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In mean-field-theory bilayer graphene’s massive Dirac fermion model has a family of broken inversion sym-

metry ground states with charge gaps and flavor dependent spontaneous inter layer charge transfers. We use a

lattice Hartree-Fock model to explore the lattice scale physics of graphene bilayers which has a strong influence

on ordering energy scales and on the competition between distinct ordered states. We find that inversion sym-

metry is still broken in the lattice model and estimate that the transferred areal densities are ∼ 10−5 electrons

per carbon atom, that the associated energy gaps are ∼ 10−2eV, that the ordering condensation energies are

∼ 10−7eV per carbon atom, and that the differences in energy between competing ordered states are ∼ 10−9eV

per carbon atom. We find that states with a quantized valley Hall effect are lowest in energy, but that the cou-

pling of an external magnetic field to spontaneous orbital moments favors the broken time-reversal-symmetry

states that have quantized anomalous Hall effects. Our theory predicts non monotonic behavior of the band gap

at neutrality on the potential difference between layers, in qualitative agreement with recent experiments.

PACS numbers: 71.10.-w, 71.15.Nc, 71.15.Ap, 73.22.Gk, 73.22.Pr, 73.43.-f

I. INTRODUCTION

Recent experimental progress1,2 in isolating and measur-
ing the electronic properties of graphene single and multilay-
ers has opened a new topic in two-dimensional electron sys-
tem (2DES) physics3. Electronic wavefunctions in graphene
systems are often described using a pseudospin language in
which the spinors specify wavefunction components on differ-
ent sublattices. Although the properties of graphene 2DES’s
can often be successfully described using an effective non-
interacting electron model, studies of electron-electron in-
teractions effects have revealed some qualitative differences
compared to ordinary 2DES’s4,5 that are related to these sub-
lattice pseudospin degrees-of-freedom.

In the case of AB stacked bilayer graphene, there are four C
sites and four π-orbitals per unit cell, but two of these are re-
pelled from the neutral system Fermi level by interlayer hop-
ping. This circumstance leads to a low-energy massive chiral
fermion model6 with two-component spinors, and a crystal-
momentum ~p dependent pseudo-magnetic field with a magni-
tude that varies as p2 and an orientation angle twice as large
as the momentum orientation angle φ~p. Neutral system states
have one occupied pseudospin for each distinct set of momen-
tum, spin, and valley labels. Recently7 Min et al. pointed
out that when Coulombic electron-electron interactions are
added to the massive chiral fermion model, the mean-field the-
ory ground state pseudospins of each spin-valley flavor break
symmetry by rotating out of the x − y plane, developing ẑ

components with a common spontaneously chosen sign and
magnitudes which are larger at small p. Because the two-
sublattices from which the two-band-model pseudospins are
constructed are located in opposite layers, the broken symme-
try transfers charge between layers. It is therefore character-
ized in momentum space by a vortex with vorticity v = 2 and
a flavor-dependent core polarized along one of the polar di-
rections, and in real space by flavor-dependent uniform layer
polarization. Different members of the family of states are dis-
tinguished by the spin-valley flavor dependence of the sense

of layer pseudospin orientation in the momentum-space vor-
tex cores. The origin of the broken symmetry, which we refer
to here as pseudospin ferromagnetism,7 is the p2 pseudospin-
splitting at small p, which leads to infrared divergences9 in
particle-hole polarization loops, combined with the frustrat-
ing effect of pseudospin chirality which leads to relatively
stronger exchange interactions for ẑ-polarized pseudospins.

There have been a number of attempts to identify the na-
ture of electron interaction driven broken symmetry states in
bilayer graphene,7–17 which we address more fully in the dis-
cussion section of this paper. Because of the layer chirality
already present in the band-structure of bilayer graphene, bro-
ken symmetry states with condensates which produce gaps,
like those discussed in this paper, can be classified14,17 in a
manner which highlights the valley and spin dependent mo-
mentum space Berry curvatures of ordered state quasiparti-
cles. Momentum space Berry curvatures are in turn closely
related18,19 to the Hall responses of the system. Indeed, recent
experiments20 appear to demonstrate that bilayer graphene ex-
hibits a quantized quantum Hall effect in the absence of an ex-
ternal magnetic field. Over and above the basic science inter-
est following from the momentum space topology of bilayer
graphene ordered states, it is possible that they could play a
role in graphene electronics21 by introducing hysteresis and
dramatically enhancing the influence of gates on conductance.

In this article we report on a study of pseudospin ferromag-
netism in a π-orbital tight-binding model for bilayer graphene,
which is conveniently able to capture and establish the role of
some bilayer graphene π-band features neglected in the mas-
sive chiral fermion model. Our work improves over previous
analyses based on the continuum model by considering the
full four band Hamiltonian, using the full primitive cell when
sampling k-points to eliminate uncertainties related to ultravi-
olet cutoffs, and including lattice scale effects through atomic
form factors. We estimate that the density shift for each fla-
vor is ∼ 10−5 electrons per carbon atom, that the gaps are
∼ 10−2eV , that the total condensation energy is ∼ 10−7 eV per
carbon atom, and that the energy differences between com-
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peting ordered states is ∼ 10−9 eV per carbon atom. The
energy differences between competing ordered states, which
are between one to two orders or magnitude smaller than the
condensation energy, are sensitive to roughly estimated lat-
tice scale details of the model we employ. The competing
states are classified in the first place as either anomalous Hall
states, in which opposite valleys are polarized toward oppo-
site layers, or valley Hall states in which they are polarized
toward the same layer. We find that valley Hall states have
slightly lower energies. Because anomalous Hall states have
spontaneous orbital magnetism they are favored by external
magnetic fields. We estimate that, because the energy differ-
ences between states are very small, extremely weak fields are
sufficient to induced phase transitions between valley Hall and
anomalous Hall states. On the other hand potential differences
between layers favor valley Hall states. When the spin degree
of freedom is accounted for we find that the spontaneous en-
ergy gap in neutral bilayers first decreases and then increases
with potential difference, in qualitative agreement with exper-
iment.

