wavy line is the spin-fluctuation propagator.

where u2 is the impurity potential, and we only consider the static limit for the spin-fluctuation propagator. For the
momentum transfer |q − Q| ∼ ξ−1 ≪ a−1, the momentum integral can be transformed to

∫

dεpdεp+Q, and the two
integrals can be performed independently. As a result, δg/g ∝ u2, and its dependence on iǫn and q is estimated to
be O(T/D, a|q − Q|) which can be neglected, where D is the cut-off energy of the order of the fermion bandwidth.
Applying the same argument to the impurity ladder diagrams, we find that the summation of the ladder diagrams
gives a finite constant renormalization to g. As a result, we can neglect the diagrams that renormalizes g by properly
redefining g.

2. Renormalization of the impurity relaxation time τ

We now discuss the renormalization of the impurity scattering relaxation time τ by the spin-fermion interaction.
Figure 9 (b) shows the leading order term in calculating this renormalization,

δ
(1

τ

)

= g2T

∫

dq

(2π)2
χ(q)T (q), (A2)

where

T (q) = u2

∫

dp′

(2π)2
G0(p

′, iǫn)2G0(p
′ + q, iǫn). (A3)

For the momentum transfer |q − Q| ∼ ξ−1 ≪ a−1, the
∫

dp′ integral can be transformed to
∫

dεp′dεp′+Q. Since
the integral

∫

dεp′ has a double pole, this leading renormalization is negligible. This argument persists to diagrams
with more spin-fluctuation lines. Thus, the renormalization of the impurity scattering relaxation time due to the
spin-fermion interaction is negligible.

Appendix B: The static approximation to Eq (6)

In this Appendix, we discuss the condition under which the static spin-fluctuation propagator Eq (7) can be used.
For simplicity, we consider the electron self-energy in the leading order perturbation theory,

Σ(p, iǫn) = g2T
∑

iωn

∫

dq

(2π)2
χ(q, iωn)

1

iǫn + iωn − εp+q
. (B1)

Substituting the spectral decomposition (see e.g. Ref [38]),

χ(q, iωn) =

∫ ∞

−∞

dx

π

Imχ(q, x)

x − iωn
, (B2)
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where χ(q, ω) is given by Eq (6), and summing over iωn, we obtain

Σ(p, iǫn) = g2

∫

dq

(2π)2

∫ ∞

−∞

dx

2π
Imχ(q, x)

coth x
2T − tanh

εp+q

2T

iǫn + x − εp+q
. (B3)

The integral over x is restricted by Imχ(q, x) to the region x . ωsfξ
−2. For ωsfξ

−2 ≪ T , coth x
2T ≈ 2T/x, tanh

εp+q

2T
can be neglected, and Eq (B3) is approximated as

Σ(p, iǫn) ≈ g2Tχ0

∫

dq

(2π)2

∫

dy

π

ξ2

(1 + ξ2(q − Q)2)2 + y2

1

ωsfξ−2y + iǫn − εp+q
, (B4)

where y = ξ2x/ωsf . Performing the y-integral by closing the contour to avoid the pole from the electron propagator,

Σ(p, iǫn) = g2T

∫

dq

(2π)2
χ0

ξ−2 + (q − Q)2
1

iǫn + iωsfξ−2asgnǫn − εp+q
, (B5)

where a = (1+ ξ−2(q−Q)2) is a quantity of order 1, and iωsfξ
−2asgnǫn can be neglected compared to iǫn. This leads

to Eq (8) which was obtained in the static limit using Eq (7).
For the current vertex function in the leading order perturbation theory, the use of Eq (7) is also justified in the

same way as above; we can write an equation analogous to Eq (28), and then split the two fermion Green’s functions
as was done in Sec III.

