This is the accepted manuscript made available via CHORUS. The article has been published as:

Vibrational spectrum of the endohedral \(\text{Y}_{2}\text{C}_{2}@\text{C}_{92} \) fullerene by Raman spectroscopy: Evidence for tunneling of the diatomic \(\text{C}_2 \) molecule

Brian G. Burke, Jack Chan, Keith A. Williams, Timothy Fuhrer, Wujun Fu, Harry C. Dorn, Alexander A. Puretzky, and David B. Geohegan

Phys. Rev. B **83**, 115457 — Published 29 March 2011

DOI: [10.1103/PhysRevB.83.115457](https://doi.org/10.1103/PhysRevB.83.115457)
Vibrational spectrum of the endohedral $Y_2C_2@C_{92}$ fullerene by Raman spectroscopy: Evidence for tunneling of the diatomic C_2 molecule

Brian G. Burke,1,* Jack Chan,1 Keith A. Williams,1 Timothy Fuhrer,2 Wujun Fu,2 Harry C. Dorn,2 Alexander A. Puretzky,3 and David B. Geohegan3

1Department of Physics, University of Virginia, Charlottesville, Virginia 22904
2Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
3Materials Science and Technology Division, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

The structure and vibrational spectrum of the novel endohedral fullerene $Y_2C_2@C_{92}$ was studied by Raman spectroscopy, with particular emphasis on the rotational transitions of the diatomic C_2 unit in the low energy Raman spectrum. We report evidence for tunneling of this unit through the C_2 rotation plane and observe anomalous narrowing in a hindered rotational mode. We also report complementary density functional theory (DFT) calculations that support our conclusions and discuss potential applications to quantum computing and nonvolatile memory devices.

PACS numbers: Valid PACS appear here

Keywords: endohedral fullerenes, metallofullerenes, quantum rotator, raman spectroscopy, yttrium, tunneling

I. INTRODUCTION

Endohedral fullerenes1 or endofullerenes created by arc-vaporization2 have been shown to encapsulate clusters of the form M_2C_2 ($M = Sc$, Y, and several lanthanides)3. Within these molecules, entirely novel core species are stable and generate completely new behavior. Recently, these materials have shown promise for numerous applications including electronic devices4, organic solar cells5, components for spin-based quantum computing6,7, and for medical purposes as labels and therapeutic agents8–22. The fullerene cage (less than 1 nm in diameter) acts to protect the interior complex and can provide ways of maintaining selected properties of the clusters, such as magnetism, fluorescence, and radioactivity, while the endofullerene is functionalized. Endohedral clusters are able to donate additional free electrons to the cage and carrier conduction through encapsulated ions has been observed in endofullerene FETs4. Endofullerene LUMO energies are much higher than other organic solar cells, which provide higher open circuit voltages and device efficiencies5. Additionally, the electron spin of certain endofullerenes has a remarkably long lifetime, which is useful for qubits in quantum computation6.

In these materials, the interaction between the endohedral core cluster and the carbon cage gives rise to interesting dynamics that may be studied by Raman and NMR spectroscopy. For example, spectroscopic analyses of $Sc_2C_2@C_{84}$23 and $Gd_2C_2@C_{92}$3,24,25 have been reported in the past. Here, we present a detailed Raman spectroscopic analysis of $Y_2C_2@C_{92}$, including temperature dependence. This new molecule is of particular interest to molecular physics and chemistry because of the unique interaction of the carbide with the Y_2 core and cage structure, as well as the unexpected mode narrowing of hindered rotational modes. Furthermore, to the best of our knowledge, this is the first indication of tunneling in this particular molecule and we discuss possible uses of this tunneling in nonvolatile memory devices.

The $Y_2C_2@C_{92}$ molecules were prepared26, isolated27, and characterized26 through NMR spectroscopy in Prof. Dorn’s group at Virginia Tech. X-ray diffraction results of $Gd_2C_2@C_{92}$3 were used to determine the structure of $Y_2C_2@C_{92}$ through DFT calculations. The structure was calculated by hybrid DFT (B3LYP) utilizing the SCF basis set in the Gaussian 03 package29 and found to be $Y_2C_2@D_4h(85)−C_{92}$ with a planar Y_2C_2 unit (Figure 1). The DFT calculations give 1.27 Å and 4.82 Å for the C−C and Y−Y distances, respectively. Knowledge of the bond length of the carbide allows one to calculate the moment of inertia and subsequently the rotational constant B.