In the following two sections we explain the model Hamil-
tonian we employ and some of the technical details of the
calculations we have carried out. The main results are pre-
sented in the Section IV where we introduce the topological
classification of solutions and use it to discuss the properties
of broken symmetry solutions for vanishing, moderate, and
strong externally controlled electric potential differences be-
tween the layers. (Below we refer to interlayer potential dif-
ferences, which always play a key role in graphene bilayer
physics, as potential biases.) We also discuss coupling to an
external magnetic field which can drive transitions between
competing states, some of which have broken time-reversal-
symmetry with associated anomalous Hall effects and orbital
magnetism.

We close the paper with a summary and some suggestions
for further research.

II. FOUR-BAND π-ORBITAL TIGHT-BINDING MODEL

OF BILAYER GRAPHENE

We describe bilayer graphene using a lattice model with
one atomic 2pz orbital per carbon site. We write the model’s
Bloch basis states in the form

ψkκ (r) =
1√
N

∑
i

eik(Ri+τκ )φ (r−Ri − τκ) , (1)

where N is the total number of unit cells in the system, φ (r)
is the band’s Wannier wavefunction, and κ labels the carbon
site with position τκ relative to a the triangular lattice vec-
tor Ri. (We comment later on the possible role of screen-
ing effects from the p and s orbitals which form the σ and
σ∗ bonds neglected in this model.) Following the convention
used in Refs.[6,22], we use the notations A, B, Ã, B̃ for the
four sublattice indexes κ , where B and Ã are the opposite-
layer near-neighbor-pair sites. With this convention, the four
band tight-binding model Hamiltonian of a graphene bilayer

is:

H0 =




0 γ0 f γ4 f γ3 f ∗

γ0 f ∗ 0 γ1 γ4 f

γ4 f ∗ γ1 0 γ0 f

γ3 f γ4 f ∗ γ0 f ∗ 0


 (2)

where

f (k) = eikya/
√

3

(
1 + 2e−i3kya/2

√
3 cos

(
kxa

2

))
(3)

with a = 2.46Å arises from a sum over the three near-neighbor
hops within a layer. We have neglected differences in on-
site energies and next nearest neighbor hopping processes
which give rise to electron-hole asymmetry and do not play
an important role in pseudospin ferromagnetism. The tight-
binding model parameters γi should not be confused with
the Slonczewski-Weiss, McClure23 model parameters for bulk
graphite, despite the obvious similarities in notation. In our
calculations we adopt conventions similar to those of Ref.[24]
for bilayer graphene, taking the values γ0 = −3.12 eV , γ1 =
−0.377, γ3 = −0.29 eV and γ4 = −0.12 eV for the hopping
parameters. Only the intralayer nearest neighbor (γ0) process
and interlayer tunneling (γ1) process are retained in the min-
imal tight-binding model. The trigonal warping (γ3) process

which connects the A and B̃ sites is responsible for the lead-
ing circular symmetry breaking near the valley points, while

the (γ4) process which connects A and Ã sites influences the
intralayer charge imbalance between sublattices A and B.

III. LATTICE MODEL MEAN-FIELD THEORY

Because of the importance5 of non-local exchange
in graphene systems, a Hartree-Fock mean-field theory
approximation25 is a natural first step in considering electron-
electron interaction effects. When Coulomb interactions are
added to the π-band tight-binding model the interaction terms
in the mean-field Hamiltonian take the form:

V HF = ∑
kλ λ ′

Uλ λ ′
H Nλ ′c

†
kλ ckλ −W X

kλ ′λ c
†
kλ ckλ ′ (4)

where λ is a composite label for sublattice κ and spin σ . The
first term on the right hand side of Eq. (4) is the Hartree term:

Nλ = Nκσ = ∑
k′

〈
c

†
k′λ ck′λ

〉
= ∑

k′
nk′λ (5)

Uλ λ ′
H =

δσ ,σ ′

A
∑
G

exp [iG(τκ − τκ ′)]
∣∣∣ f̃ (|G|)

∣∣∣
2

V κκ ′
(|G|) , ,(6)

where G is a reciprocal lattice vector. The second is the Fock
(exchange) term:

W X
kλ λ ′ = ∑

k′
Uκκ ′

X

(
k′−k

)〈
c

†
k′λ ′ck′λ

〉
(7)

Uκ κ ′
X (q) =

1

A
∑
G

exp [iG(τκ − τκ ′)]

×
∣∣∣ f̃ (|q−G|)

∣∣∣
2
V κκ ′

(|q−G|) . (8)
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In Eq.(6) and Eq.(8) the two-dimensional Coulomb interac-

tion V κκ ′
(q) = 2πe2/(|q|εr) when κ and κ ′ refer to the same

layer and
(
2πe2/(|q|εr)

)
exp [−|q|c] when κ and κ ′ refer to

the opposite layers. Here εr is the relative dielectric constant,
c = 3.35Å is the interlayer separation, A is the total area of the
graphene sheet, and we use

f̃ (q) = (1− (r0q)2)/((1 +(r0q)2)4) (9)

as a form factor which accounts for the spread of the π-orbital
charge on each site. This simple form assumes an isotropic
site-localized charge distribution. Eq. (9) was obtained by
Fourier transforming the radial charge distribution of a hydro-
genic 2p orbital. The use of r0 = ã0 = a0/

√
30 would yield

a root mean square radius corresponding to the covalent ra-
dius of the carbon atom a0 = 0.77Å. If we consider screening
from the σ band electrons neglected in our model and the fact
that the charge density distribution of a pz orbital is far from
spherical we expect that larger values of r0, which effectively
reduce onsite repulsion, would be more appropriate. For most
of our calculations we have therefore used the value r0 = 3ã0.