Appendix C: Summary of the formulas in the mean-field theory of the spin density wave state

In this Appendix, we summarize the formulas of calculating the longitudinal and Hall conductivities in the mean-
field SDW state. In calculating these quantities, the spin index σ is irrelevant, giving an overall factor of 2, and will
be neglected. The mean-field Hamiltonian is

Hmf =
∑

p

εpc
†
pcp + ∆

∑

p

c†p+Qcp ≡
∑′

p

Ψ†
pĤpΨp, (C1)

with Q = (π, π), the two-component spinor Ψ†
p = (c†p, c

†
p+Q), and Ĥp =

(

εp ∆
∆ εp+Q

)

. The summation in the second

equality is over the magnetic Brillouin zone as indicated by the prime.
The imaginary-time (τ̃ ) electron Green’s function in the mean-field theory is defined as

Ĝ(p, τ̃ )ab = − < TτΨp,a(τ̃ )Ψ†
p,b(0) >, (C2)

with the corresponding retarded function

ĜR(p, ǫ) =
1

ǫ − Ĥp + i/2τ
=

(

ǫ − εp+Q + i/2τ ∆
∆ ǫ − εp + i/2τ

)

(ǫ − εp + i/2τ)(ǫ − εp+Q + i/2τ) − ∆2
, (C3)

where we have introduced a finite lifetime τ .
The real part of the longitudinal conductivity σxx(Ω) is given by

Reσxx(Ω) = 4σQ

∑′

p

∫ ∞

−∞

dω

2π

f(ω) − f(ω + Ω)

Ω
Tr
{

v̂x
p Im[ĜR(p, ω)]v̂x

p Im[ĜR(p, ω + Ω)]
}

, (C4)

where v̂x
p =

(

vx
p 0
0 vx

p+Q

)

. Fig 10 (a) shows Reσxx(Ω) in the mean-field theory for ∆ = 0.3t (solid line) and 0.6t

(dashed line).
The imaginary part of the Hall conductivity is given by55,58

Imσxy(Ω) =
π

2
σQ

Ba2

Φ0

1

Ω

∑′

p

{

2
∑

s=1

Rintra(s)
p ImΠ

intra(s)
R (p, Ω) +

4
∑

s=1

Rinter(s)
p ImΠ

inter(s)
R (p, Ω)

}

, (C5)
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FIG. 10: The conductivities in the mean-field theory. (a): Reσxx(Ω) obtained from Eq (C4) with ∆ = 0.3t (solid line) and
∆ = 0.6t (dashed line). (b): Imσxy(Ω) obtained from Eq (C5) with ∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line).

where

ImΠ
intra(1)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]

×
{

ReG+(p, ω + Ω)A+(p, ω + Ω)A+(p, ω)

− ReG+(p, ω)A+(p, ω)A+(p, ω + Ω)
}

,

(C6)

ImΠ
intra(2)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]

×
{

ReG−(p, ω + Ω)A−(p, ω + Ω)A−(p, ω)

− ReG−(p, ω)A−(p, ω)A−(p, ω + Ω)
}

,

(C7)

ImΠ
inter(1)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]

×
{

ReG+(p, ω + Ω)A+(p, ω + Ω)A−(p, ω)

− ReG+(p, ω)A+(p, ω)A−(p, ω + Ω)
}

,

(C8)

ImΠ
inter(2)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]

×
{

ReG−(p, ω + Ω)A−(p, ω + Ω)A+(p, ω)

− ReG−(p, ω)A−(p, ω)A+(p, ω + Ω)
}

,

(C9)
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ImΠ
inter(3)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]/2

×
{

(

ReG+(p, ω + Ω)A−(p, ω + Ω)

+ ReG−(p, ω + Ω)A+(p, ω + Ω)
)

A+(p, ω)

−
(

ReG+(p, ω)A−(p, ω)

+ ReG−(p, ω)A+(p, ω)
)

A+(p, ω + Ω)

}

,

(C10)

ImΠ
inter(4)
R (p, Ω) =

∫ ∞

−∞

dω

2π
[f(ω) − f(ω + Ω)]/2

×
{

(

ReG+(p, ω + Ω)A−(p, ω + Ω)

+ ReG−(p, ω + Ω)A+(p, ω + Ω)
)

A−(p, ω)

−
(

ReG+(p, ω)A−(p, ω)

+ ReG−(p, ω)A+(p, ω)
)

A−(p, ω + Ω)