II. EXPERIMENT AND RESULTS

Raman microspectroscopy is a powerful technique to study endohedral fullerenes, due to its sensitivity to core−cage interactions and ability to analyze picogram samples. For Raman studies, 10 µg of $Y_2C_2@C_{92}$ were suspended in carbon disulfide (CS_2, 99.999%, Sigma-Aldrich) and used to dropcoat a gold-covered silicon substrate. The resulting polycrystalline films were dried under ambient conditions and placed in an Oxford (MICROHR2) liquid helium optical cryostat. Raman spectra were studied with 632.8 nm excitation from a HeNe laser. The scattered light was collected in the backscattering geometry by a triple-axis spectrometer (Jobin Yvon Horiba, T64000) equipped with a liquid
FIG. 1: [color online] (Left) Structure of \(\text{Y}_2\text{C}_2@\text{D}_3(85)−\text{C}_{92} \) with planar \(\text{Y}_2\text{C}_2 \) unit calculated by DFT. (Right) Simulated DFT butterfly mode, where the two yttrium atoms move in a flapping motion around the carbide base.

nitrogen cooled CCD detector. A resolution of 0.7 cm\(^{-1} \) (1800 gr/mm) was used for all Raman measurements and all measurements used 2.5 mW/cm\(^2\) laser power and 30 min. accumulation time. Measurements were performed at selected temperatures from 4.2 K to 300 K.

The Raman spectra observed for \(\text{Y}_2\text{C}_2@\text{C}_{92} \) can be separated into three regions: \(\text{C}_{92} \) cage modes, \(\text{Y}_2\text{C}_2−\text{cage} \) modes, and low energy rotational modes, attributed to a free non-rigid \(\text{C}_2 \) rotor. Figure 2 shows the Raman spectra of \(\text{Y}_2\text{C}_2@\text{C}_{92} \) at selected temperatures. Radial \(\text{C}_{92} \) modes exist above 195 cm\(^{-1} \) and the \(\text{H}_6(1) \) squashing mode is identified at 200.0 cm\(^{-1} \). Below 195 cm\(^{-1} \), two peaks are observed at 163.6 and 182.6 cm\(^{-1} \) indicating a hindered rotation due to the interaction of \(\text{Y}_2\text{C}_2 \) to the \(\text{C}_{92} \) cage. From DFT calculations, the prominent peak at 163.6 cm\(^{-1} \) is identified as a butterfly mode (Figure 1), since the two yttrium atoms move in a flapping motion around the carbide base. The \(\text{Y}_2\text{C}_2 \) butterfly mode interacts with the \(\text{C}_{92} \) cage differently than other \(\text{Y}_2\text{C}_2 \) modes. As the temperature decreases below 200 K, the mode becomes narrower, the linewidth decreases. This implies that a \(\text{C}_{92} \) cage freezing transition has occurred, which then strengthens the interactions between the core complex and the cage. Additionally, the butterfly mode has an observable temperature dependence compared to the \(\text{C}_{92} \) cage modes which remain roughly unchanged. Other groups have seen evidence for the formation of a \(\text{M}_2\text{C}_2−\text{cage} \) interaction\(^{23,24} \), which reduces the cage symmetry, and have observed mode narrowing, indicated by an increase in intensity and a decrease in linewidth (FWHM).

FIG. 2: Low energy Raman spectra of \(\text{Y}_2\text{C}_2@\text{C}_{92} \) taken at selected temperatures indicating radial \(\text{C}_{92} \) modes, hindered rotational modes due to the coupling of the core complex to the cage, and rotational modes of a free non-rigid \(\text{C}_2 \) rotor (asterisk indicates a plasma line).

Several rotational transitions become apparent as the temperature is decreased and other hindered modes become more intense and the linewidths narrow. In particular, the butterfly mode at 163.6 cm\(^{-1} \) undergoes anomalous mode narrowing compared to the relevant \(\text{C}_{92} \) modes and rotational modes, whose linewidth (FWHM) and intensity remains relatively constant as the temperature decreases. The temperature dependence of the butterfly mode follows an empirical and phenomenological power law that can be modeled by

\[
\Gamma = \Gamma_0 + AT^\gamma, \quad (1)
\]
where $\Gamma_0 = 1.36 \pm 0.04 \text{ cm}^{-1}$, $A = 9.94 \times 10^{-6} \pm 3.26 \times 10^{-6} \text{ (cm-K)}^{-1}$, and $\gamma = 2.58 \pm 0.03$. The widths of the butterfly mode as well as two other modes, the H$_2$(1) cage mode and the lowest C$_2$ rotational mode, are plotted as a function of temperature in Figure 3. The anomalous mode narrowing we observe for the butterfly mode is reminiscent of the Dicke effect or collisional narrowing30,31, which has been observed in other systems such as Rb87 atoms in spherical storage cells32 and O$_2$ in nanoporous Al$_2$O$_3$33. Our data suggests that at high temperatures, the linewidth is controlled by thermal Doppler broadening and intermolecular collisions33, whereas the narrowing mechanism may control the linewidth at lower temperatures.