As explained in the introduction, pseudospin ferromag-
netism in bilayer graphene can be neatly described using the
two-band massive chiral fermion model. This approach has
two shortcomings which the present calculation is intended
to alleviate. First of all, the model has to rely on a crude
ultraviolet-cutoff to account for the limited range of energy
∼ γ1 over which it is applicable. At moderate interaction
strengths the amount of charge transferred between layers de-
termined in the massive chiral fermion model calculation is
strongly influenced by this cut-off. Secondly, the calculation
described in Ref. (7) relies on the model’s circular symme-
try for a number of simplifications. When direct hopping be-
tween the low-energy A and B̃ sites, the γ3 process, is included
in the Hamiltonian the model’s Fermi lines are no-longer cir-
cular and the continuum model loses some of its attractive
simplicity.6,26 These processes are known to be essential at
very weak interaction strengths since they remove the infrared
divergences9,10 responsible for the instabilities of the massive
chiral fermion model. The present lattice model reduces to
the continuum model at low energies, accounts naturally for
the limited validity range of two-band models by retaining all
four π-bands, and can deal with the loss of circular symmetry
without any additional complication.

The main challenges which arises in practical implementa-
tion of the lattice model mean-field-theory lie in the numerical
optimization of a problem in which the small portion of the
Brillouin-zone close to one of the valley points plays a domi-
nating role and must be sampled densely. It is essential that we
have sufficiently dense k-point sampling near the Dirac points,
and at the same time sample the full Brillouin zone. The in-
crease of computational load with k-point sampling density
is particularly rapid in the Hartree-Fock calculations because
the Hartree-Fock matrix element at one k-point depends on
the occupied wavefunctions at all other k-points. In Fig. 1
we illustrate the honeycomb lattice reciprocal space primitive
cell and the k-point sampling scheme we have chosen. In an
effort to achieve a satisfactory compromise between compu-
tational load and accuracy we, first of all, make use of the

4π

√

3a

K

M

K
′

!b1

!b2

Γ

2π/a 32X16 = 512

!b1

!b2

FIG. 1: Left panel: Band structure of graphene represented in the

primitive zone defined by the reciprocal lattice vectors~b1 and~b2 of

the honeycomb lattice. The equilateral triangle represents the region

in the primitive cell we need to sample in order to fully describe a

system in which the symmetry between K and K′ valleys is broken.

The smaller triangles enclose inequivalent regions in k-space asso-

ciated with K and K′ valleys. Right panel: An example of coarse

sampling of k-points in the primitive cell supplemented by a finer

grid in hexagons generated around those coarse k-points near the K

and K′ valleys. The illustrated example consists of 32× 32 coarse

points and a 16-fold enhancement of density resulting in an effective

sampling of 512×512 points in the primitive cell near the valleys.

hexagonal symmetry inherent in the problem. This allows us
to limit our calculations to 1/6th of the total Brillouin zone
area when we distinguish K and K′ valleys, and 1/12th of the
total area when we do not. In addition, instead of using a uni-
form grid in the whole Brillouin zone we use a k-point mesh
which is denser near the Dirac point. In our calculations we
have used 18× 18, 32× 32 or 42× 42 coarse grids for the
full primitive cell and multiplication factors of up to 128 for
the finer k-point mesh near the valley centers. The fine mesh
densities were either 2304× 2304 or 2048× 2048 for typi-
cal calculations at zero potential bias, and 672× 672 when
smaller densities were enough to converge the calculations in
the case of strongly biased bilayers. Dense k-point meshes
were normally employed within ∼ 0.5/a of a Dirac point,
and wider regions were used for strong bias cases. (Here
a = 2.46Å is the lattice constant of the triangular periodic lat-
tice structure of graphene.) Nevertheless k-point sampling ap-
proximations remain the main source of numerical inaccura-
cies. The self-consistent-field calculations were iterated until
convergence to 14 significant figures in the total energy per
electron was achieved for a given choice of k-point sampling.
In order to resolve the small energy differences between so-
lutions of the self-consistent field equations corresponding to
different states we needed to compare results obtained with
the same k-point sampling scheme. The k-point sampling we
used achieved convergence to within a few parts per thousand
for charge density differences and band gaps.



4

IV. LATTICE MODEL PSEUDOSPIN FERROMAGNET

The inversion symmetry breaking instability in bilayer
graphene occurs nearly independently at the two points
and, within mean-field-theory, entirely independently for
each electron spin.7 It is strongest in electrically neutral
bilayers.9,10,12,22 Initial studies carried out at the Hartree-Fock
level7 identified a family of competing pseudospin ferromag-
net states. Perturbative renormalization group calculations9–11

have confirmed that these instabilities can survive beyond
mean-field-theory.
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FIG. 2: Left panel: Non-interacting biased tight-binding model (dot-

ted line) and unbiased Hartree-Fock (solid line) band structures for

bilayer graphene for k moving away from the Γ point towards the

Dirac point K. The broken symmetry state bands are compared

with non-interacting electron bands with inversion symmetry explic-

itly broken by an externally applied electric field E = 0.1V/nm.

The interacting system bands exhibit enhanced velocities and a band

gap due to spontaneously broken inversion symmetry. These results

were obtained for a model with hopping parameters γ0 = −3.12eV,

γ1 = −0.377eV, γ3 = γ4 = 0, and dielectric screening parameter

εr = 4. Right panel: Onsite k-dependent exchange potentials of the

spontaneously broken symmetry state on the four bilayer sublattices.

The onsite potential is larger in magnitude on the low-energy sites

that do not have an opposite layer neighbor, and lower on average in

the layer with the larger density.