}

,

(C11)

Rintra(1)
p = (E+y

p )2E+xx
p + (E+x

p )2E+yy
p − 2E+x

p E+y
p E+xy

p , (C12)

Rintra(2)
p = (E−y

p )2E−xx
p + (E−x

p )2E−yy
p − 2E−x

p E−y
p E−xy

p , (C13)

Rinter(1)
p =sin2 2θp

(

hy
pgy

phxx
p + hx

pgx
phyy

p − hx
pgy

phxy
p − hy

pgx
phxy

p

)

+ sin2 2θp
hp

√

h2
p + ∆2

(

(hy
p)2hxx

p + (hx
p)2hyy

p − 2hx
phy

ph
xy
p

)

+
sin3 2θp

∆
(hx

pgy
p − hy

pg
x
p )2,

(C14)

Rinter(2)
p =sin2 2θp

(

hy
pgy

phxx
p + hx

pgx
phyy

p − hx
pgy

phxy
p − hy

pgx
phxy

p

)

− sin2 2θp
hp

√

h2
p + ∆2

(

(hy
p)2hxx

p + (hx
p)2hyy

p − 2hx
phy

ph
xy
p

)

− sin3 2θp

∆
(hx

pgy
p − hy

pg
x
p )2,

(C15)

Rinter(3)
p =sin2 2θp

(

(hy
p)2gxx

p + (hx
p)2gyy

p − 2hx
phy

pgxy
p

)

+ sin2 2θp

(

hy
pg

y
phxx

p + hx
pgx

phyy
p − hx

pgy
phxy

p − hy
pg

x
phxy

p

)

+ sin2 2θp
2hp

√

h2
p + ∆2

(

(hy
p)2hxx

p + (hx
p)2hyy

p − 2hx
phy

ph
xy
p

)

+ 2
sin3 2θp

∆
(hy

pgx
p − hx

pgy
p)2,

(C16)
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Rinter(4)
p =sin2 2θp

(

(hy
p)2gxx

p + (hx
p)2gyy

p − 2hx
phy

pgxy
p

)

+ sin2 2θp

(

hy
pg

y
phxx

p + hx
pgx

phyy
p − hx

pgy
phxy

p − hy
pg

x
phxy

p

)

− sin2 2θp
2hp

√

h2
p + ∆2

(

(hy
p)2hxx

p + (hx
p)2hyy

p − 2hx
phy

ph
xy
p

)

− 2
sin3 2θp

∆
(hy

pgx
p − hx

pgy
p)2.

(C17)

In the above, we have introduced notations G±(p, ǫ) = 1/(ǫ−E±
p +i/2τ) with E±

p = gp±
√

h2
p + ∆2, gp = (εp+εp+Q)/2,

hp = (εp−εp+Q)/2, tan θp = (hp−
√

h2
p + ∆2)/∆, A±(p, ω) = −2ImG±(p, ω), and have used the short-hand notation

in which the superscript x, y on the energy functions denotes derivative with respect to the corresponding momentum,
e.g., E+x

p = ∂E+
p /∂px, E+xx

p = ∂2E+
p /∂p2

x, gx
p = ∂gp/∂px, gxy

p = ∂2gp/∂px∂py, · · · . Figure 10 (b) shows Imσxy(Ω) in
the mean-field theory for ∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line).

Appendix D: Explicit expression for Imσxy in the perturbation theory

We now present the explicit expression for Imσxy(Ω) in Sec IV,

Imσxy(Ω) =
π

2
σQ

Ba2

Φ0

1

Ω

∫

dp

(2π)2
Im
{

SR
1 − SR

2 + SR
3 + SR

4 − SR
5

}

, (D1)

where

ImSR
i (p, ω) =

∫ ∞

−∞

dǫ

2π

[

f(ǫ) − f(ǫ + ω)
]

Re
{

Ui1 − Ui2

}

, (D2)

with

U11 =
[

∂yΓx(p, ǫ+, ǫ + ω+)vy
p − ∂yΓy(p, ǫ+, ǫ + ω+)vx

p

]

