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We demonstrate that the electric field enhancement that occurs in a gap between two closely
spaced nanostructures, such as metallic nanoparticles, is the result of a transverse electromagnetic
waveguide mode. We derive an explicit semianalytic equation for the enhancement as a function of
gap size, which we show has a universal qualitative behavior in that it applies irrespective of the
material or geometry of the nanostructures and even in the presence of surface plasmons. Examples
of perfect electrically conducting and Ag thin-wire antennas and a dimer of Ag spheres are presented
and discussed.
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I. INTRODUCTION

Structures that generate large electric field enhancements relative to the incident field, hereon referred to as |E|2
enhancements, have recently received a great deal of attention1–10. This is because such enhancements are central to
a number of physical processes, including such surface-enhanced spectroscopy techniques as surface-enhanced Raman
scattering (SERS), second harmonic generation, and enhanced absorption and fluorescence1. Often the enhanced field
is generated in the small crevices of a roughened metal surface2 or at the junctions of closely spaced nanoparticles3–10.
Herein we focus on the latter structures, and while much is known about the |E|2 enhancements in them, there is still
confusion over fundamental principles. In particular, the functional dependence on gap size3,5,8,9, arguably the most
basic and important aspect, has not been quantitatively determined and the underlying physical principles which
determine it are not entirely known. It is the purpose of this paper to resolve this issue through finite element method
(FEM) calculations11 and an analytical theory developed for the transmission of light through an isolated slit in a
metal film12.

For two closely spaced nanostructures, the |E|2 enhancements in the resulting gap can in principle be explained
using antenna theory13,14, where the open-circuit voltage across the gap is responsible, and thus the systems are often
classified as such3,4. We therefore begin by considering a two-dimensional (2D) antenna as shown schematically in
Fig. 1. [The extension to three dimensions (3D) will be discussed below.] Two metal wires M with widths w are
separated by a distance a and the entire structure spans a length of h. The structure is illuminated from below at
normal incidence by a plane wave with wavelength λ, and we wish to determine how the |E|2 enhancement at the
center of the gap depends on a. It is important to realize that for a real metal and distances less than approximately
1 nm, nonlocal dielectric effects will become important15. Our quantitative analysis herein will therefore be for a ≥ 1
nm, but in most cases we will include smaller distances to highlight qualitative features. Antenna theory for a perfect
electrically conducting (PEC) thin-wire antenna (w � h) assumes that the incident electric field E0 generates an
alternating current along x, which results in an induced voltage V across h. If h ≈ nλ/2, where n is an integer, the
antenna resonates and V ≈ −E0h, where E0 is the amplitude of the incident field13. As a result, the open-circuit
voltage in the gap should produce a uniform |E|2 enhancement of |E|2/|E0|2 = |V/a|2/|E0|2 ≈ h2/a2. (Note that this
estimate ignores coupling between the gap and antenna ends that when rigorously included leads to a slightly weaker
a-dependence than 1/a2.)

FIG. 1: Schematic diagram of a thin-wire antenna. The parameters shown are discussed in the text.
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FIG. 2: |E|2 enhancements as a function of gap size for PEC thin-wire antennas with parameters given in the text. Solid lines
are used to connect the actual data points (symbols).

In order to test the above analysis, we rigorously determined the |E|2 enhancements via FEM calculations11 for
h = 250 and 500 nm thin-wire antennas (n = 1 and 2, respectively) with w = 5 nm at λ = 500 nm for gap sizes of
a = 0.125 to 10 nm. To characterize the a dependence, we can assume that |E|2/|E0|2 is proportional 1/ap and plot
the results on a log10-log10 scale to determine p; Fig. 2. For both antennas it is found that p ≈ 1.2 for a ≥ 1 nm, and
it is even less for smaller a, which is much lower than the above antenna theory prediction of p = 2. An alternative
way to describe these systems and the |E|2 enhancements that they exhibit is therefore needed.