Fig. 2 illustrates typical mean-field theory band struc-
tures for a π-band tight-binding model of unbiased bilayer
graphene. The non-interacting bands exhibit the p2 dispersion
at small p which is captured by the massive chiral fermion
model. When interaction effects are included in the mean-
field Hamiltonian, a gap opens up and velocities increase sub-
stantially. The gap to the remote bands associated with the
high energy states is also increased. A gap at p = 0 (where
k = K so that f (k) vanishes) is always associated with a dif-
ference in mean-field atomic π-orbital energies between the
two low-energy sites A and B̃ and therefore a violation of
the inversion symmetry which makes the two layers equiva-
lent. We refer to this broken symmetry state as a pseudospin

ferromagnet, motivated by its continuum model description7

in which the sublattice degree-of-freedom plays the role of
a pseudospin. The increase in velocity at non-zero p illus-
trated in Fig. 2 occurs even when inversion symmetry is not
broken28. In the same figure we plot the k-dependent on-
site exchange potentials of the broken symmetry state which
have been obtained from the self consistent solutions. The
exchange potentials have opposite signs on opposite layers,

larger magnitude at the low energy sites A and B̃, and values
that increase as the valley points are approached.

It is appropriate at this point to address some of the diffi-
culties which arise in constructing reliably predictive theories
for the influence of electron-electron interactions in graphene
sheets. In continuum model theories it is customary to in-
troduce a relative dielectric constant εr ∼ (εsub + 1)/2 to ac-
count for dielectric screening due to the substrate on which the
graphene sheet lies. (εsub is the dielectric constant of the sub-
strate. εsub ∼ 4 for substrates commonly used to support me-
chanically exfoliated graphene samples. This effect is impor-
tant for some graphene sheet properties but is often omitted in
ab initio calculations.) Some of the results we present below
suggest that the continuum model is reliable, even for neutral
graphene systems (which have less screening) and even when
εr is small, as it should be in a model intended to describe
suspended graphene samples and in models of graphene on a
substrate with a small dielectric constant. As we explain later,
the two-band continuum model tends to be less accurate for
bilayer graphene than for single-layer graphene. The impli-
cation for the lattice model employed here, is that the on-site
Coulomb interaction, determined by the charge form factor,
will have a bearing on the model’s predictions especially when
εr is small. Hartree-Fock mean-field theory, used in this pa-
per to capture the non-local exchange properties which drive
pseudospin ferromagnetism, tends to overestimate the onset of
broken symmetries. In ab initio calculations it is common46 to
reduce the strength of bare exchange, say by factor of ∼ 2, to
account for Coulomb correlation screening missing in an ex-
change only theory. This type of consideration may justify us-
ing a value of εr larger than the one which would be suggested
by dielectric screening considerations alone, adding another
level of uncertainty to any quantitative predictions.

A. Total layer density and Chern number classifications of

competing states

Because each bilayer flavor can polarize toward either of
the two layers, there are a total number of 24 = 16 possible
configurations of the broken symmetry29 state. The layer po-
larization for each spin and valley determines the sign of the
mass term in its continuum model and has implications for the
topological properties in the system as we will now discuss.
The 16 states can be classified7 by overall layer polarization
as being ferromagnetic, ferrimagnetic, or layer antiferromag-
netic. By this classification7 there are two layer ferromagnetic
states in which all flavors choose the same polarization, eight
layer ferrimagnetic states in which three of the four flavors
choose the same polarization, and six layer antiferromagnetic
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TABLE I: Summary of Hall transport properties for valley τz = K,K′ and spin σz =↑,↓ dependent layer polarization λz = T,B. These states

are classified as layer ferromagnetic (F), layer ferrimagnetic (Fi) or layer antiferromagnetic (AF) following reference [7,17]. F, Fi, and AF

states have respectively four, three, and two valley-spin components polarized toward the same layer (λz = T ). We have listed only eight out

of a total of sixteen configurations omitting the equivalent configurations obtained by layer reversal for every flavor. Each valley contributes a

finite Hall conductivity with magnitude e2

h
and a sign that reverses with both valley interchange and layer polarization. The Hall conductivities

are assigned to particular valleys on the basis of approximate Chern indices obtained by integrating Berry curvatures over the portion of the

Brillouin zone near K or K′. The edge-state structure is expected to depend on each of the partial Hall conductivities. The total Hall conductivity

is separated into contributions from separate spins and separate valleys using σ tot
xy = σ↑

xy + σ↓
xy = σK

xy + σK ′
xy . The F configuration have zero

total hall conductivity, whereas all Fi configurations have a finite total anomalous Hall conductivity of two units. The A configurations are

expected to be electrostatically favored in the absence of an external layer bias potential and include three types of solutions with different Hall

properties, one with a total anomalous total Hall conductivity, one with zero Hall conductivity but finite spin Hall conductivity, and another

with zero Hall and spin Hall conductivities because of opposite Hall conductivity contributions from K and K′ valleys for both spins.

( λz τz σz ) σ
K,↑
xy σ

K ′,↑
xy σ

K,↓
xy σ

K ′,↓
xy σ

↑
xy σ

↓
xy σK

xy σK ′
xy σ tot

xy

F (T K ↑) (T K′ ↑) (T K ↓) (T K′ ↓) 1 -1 1 -1 0 0 2 -2 0

Fi (T K ↑) (T K′ ↑) (T K ↓) (B K′ ↓) 1 -1 1 1 0 2 2 0 2

(T K ↑) (T K′ ↑) (T K′ ↓) (B K ↓) 1 -1 -1 -1 0 -2 0 -2 -2

(T K ↑) (B K′ ↑) (T K ↓) (T K′ ↓) 1 1 1 -1 2 0 2 0 2

(T K′ ↑) (B K ↑) (T K ↓) (T K′ ↓) -1 -1 1 -1 -2 0 -2 0 -2

AF (T K ↑) (B K′ ↑) (T K ↓) (B K′ ↓) 1 1 1 1 2 2 2 2 4

(T K ↑) (B K′ ↑) (T K′ ↓) (B K ↓) 1 1 -1 -1 2 -2 0 0 0

(T K ↑) (T K′ ↑) (B K ↓) (B K′ ↓) 1 -1 -1 1 0 0 0 0 0

states with no overall polarization.17 The layer antiferromag-
netic states are electrostatically favored in the absence of a
potential bias.