×
[

GR(p, ǫ)∂xGR(p, ǫ + ω) − GR(p, ǫ + ω)∂xGR(p, ǫ)
]

, (D3)

U12 =
[

∂yΓx(p, ǫ−, ǫ + ω+)vy
p − ∂yΓy(p, ǫ−, ǫ + ω+)vx

p

]

×
[

GA(p, ǫ)∂xGR(p, ǫ + ω) − GR(p, ǫ + ω)∂xGA(p, ǫ)
]

, (D4)

U21 =
[

∂xΓx(p, ǫ+, ǫ + ω+)vy
p − ∂xΓy(p, ǫ+, ǫ + ω+)vx

p

]

×
[

GR(p, ǫ)∂yGR(p, ǫ + ω) − GR(p, ǫ + ω)∂yGR(p, ǫ)
]

, (D5)

U22 =
[

∂xΓx(p, ǫ−, ǫ + ω+)vy
p − ∂xΓy(p, ǫ−, ǫ + ω+)vx

p

]

×
[

GA(p, ǫ)∂yGR(p, ǫ + ω) − GR(p, ǫ + ω)∂yGA(p, ǫ)
]

, (D6)

U31 =
[

Γx(p, ǫ+, ǫ + ω+)vy
p − Γy(p, ǫ+, ǫ + ω+)vx

p

]

×
[

∂xGR(p, ǫ + ω)∂yGR(p, ǫ) − ∂xGR(p, ǫ)∂yGR(p, ǫ + ω)
]

, (D7)

U32 =
[

Γx(p, ǫ−, ǫ + ω+)vy
p − Γy(p, ǫ−, ǫ + ω+)vx

p

]

×
[

∂xGR(p, ǫ + ω)∂yGA(p, ǫ) − ∂xGA(p, ǫ)∂yGR(p, ǫ + ω)
]

, (D8)

U41 = vy
p (εxx

p+Qvy
p+Q − εxy

p+Qvx
p+Q)GR(p, ǫ)GR(p, ǫ + ω)I(p, ǫ+, ǫ + ω+), (D9)
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U42 = vy
p(εxx

p+Qvy
p+Q − εxy

p+Qvx
p+Q)GA(p, ǫ)GR(p, ǫ + ω)I(p, ǫ−, ǫ + ω+), (D10)

U51 = vx
p (εxy

p+Qvy
p+Q − εyy

p+Qvx
p+Q)GR(p, ǫ)GR(p, ǫ + ω)I(p, ǫ+, ǫ + ω+), (D11)

U52 = vx
p (εxy

p+Qvy
p+Q − εyy

p+Qvx
p+Q)GA(p, ǫ)GR(p, ǫ + ω)I(p, ǫ−, ǫ + ω+). (D12)

In writing these equations, we have used the notations ǫ± = ǫ± iδ, and ǫ+ω+ = ǫ+ω+ iδ. The analytically continued
vertex functions are

Γα(p, ǫ+, ǫ + ω+) = vα
p +

vα
p+Q

ω

(

ΣR(p, ǫ) − ΣR(p, ǫ + ω)
)

, (D13)

and

Γα(p, ǫ−, ǫ + ω+) = vα
p +

vα
p+Q

ω + i/τ

(

ΣA(p, ǫ) − ΣR(p, ǫ + ω)
)

. (D14)

The functions I(p, ǫ±, ǫ + ω+) are defined as

I(p, ǫ+, ǫ + ω+) = −γR(p, ǫ) + γR(p, ǫ + ω)

ω
− 2

ΣR(p, ǫ) − ΣR(p, ǫ + ω)

ω2
, (D15)

and

I(p, ǫ−, ǫ + ω+) = −γA(p, ǫ) + γR(p, ǫ + ω)

ω + i/τ
− 2

ΣA(p, ǫ) − ΣR(p, ǫ + ω)

(ω + i/τ)2
, (D16)

where γA,R(p, ǫ) = ∂ΣA,R(p, ǫ)/∂ǫ. The real part of σxy(Ω) is obtained via the Kramers-Krönig relation, Eq (14),
with ΣR

if replaced by σxy.
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