FIG. 3: The width (FWHM) of three Raman modes plotted against temperature. The butterfly mode (163.6 cm$^{-1}$) undergoes a mode narrowing as the temperature decreases and can be modeled by a power law. Other modes show no significant change in width or intensity as the temperature is lowered.

Low energy quantized rotational states of a free non-rigid C$_2$ rotor are identified from 24–107 cm$^{-1}$. Similar spectra have been observed in Sc$_2$C$_2$@C$_8$ for a C$_2$ plane rotor, as well as a C–C stretch vibration at 1745 cm$^{-1}$123. For a free non-rigid C$_2$ rotor, the energy eigenvalues are given by

$$E(J) = BJ(J + 1) - DJ^2(J + 1)^2, \quad (2)$$

where B(cm$^{-1}) = \frac{27.3865 \times 10^{-47}}{I_C(\text{kg} \cdot \text{m}^2)}$ is the rotational constant, $I_C = \frac{1}{2}m_C R_C^2$, is the moment of inertia, and $D = \frac{4B^3}{\omega^2}$. The value of $R_C = 1.27 \text{ Å}$ determined by our DFT calculations gives a value of $B = 1.73 \text{ cm}^{-1}$. The factor D accounts for the centrifugal force, but since the vibrational frequency $\omega = 1745 \text{ cm}^{-1}$ is so high, we may disregard the second term of $E(J)$.

As the temperature is lowered from room temperature, rotational peaks appear and become less broadened. In Figure 4, the experimental data (open circles) at 4.2 K have been fitted using Lorentzian functions and the values are listed in Table I. These values correspond to the even rotational states of a freely rotating C$_2$ molecule and follow the Raman selection rule $\Delta J = \pm 2$.34 A comparison of these values is shown in Table I.

TABLE I: Comparison of experimental low energy Raman peaks with the calculated rotational states of a freely rotating C$_2$ molecule. Raman transitions are shown in parentheses. The experimental values were determined from the 4.2 K data set. Calculated values were determined from $B = 1.73 \text{ cm}^{-1}$ and $\Delta J = \pm 2$.

<table>
<thead>
<tr>
<th>Experiment (cm$^{-1}$)</th>
<th>Free C$_2$ rotor (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2</td>
<td>24.2 (2 → 4)</td>
</tr>
<tr>
<td>42.2</td>
<td>38.1 (4 → 6)</td>
</tr>
<tr>
<td>57.0</td>
<td>51.9 (6 → 8)</td>
</tr>
<tr>
<td>66.9</td>
<td>65.7 (8 → 10)</td>
</tr>
<tr>
<td>106.1</td>
<td>107.3 (14 → 16)</td>
</tr>
</tbody>
</table>

An unperturbed rotational state can only be observed if the rotational barriers are $\approx 0 \text{ eV}$. Due to the charge coupling interaction between the carbide and yttrium atoms, an effective potential barrier must be considered. Additionally, there appears to be a repulsive cage contribution due to charge coupling interactions near 6–6–5 intersections (Figure
FIG. 4: [color online] (Top) Analysis of low energy Raman rotational lines of \(Y_2C_2@C_{92} \) taken at 4.2 K indicating the even rotational levels of a free non-rigid \(C_2 \) rotor (asterisk indicates a plasma line). (Bottom) Motif of 6–6–5 cage intersections (identified in grey), which provide a repulsive rotational barrier to the \(Y_2C_2 \) complex.

4). From DFT calculations, we observe an average rotational barrier of \(V_0 = 107.7 \) meV after every 120° of rotation around the \(C_2 \) rotation plane (Figure 5). Therefore, we can denote this rotational barrier as \(V(\theta) = V_0 \cos^2(1.5\theta) \). This energy barrier explains the slight deviation of the peak Raman values from the theoretical free \(C_2 \) rotor.