One of the most interesting properties of gapped bilayer
graphene is the existence of a finite Hall conductivity and
orbital magnetism due to the flavor-dependent momentum-
space vortices14,17,30 in the broken symmetry states. Because
the vorticity v is opposite for opposite valleys, the integrated
Berry curvature gives rise to a Hall conductivity18,19,31,32 with
magnitude e2/h for each flavor, and a sign that changes with
valley as well as with layer polarization. The Berry curvature
reflects the handedness of Bloch electrons and captures intra-
cell circulating currents which generate a finite orbital mag-
netic moment proportional to the angular momentum due to
self-rotating Bloch wave packets.32 The Berry curvature of the
system can be evaluated using18

Ωn (k) = i ∑
n′ 6=n




〈un| ∂H

∂kx
|un′〉〈un′ | ∂H

∂ky
|un〉

(En′ −En)
2

− c.c.



 .

where |un〉 represents the Bloch eigenstates of the system and
En are the associated eigenvalues for each k. The finite or-
bital moment generated by these wave packets has a similar
expression and can be evaluated through18

mn(k) = −(e/2m)Ln(k)

= − e

2h̄
i ∑

n′ 6=n




〈un| ∂H

∂kx
|un′〉 〈un′ | ∂H

∂ky
|un〉

En′ −En

− c.c.



 .

A weak external magnetic field will tend to favor a state
in which the orbital magnetizations of all valleys are aligned,

and the anomalous Hall conductivity is correspondingly max-
imized. This observation suggests the possibility of valley
optoelectronics that exploits the circular dichroism of inter-
band transitions33 in the broken symmetry states. The Kerr
and Faraday effect measurements with linearly polarized light
can be a useful tool to detect signatures of broken time rever-
sal symmetry.47 In Fig. 3 we present the k-dependent mag-
netization evaluated for one self-consistent gapped state in
the presence of an interlayer bias. Similar results have been
obtained previously using the massive Dirac-fermion contin-
uum model. An estimate of the zero field magnetization

per valley-spin degree of freedom Mτzσz = ∑n

∫
mn(k) d2k

(2π)2 ≃
2π ∑n

∫
mn(k)k dk

(2π)2 can be obtained integrating the orbital

moment around each one of the valleys for a given spin com-
ponent. For the broken symmetry state with εr = 4 each com-
ponent integrates to Mτzσz = 10−3µB per carbon atom, com-

pared to Mτzσz = 1.4 · 10−3µB for the non-interacting system

with bias E = 0.1V/nm and Mτzσz = 2.2 ·10−3µB per carbon
atom for E = 0.4V/nm. The individual flavor orbital mag-
netizations and anomalous Hall contributions cancel in states
that do not have broken time-reversal symmetry.

In the non-interacting electron biased bilayer graphene
state, opposite contributions from the two valleys lead to van-
ishing total Hall conductivity, consistent with the absence of
broken time-reversal symmetry. The nature of the layer po-
larized broken symmetry we describe here is analogous to the
biased bilayer in the sense that the charge transfer can be at-
tributed to the (k-point dependent) exchange potential differ-
ence between low-energy sites on opposite layers, as illus-
trated in Fig. 2. Because of the non-locality of the exchange
interactions, however, we are able to find self-consistent so-
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Å
−1

)

FIG. 3: Left panel: Berry curvatures associated with the two valence

bands for a Hartree-Fock (HF) solution, and for non-interacting bi-

layer graphene in the presence of an interlayer bias. We use a thicker

line to represent the curvature of the low energy band and a thinner

line for the band farther from the Fermi level. The small remote band

contribution has been magnified ×20. An interlayer electric field of

E = 0.1V/nm added to the non-interacting electron model gives a

band gap comparable to the one which emerges from our mean field

calculations with εr = 4. Right panel: Orbital magnetization contri-

butions from the two valence bands in the vicinity of a valley point.

We compare results for the self-consistent broken symmetry states

with those for non-interacting electrons with an external interlayer

bias.

lutions in which the effective interlayer bias potential has op-
posite signs in the two valleys, and the total Hall conductivity
is finite. In Table I we present a list of the 16 different con-
figurations for which we have found self-consistent solutions,
which are characterized by the sense of layer (λz = T,B) po-
larization for each valley (τz = K,K′) and spin (σz =↑,↓) as
also discussed in reference [17]. These results suggest the in-
teresting possibility of altering the quantum Hall conductivity
of a graphene bilayer sample with an external bias potential as
we discuss later.

B. Broken inversion symmetry states in an unbiased bilayer

We start by examining the layer antiferromagnetic charge
balanced configurations which are lowest in energy in the ab-
sence of an external bias because7 of the absence of a Hartree
energy penalty. As summarized in Table I, there are three dis-
tinct types of layer antiferromagnets.17 One configuration is
the anomalous Hall (AH) state, with four quantized units of
Hall conductivity, in which electrons are polarized towards
the same layer for both spins14, and towards opposite lay-
ers for opposite valleys. Second is the spin Hall (SH) state
which has opposite layer polarization on opposite valleys, and
in each valley opposite layer polarization for opposite spin.
The mean-field Hamiltonian for this state is similar to that of

a non-interacting system with intrinsic spin orbit coupling34.
Finally there is a solution with the same layer polarization in
the two valleys, but opposite layer polarizations for opposite
spins. This state has a finite valley Hall (VH) conductivity
for each spin, zero valley Hall conductivity when summed
over spins, and zero total Hall conductivity30,35. Optical mea-
surements based on linearly polarized light using the Kerr and
Faraday effect can be used to identity the anomalous Hall state
which has broken time reversal symmetry state.47