II. THEORETICAL FRAMEWORK

The system in Fig. 1 can be greatly simplified by taking h → ∞, which below we will show does not significantly
affect the behavior of the electric field E in the gap. Maxwell’s equations can be solved analytically for such a system
(if the metal is a PEC), which is an isolated slit in a metal film, by appropriately expanding the transverse component
of the field (the y component of the magnetic field, in this case) above and below the film and inside of the gap in
terms of known functions and applying boundary conditions at the interfaces. While the full solution for this problem
has been implicitly worked out in terms of a system of linear equations12, we demonstrate that under a few reasonable
approximations it is possible to obtain a tractable semianalytical form for |E|2/|E0|2.

Inside the gap E can be defined entirely in terms of its x component Ex (below we will show that the z component Ez
is zero), which can be expanded as a superposition of forward and backwards propagating (and evanescent) waveguide
modes m,

Ex(x, z) =
∞∑
m=0

βm
k0

(
Ame

iβmz −Bme−iβmz
)
φm(x) , (1)

where Am and Bm are the respective modal amplitudes, k0 = 2π/λ, βm =
[
k2
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]1/2
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2/a1/2
)

cos [mπ (x+ a/2) /a] is the solution to the Helmholtz equation subject to PEC boundary conditions on
the gap sides at x = ±a/2. Am and Bm can be found by ensuring the continuity of Eq. (1) at the input (I) and
output (O) surfaces of the gap,
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where EIm and EOm are intensities of scattering events that take place at each of the surfaces, which can be determined
by solving a set of linear equations (see below)12.

Inside a gap that is small relative to the incident wavelength (k0a� 1), the only waveguide mode that can exist is
the m = 0 transverse electromagnetic (TEM) one16. In this case, there is no x dependence in Ex, Ez is zero, β0 = k0,
and the linear equations defining EI0 and EO0 simplify considerably,

EI0 = I0
f0 + g00

(f0 + g00)2 − (gv0)2
(4)

EO0 = − gv0
f0 + g00

EI0 (5)

where I0 = 4E0a
1/2 (for normal incident light) is the overlap amplitude of the incident field with the TEM mode,

f0 = i cot (k0w) is the admittance amplitude, gv0 = i csc (k0w) is the coupling amplitude between I and O, and

g00 =
4
a

∫ a/2

−a/2

∫ a/2

−a/2
dx dx′ G (x, x′) (6)

is the amplitude of the TEM mode’s self-interaction, where G (x, x′) = (k0/2)H(1)
0 (k0|x− x′|) is the 2D vacuum

Green’s function with H
(1)
0 being a Hankel function of the first kind. The maximum value that k0|x − x′| can take

is k0a. Since k0a � 1, we can make the small-argument approximation in H
(1)
0 and perform the integral in Eq. (6)

analytically,

g00 = 2k0a (1 + il) (7)

where l = (2/π) [ln (k0a/2) + γ − 3/2] with γ being Euler’s constant.
For a gap with a small width relative to the incident wavelength (k0w � 1) we can use the small-angle approximation

in Eqs. (2) and (3) to greatly simplify Eq. (1),

Ex(z) = 8E0
f0 + g00

(f0 + g00)2 − (gv0)2

[
1− z

w

(
1− f0

f0 + g00

)]
. (8)

Note that the approximation g00 � 2f0 was also used to get Eq. (8), which is valid considering that the leading terms
are k0a and 1/k0w, respectively.

At the center of the gap (z = w/2) Eq. (8) simplifies even further,

Ex (w/2) = 8E0
1

2g00 + u
(9)

where u = f0 − (gv0)2 /f0 = −i tan (k0w) ≈ −ik0w. Equation (9) shows that at the center of the gap E is inversely
proportional to the interference between two terms, the self-interaction term g00, which depends only on k0a, and a
term u representing the interference between surfaces I and O, which depends only on k0w.

Using the explicit expressions for g00 and u in Eq. (9) and calculating |E|2/|E0|2 gives

|E|2/|E0|2 = |Ex (w/2) |2/|E0|2 =
64

16 (1 + l2) (k0a)2 + 8l (k0a) (k0w) + (k0w)2
. (10)

Note that Eq. (10) is in terms of the dimensionless quantities k0a and k0w. Since our focus is on the dependence of
|E|2 with a, we will consider cases in which k0 and w are kept fixed.