A combination of Raman and recent NMR spectral data\(^2\), which identifies a triplet state (1:2:1) for \(C_2 \), and DFT calculations explains the complex rotational and vibrational motion of the \(Y_2C_2 \) cluster in the \(Y_2C_2@C_{92} \) molecule. As indicated in Figure 5, the cluster undergoes a rotation that can be described as a carousel: the yttrium atoms are analogous to the axis of the carousel and the carbons of the carbide rotate around the axis. As one carbon of the \(C_2 \) unit moves up, the other moves down while rotating around the \(Y_2 \) axis in the \(C_2 \) rotation plane. This motion suggests the tunneling of the \(C_2 \) unit through the \(C_2 \) rotation plane. The \(Y_2 \) axis and \(C_2 \) axis are defined as the axis connecting the homopolar (\(A_2, A = Y, C \)) molecule which is coincident with the chemical bond.

The \(C_2 \) unit tunnels through three states perpendicular to the \(Y_2 \) axis (-60°, 0°, and 60°) at energy differences 0 meV, 79.3 meV, and 0 meV, respectively. There is a large amount of charge coupling between the core complex and the cage and any additional voltage applied to the cage will redistribute the charge isotropically. The electronic distribution of the endofullerene \(Y_2C_2@C_{92} \) may be approximated by the ionic model, \((Y_2C_2)^{4+}@C_{92}^-\). In this model, the yttrium ions exist in their usual \(Y^{3+} \) state, while the \(C_2 \) unit is considered an acetylide ion, \(C_2^- \), and the core complex transfers four electrons to the carbon cage to stabilize the molecule. An applied voltage to the cage, greater than the energy differences of the three \(C_2 \) orientations in the “0” state, would negate the \(Y_2C_2 \) interactions with the 6–6–5 cage intersections. The \(C_2 \) unit would cease to tunnel through the \(C_2 \) rotation plane, since the core complex would experience an isotropic rotation barrier instead of \(V(\theta) \).

By applying a small voltage (100 meV) to the cage, which should distribute isotropically and provide additional charge to the core, the \(C_2 \) unit would be excited into the “1” state, being completely perpendicular to the \(Y_2 \) axis. When the voltage is removed, the carbide would return to the “0” state and all three orientations would be accessible. This tunneling scheme could provide a single molecule memory device. The molecules can be arranged in arrays by functionalizing the cages and external voltages can be supplied by lithographically defining contacts or utilizing CNT wires\(^{35,36}\). Additionally, through nondestructive optical techniques, such as Raman or IR, when the external voltage is applied, there should exist an observable shift in the rotational \(C_2 \) modes. Specifically, in the “1” state, the Raman transition 4 → 6 should shift by 4.1 cm\(^{-1}\) to 38.1 cm\(^{-1}\) and the 6 → 8 transition should shift by 5.1 cm\(^{-1}\) to 51.9 cm\(^{-1}\).
III. CONCLUSIONS

We have described the structure and vibrational spectrum of Y$_2$C$_2$@C$_{92}$. The molecule was characterized by Raman spectroscopy and DFT molecular modeling. Radial cage modes, low energy Y$_2$C$_2$–cage modes, and rotational transitions of a diatomic C$_2$ unit were identified in the Raman spectra. We observed anomalous mode narrowing and a temperature dependence for a Y$_2$C$_2$ hindered rotational mode, identified as a butterfly mode. Experimental Raman peaks are slightly deviated from the theoretical free diatomic rotor values, which signifies a rotational barrier and tunneling of the C$_2$ unit. A triplet (1:2:1) in recent NMR data28 observed for C$_2$ further suggests the tunneling of the C$_2$ unit through the C$_2$ rotational plane. From DFT calculations, this tunneling is attributed to a rotational barrier, $V(\theta) = V_0 \cos^2(1.5\theta)$, caused by charge coupling interactions near 6–6–5 cage intersections. The rotational and vibrational motion of the Y$_2$C$_2$ cluster in the Y$_2$C$_2$@C$_{92}$ molecule functions as a carousel. To the best of our knowledge, this system is the first experimental observation of a freely rotating non-rigid C$_2$ diatomic rotor in endohedral fullerenes and the first to indicate tunneling of the C$_2$ unit.

IV. ACKNOWLEDGEMENTS

We are grateful for support of this work by the National Science Foundation [CHE-0443850 (H.C.D.), DMR-0507083 (H.C.D.)] and the National Institutes of Health [1R01-CA119371-01 (H.C.D.)]. A portion of this research at Oak Ridge National Laboratory’s Center for Nanophase Materials Science was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

* Corresponding Author: bgb9q@virginia.edu