In the continuum model formulation the three distinct solu-
tions are degenerate. In the lattice model Hartree-Fock theory
the energies of the AH and SH states are still exactly degen-
erate because the exchange energy is spin diagonal and the
energy within each spin is independent of the Hall effect sign.
We refer to these two states collectively as the anomalous Hall
states. The valley Hall (VH) solution does have a different en-
ergy however, because the relative sense of layer polarization
in the two valleys influences inter-valley exchange potentials.
Table II presents our results for the condensation energy of
the broken symmetry state and for the differences in energy
between the VH and AH/SH solutions separated into differ-
ent contributions. We first note that the condensation energies
are reasonably independent of the model parameters εr and
r0, which are not precisely known and dependent on the sam-
ple’s dielectric environment. The scale of the condensation
energy should be compared with the value of the Coulomb in-
teraction at the momentum scale k∗ (e2k∗) over which the two-
band model applies to bilayer graphene. We find k∗ by setting
the low-energy model parabolic band energy equal to the iso-
lated layer energy, which gives k∗ ∼ γ1/h̄v. The Coulomb en-
ergy at this momentum scale is ∼ (e2/εrh̄v)× γ1 = αgr × γ1 ∼
100meV. This energy scale gives an estimate of the size of
the gap which would be expected if all states with k < k∗

were fully layer polarized. We find a gap which is approx-
imately four times smaller and density shifts between layers
that are smaller than πk∗2/(2π)2 ∼ (γ1/2πWa)2 by a simi-
lar fraction. These numerical values indicate that the broken
symmetry arises mainly from those bilayer band states that are
reasonably well described by the low-energy two-band mod-
els used in the original mean-field calculations, as expected.
We note that the condensation energy is smaller by several
orders of magnitude than the total interaction energy, which
involves electrons across the full π-band.

The second block of columns present differences in energy
between VH states and AH/SH states. For the parameters we
have considered the total energies for the VH states are lower
than the AH/SH thanks to the exchange energy advantage of
the former states. The differences in energy between these
states become substantially smaller than the condensation en-
ergy when the carbon radius model parameter r0 is increased.
Larger values of r0 improve the accuracy of the continuum
model and differences in energy between the different solu-
tions rapidly decrease. We have previously argued that values
of r0 ∼ 3ã0 in the form factor are appropriate. If so, the differ-
ences in energy between different solutions are ∼ 10−9eV per
carbon atom, about 100 times smaller than the ordering con-
densation energy. We have also explored an alternative formu-
lation of the Hartree-Fock equations which evaluates the non-
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TABLE II: Energy differences between distinct mean-field solutions in the absence of a potential bias. The first group of columns represent

energy differences between the broken symmetry pseudospin ferromagnet states in the anomalous Hall (AH) configuration and the unbroken

symmetry state that has no gap. The latter has been obtained constraining the self-consistent HF calculation to preserve inversion symmetry.

The third column represents the exchange energy difference ∆ETB
X of the broken symmetry self-consistent state with respect to the reference

exchange energy of the non-interacting state. The remaining columns represent energy differences between between anomalous Hall and

valley Hall (VH) solutions. The calculated energy differences depend sensitively on the choice of the model parameter r0 used in the form

factor. The total exchange energy differences ∆Etot
X = 4(∆EKK

X +∆EKK ′
X ) can be expressed as a sum of intravalley (KK) and intervalley (KK′)

contributions, where the four-fold factor is due to the twofold degeneracy in both spin and valley. We have verified that the energy differences

depend very weakly on the γ3 and γ4 parameters which are excluded in the minimal model. The two anomalous Hall states have the same

energy in mean-field theory as explained in the text. The values compiled in this Table have been evaluated using εr = 4 and the indicated

carbon atom radii r0. All energies are expressed in eV per carbon atom unit.

E(AH/SH)−E0 E(V H)−E(AH/SH)

r0 ∆Etot ∆EX ∆ET B
X ∆Etot ∆EX ∆EKK

X ∆EKK ′
X

ã0 −4.84 ·10−8 −1.13 ·10−7 −5.10 ·10−4 −1.03 ·10−7 −9.72 ·10−7 −1.75 ·10−7 −6.75 ·10−8

2ã0 −5.17 ·10−8 −1.24 ·10−7 −6.15 ·10−4 −4.66 ·10−9 −1.92 ·10−8 −4.09 ·10−9 −6.97 ·10−10

3ã0 −6.17 ·10−8 −1.58 ·10−7 −5.09 ·10−4 −1.14 ·10−9 −2.76 ·10−9 −5.71 ·10−10 −1.18 ·10−10

TABLE III: Transferred charge per valley-spin flavor in the charge balanced anomalous Hall and valley Hall solutions. In our mean field

Hartree-Fock calculations the VH solutions have slightly larger band gaps and interlayer charge transfers than their anomalous Hall counter-

parts. In this table, charge densities are in units of 1011cm−2 and band gaps in meV units. We have used the tight-binding model parameters

γ0 = −3.12eV , γ1 = −0.377eV , γ3 = −0.29eV , and γ4 = −0.12eV . The γ3 parameter has only a marginal influence on the broken symmetry

state. The value chosen for γ4 term tends to accumulate more electrons at the low energy sites in the bilayer but does not influence the strength

of the broken symmetry. The results reported here were obtained using dielectric constant εr = 4 and carbon atom radius r0 = 3ã0. In the

rightmost set of columns we show the results obtained when a smaller carbon atom radius r0 = 2ã0 is used in the form factor calculation in

Eq. (9).