III. APPLICATIONS

For gaps with a not very small relative to w (greater than approximately 1 nm for the thin-wire antennas discussed
above), E depends primarily on g00 and |E|2/|E0|2 ≈ 64/

[
16
(
1 + l2

)
(k0a)2

]
. Because the enhancement is of the form

1/l2a2, we would expect a 1/ap fit to not work at all. However, over a couple order of magnitude range of a values
l ∼ ln (k0a/2) is well-approximated by A (k0a/2)b, where A and b are constants that can be determined by demanding
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FIG. 3: |E|2 enhancements as a function of gap size for a 3D Ag thin-wire antenna and a dimer of Ag spheres with parameters
given in the text. Solid lines are used to connect the actual data points (symbols).

that this equality and a corresponding one involving its derivative be satisfied at some value of k0a/2. With these
constraints one finds that b = 1/ ln (k0a/2), which varies slowly with k0a/2. For λ = 500 nm and 1 ≤ a ≤ 10 nm,
b ≈ −0.25 and therefore 1/l2a2 ∼ 1/a1.5, which is consistent with p ≈ 1.2 found for the thin-wire antennas in Fig. 2.
For small gaps both a2 and l2a2 go to zero, which means that E depends primarily on u and |E|2/|E0|2 ≈ 64/ (k0w)2.
Therefore, for a� w we expect a turnover to a weaker 1/ap dependence, which is also consistent with the results in
Fig. 2. Actual |E|2 enhancements calculated using Eq. (10) for a = 0.125 to 10 nm, w = 5 nm, and λ = 500 nm are
shown in Fig. 2 as well, and are in agreement with these remarks.

The strong agreement between the modal and thin-wire antenna results in Fig. 2 suggests that the |E|2 enhancements
in both cases arise from the same effect, a TEM waveguide mode. The former does show a slightly stronger 1/ap
dependence, but this can be understood as follows. Recall that the amplitude for coupling incident light into this
mode is proportional to their overlap; see Eq. (4). In a finite structure, such as a thin-wire antenna, some of the
impinging incident light can be effectively lost via scattering, leading to a less efficient coupling into the TEM mode
and a weaker 1/ap dependence. Quantitatively, the amount of scattering is given by the scattering efficiency Qsc (the
ratio of the scattering cross section to the geometric one). In the modal results Qsc is naturally 0, since the geometric
cross section is infinite. For a finite structure, however, Qsc ≥ 0. For example, the resonant antennas h = 500 and 250
nm have similar Qsc values of 1.953 and 1.915, respectively, at a = 2 nm. For an off-resonance condition we expect
less scattering, and in fact this is what is numerically found for h = 175 nm. In this case, Qsc = 0.931 nm (at a = 2
nm) and the 1/ap dependence is indeed stronger than for the two resonant antennas.

Thusfar we have considered 2D systems. While such structures are experimentally realizable, in most cases (e.g.,
typical SERS substrates) structures are 3D in character. Nonetheless, our analysis remains valid and Eq. (10) should
still apply (qualitatively, at least). This is because the TEM waveguide mode suggested as responsible for the |E|2
enhancements also exists in 3D. The only requirement to support a propagating electromagnetic wave is that an
oscillating potential difference be established between the walls supporting the wave (e.g., the sides of a gap)17. In
addition to 3D, actual structures are comprised of a real metal, typically Ag or Au at optical frequencies due to
possible increases in |E|2 enhancements via surface plasmon (SP) excitations7,10. Furthermore, such structures often
have a more complex geometry than a pair of thin wires. Neither of these issues are addressed directly by Eq. (10).
Although, based on the discussion above about Qsc, it is reasonable to suspect that the dominant effect of both of
these issues is that there may be wavelength dependent modulations to the 1/ap dependence, due to corresponding
dependencies in the absorption efficiency (Qabs) and Qsc on both the material and geometry of the structures18.
However, the overall trends and underlying physical principles should remain the same, which we confirm below.