Anomalous Hall / Spin Hall (AH/ SH)

γ0, γ1 γ0, γ1, γ3 γ0, γ1, γ3, γ4 γ0, γ1, r0 = 2ã0

εr ∆nl ∆nA
s ∆nB

s ∆gap ∆nl ∆nA
s ∆nB

s ∆gap ∆nl ∆nA
s ∆nB

s ∆nÃ
s ∆nB̃

s ∆gap ∆nl ∆nA
s ∆nB

s ∆gap

4 0.52 0.81 -0.29 33 0.52 0.80 -0.28 31 0.52 5.67 -5.15 -4.59 4.07 31 0.47 0.72 -0.25 31

5 0.42 0.60 -0.18 23 0.42 0.60 -0.18 22 0.41 5.38 -4.97 -4.61 4.20 21 0.38 0.54 -0.16 22

6 0.34 0.46 -0.12 17 0.34 0.46 -0.12 16 0.34 5.20 -4.86 -4.63 4.29 16 0.32 0.42 -0.10 16

Valley Hall (VH)

γ0, γ1 γ0, γ1, γ3 γ0, γ1, γ3, γ4 γ0, γ1, r0 = 2ã0

εr ∆nl ∆nA
s ∆nB

s ∆gap ∆nl ∆nA
s ∆nB

s ∆gap ∆nl ∆nA
s ∆nB

s ∆nÃ
s ∆nB̃

s ∆gap ∆nl ∆nA
s ∆nB

s ∆gap

4 0.52 0.84 -0.32 33 0.52 0.80 -0.28 31 0.52 5.70 -5.18 -4.55 4.03 31 0.49 0.89 -0.40 32

5 0.42 0.61 -0.19 23 0.42 0.61 -0.19 22 0.42 5.40 -4.98 -4.60 4.18 22 0.40 0.64 -0.24 22

6 0.34 0.47 -0.13 17 0.34 0.47 -0.13 16 0.34 5.21 -4.87 -4.62 4.28 16 0.33 0.48 -0.15 17

local exchange potentials in real space. This formulation al-
lows the model’s onsite repulsion U to be adjusted separately
from the longer ranged tails36,37 and thus allow a more direct
assessment of the impact of lattice scale details of the effective
Coulomb interaction, and leads to similar conclusions.

Large values of U imply strong short-range correlations
which are not accurately described by the continuum model.
From the results shown in table II, however, we see that only
moderate short-range screening from degrees-of-freedom out-
side the π-band model are required to make deviations from
the continuum model small. Given the abundance of separate
evidence that interaction effects in graphene systems are ac-

curately described by a continuum model, we assume that the
required short-range screening is in fact present.

In Table III we report on the layer distribution of charge
when inversion symmetry breaking occurs within a particular
valley. The results presented here are single valley-spin re-
sults based on the AH and VH solutions. We have performed
these calculations for band models which include and exclude
tight-binding hopping parameters other than in plane nearest
neighbor hopping γ0 and interlayer tunneling γ1. The trigonal

warping γ3 term connects the sites A and B̃ and introduces a
triangular distortion in the band structure near the Dirac point,
hence breaking the approximately circular symmetry of the
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bands. It also makes the dispersion become linear instead of
quadratic at the lowest energy scales and works against sym-
metry breaking. We notice that the reduction of the band gap
due to trigonal warping varies between two per cent and ten
per cent depending on the short-range interaction strength, in-
dicating that trigonal warping plays a relatively minor role.
For typical bilayer continuum model Hamiltonian parameters
the γ3 term introduces a distortion of the band structure for en-
ergy scales below ∼ 1meV ,6,16 which is significantly smaller
than our estimated gaps, explaining the minor role of this pa-
rameter in our calculations.

The γ4 term increases the accumulation of charge density

at lattice sites A and B̃ relative to that at the high energy sites

B and B̃. The gap size and total transferred charge (∆nl) re-
main virtually unchanged, although the distribution of charge
between sublattices on the same layer (∆ni

s) is altered in some
states.
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FIG. 4: Temperature dependence of mean-field-theory charge trans-

fer per valley-spin and the associated band gap. Top panel: Total

charge per unit area (1011 cm−2) transferred from one layer to an-

other ∆nl per each valley-spin polarized component as a function of

temperature. We represent the dependence for different values of

the relative dielectric constant εr. Middle panel: The bottom panel

presents the mean-field-theory band gap as a function of temperature.

Bottom panel: Ratio between the band gap and transferred charge

density.

Terms in the band Hamiltonian, for example next near-
est neighbor hopping, that introduce particle-hole asymme-
try have not been considered in our analysis because these

do not introduce important changes in the band structure near
the Dirac points. The parts of the bands within ∼ 10−2eV of
the Dirac point influence condensate properties most strongly.
The instabilities of bilayer graphene are similar to those of any
two-dimensional system with quadratic bands crossing points
and these are always insensitive to particle-hole symmetry.11

The temperature dependence of the band gap and the trans-
ferred charge per valley-spin component in mean-field-theory
is plotted in Fig. 4. As the temperature is increased both
the charge density and band gaps are reduced, but their ra-
tio is approximately fixed. The decay trend is similar for the
different dielectric constants we have considered. The criti-
cal temperatures obtained in this mean-field calculation pro-
vide an estimate of the maximum temperature at which local
order survives in the absence of disorder. The band gap de-
creases more quickly than the charge-density transfer order
parameter as the interaction is made weaker; the charge den-
sity per valley-spin varies approximately like ε−1

r whereas the
gap varies as ε−1.55

r .

C. Quantum phase transitions in the low magnetic field and

low bias regime

To first order in magnetic field, the magnetic contribution
to energy is simply proportional to spontaneous magnetization
discussed previously, which is entirely orbital in character and
depends on the flavor-dependent layer polarizations. States
that are related by layer polarization reversal are no longer
equal in energy in the presence of a magnetic field. If we
take ∆Etot ∼ 10−9 eV per carbon atom for the mean field en-
ergy differences between AH and VH states from Table II and
use the relation ∆Etot ∼ Mτzσz ·Bc, we obtain from the orbital
magnetization values we have calculated that a magnetic field
Bc ∼ 0.004T is sufficient to favor the AH state with orbital
magnetization parallel to the magnetic field over VH states.
Considering the small energy differences between the differ-
ent competing states as shown in table II, we can expect that
the coupling between magnetic field and the orbital moment in
the system can play a decisive role in selecting the minimum
energy ground-state. Because the electron densities at which
gaps occur are magnetic field dependent in states with finite
Hall conductivity, small fluctuations in the density like those
associated with electron-hole puddle domains45 will also have
an important influence on the nature of the ground-state at low
magnetic fields.