As a first example of the applicability of our analysis to real 3D structures, FEM was used to calculate the 1/ap
dependence at the center of a 3D Ag thin-wire antenna with h = 250 nm and w = 5 nm (both in and out of the plane
of Fig. 1) at λ = 500 nm; Fig. 3. It is found that p is again approximately 1.2, which is nearly equal to the analogous
2D PEC thin-wire antenna results in Fig. 2 and is consistent with a recent experimental and numerical study of
the a-dependence in Au bowtie structures19. Further similarity to the PEC results comes from the behavior as a
decreases, where the 1/ap dependence again becomes weaker, as can be inferred from the curvature of the actual data
relative to the linear fit. Interestingly, Fig. 3 shows that the actual magnitude of |E|2 for the Ag thin-wire antenna
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FIG. 4: Intensities of |E|2 and the incident component of E, |Ex|2, in the gaps of a 3D Ag thin-wire antenna (top) and Ag
sphere dimer (bottom) with parameters discussed in the text. The inset white scale bars correspond to 1 nm. Note that the
intensity values have been rescaled relative to Fig. 3 to fit clearly on the same scale, and the fields inside of the structures have
been set to 0.

is lower than the analogous PEC one (Fig. 2). Nonetheless, in both cases once the magnitude of |E|2 is known for a
particular value of a Eq. (10) can be used to accurately calculate the magnitude at any other value.

It is possible to verify the existence of a TEM waveguide mode by looking at profiles of E inside the gap, as for
normal incident linearly-polarized light this mode has the same polarization. Figure 4 shows the fields inside the
gap of the antenna discussed above for a = 2 nm, and it can be seen that this is indeed the case, as |E|2 ≈ |Ex|2.
(Note that |Ey|2 and |Ez|2 are both less than 1 on the scale in Fig. 4.) In fact, it has recently been demonstrated
experimentally that electromagnetic fields inside the gaps of nanostructures are linearly polarized, even in more
complex ones than discussed here20. In the context of plasmonics, the fundamental waveguide mode is often referred
to as a gap-plasmon21–23. However, it is important to note that Figs. 2 – 4 demonstrate that the mode under discussion
does not depend on the existence of surface plasmons.

As a further and final example of the applicability of our analysis to real 3D structures, |E|2 enhancements as
a function of gap size were calculated for a dimer of 250 nm diameter Ag spheres at λ = 633 nm (a popular type
of experimental system and common laser wavelength6); Fig. 3. The 1/ap dependence in this case is found to be
characterized by p ≈ 1.3, which is nearly equal to the modal result of p ≈ 1.4, and slightly greater than the somewhat
analogous thin-wire antenna result in Fig. 3. The stronger 1/ap dependence is related to the fact that this structure
is more efficient for capturing light18, as indicated by Qabs = 0.200 as opposed to 0.087 for the thin-wire antenna,
for example. Field profiles inside the gap again indicate the presence of a TEM waveguide mode; Fig. 4. Looking
closely at Fig. 3 reveals that there is a much less strong turnover to a weaker 1/ap dependence for smaller a than
was seen for any of the other structures. Such behavior is understandable considering that w is effectively zero in
this case (there is only a single point of minimum approach), which can lead to |E|2 being unbounded as a → 0
[lima→0

(
1 + l2

)
(k0a)2 = 0; see Eq. (10)]. It is quite remarkable that the simple analysis derived for a 2D PEC film

with an isolated slit is so accurate when applied to full 3D structures of other geometries, and even in the presence of
SPs.

IV. SUMMARY

In summary, through a combination of semianalytical analysis and numerical calculations we explored the fundamen-
tal behavior of |E|2 enhancements that occurs in the gaps between closely spaced nanostructures. We demonstrated
a universal behavior in the variation with gap size a of the form 1/ap with p ≈ 1.2 – 1.5, which is weaker than the
result expected based on simple antenna theory arguments of 1/a2. Furthermore, we demonstrated that the confined
fields always display characteristics of a TEM waveguide mode. These general features were shown to occur irre-
spective of the geometry of the nanostructures, and are applicable to both perfect conductors as well as metals that
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support surface plasmons. These results should prove useful for a fundamental undertanding of |E|2 enhancements
and applications that depend critically on them, such as SERS.
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10 J. P. Kottmann and O. J. F. Martin, Opt. Express 8, 655 (2001).
11 J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, Inc.: New York, 2002), 2nd ed.
12 J. Bravo-Abad, L. Mart́ın-Moreno, and F. J. Garćıa-Vidal, Phys. Rev. E 69, 026601 (2004).
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