We now consider the case of zero magnetic field and finite
electric field. In presence of an external bias the inversion
symmetry of a graphene bilayer is explicitly broken, favoring
charge accumulation in one of the layers. When the exter-
nal bias becomes large enough the charge balanced broken
symmetry antiferromagnetic (AF) configuration gives way to
ferrimagnetic (Fi) and eventually ferromagnetic (F) configu-
rations. These solutions can become energetically favored for
certain ranges of the external bias potential thanks to their in-
trinsic broken inversion symmetry configuration with sponta-
neous charge transfer. In Fig. 5 we present the total ener-
gies of the different types of solutions in the low bias regime,
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obtained by starting the self-consistent calculations from dif-
ferent seeds. For low potential bias the charge balanced AF
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FIG. 5: Bias dependence of the total energies of the system for differ-

ent valley-spin polarization configurations for a system with εr = 4.

The system undergoes transitions from the AF to Fi and then to F

states as a function of external field, each one displaying clearly dif-

ferent quantum Hall conductivity properties. The origin of energy

has been arbitrarily shifted for presentation convenience.

structure remains lowest in energy. Eventually the external
field becomes large enough to flip the layer polarization of one
valley-spin component towards the layer favored by the elec-
tric field, giving rise to the Fi type solutions. The electrostatic
charge imbalance of the Fi states is approximately half of that
associated with the F state in which all four components are
polarized towards the same layer, a fact that can be inferred
from the slopes of the total energy evolution as a function of
external electric field. In Fig. 6 we present the charge densi-
ties associated with one valley-spin component with different
layer polarizations. For the AF and Fi solutions we have com-
ponents that are polarized toward both layers that we represent
as ∆nl = (nl − n0), the density difference with respect to the
uniform background density n0. In the Fi configuration the
three charge density components polarized towards the same
layer do not have exactly the same value when the electron
spins are different, but they are similar in magnitude. In the
F configuration all four density components are polarized to-
wards the same layer and have the same magnitude.

The behavior of the band gaps in the low bias regime illus-
trates the character of each solution. The AF band gap con-
tinually decreases when the electric field is increased. In this
case the electric field always works against the charge density
distribution of two components directly contributing in the re-
duction of the band gap. For the F configuration we have a
completely opposite trend; the gap always increases since the
electric field favors charge accumulation in the layer in which
the density is already higher. In the Fi configuration we find
an intermediate situation. We find an initial increase of the
gap in presence of an electric field thanks to the reduction
of the Hartree energy penalty associated to the spontaneous
charge imbalance. Beyond a certain point the band gap starts
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F
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FIG. 6: Upper panel: Each branch represents the bias dependence

of the valley resolved layer polarization density associated with one

valley-spin component. These results were obtained for a system

with εr = 4. The multiplication factors represent the number of times

each branch needs to be repeated to give the total charge density to

complete the contributions from the four components. Lower panel:

Band gap as a function of bias for F, Fi and AF states for a sys-

tem with εr = 4. We observe a competition in the band-gap opening

between exchange and Hartree contributions which can lead to a re-

duction of the band gap as the bias is increased.

to decrease, reflecting the fact that the electric field is working
against the layer polarization of one component. Eventually
when the effect of the external field becomes dominant the
system undergoes a phase transition to the F configuration.
Every time there is a crossover of the minimum energy lev-
els we will see an abrupt change in the band gap and charge
density. The Hall conductivity of the system will also see
discontinuous changes following the classification of table I.
The observations above suggest that the band gap will show
a non-monotonic dependence on potential bias with an initial
reduction at low fields for AF states and an increase for large
enough bias for F states. Between those two limits the system
can form a Fi state that also has a band gap that decreases with
increasing electric field, before finally making a transition to
the F state.
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D. Exchange screening effects in presence of a strong bias

In the presence of an external bias the inversion symmetry
of graphene bilayer is explicitly broken, favoring the charge
accumulation in one of the layers and opening a band gap, a
fact that has been verified in several experiments38–40 and also
predicted theoretically within tight-binding41, tight-binding
plus Hartree screening42,43 or ab-initio calculations22. Here
we explore the role that electron exchange can play when the
system is subject to a strong external bias. In Fig. 7 we present
the charge accumulation in one of the layers as a function of
bias. In the strong bias limit we are in the F configuration
in which all four components are polarized towards the same
layer. Results obtained in the Hartree approximation follows
a similar trend in the strong bias limit resulting in compara-
ble amounts of total transferred charge in the range of bias
we considered, with the Hartree only screening allowing more
sloshed charge. A larger value of dielectric screening εr that
weakens the interaction strength also weakens the electrostatic
screening and therefore more charge imbalance per layer is
expected.

As we show in Fig. 7 the presence of the exchange term in
the Hamiltonian introduces a clear enhancement of the band
gap that persists up to high bias potentials. This gap enhance-
ment can be related to the exchange contribution that tends
to introduce a strong asymmetry in charge distribution be-
tween A and B sublattices of a given layer that persists up
to rather high values of external electric field as shown in Fig.
7. We may define this intralayer charge imbalance ratio as(∣∣∆nA

s

∣∣+
∣∣∆nB

s

∣∣)/ |∆nl|. The enhancement of charge imbal-
ance between the sublattices is one of the effects of intralayer
exchange that contributes to changing the magnitude of the
band gap. This quantity is more sensitive to the strength of
the Coulomb interaction than to changes in the temperature.

V. DISCUSSION

The flat bands near bilayer graphene’s Dirac points have led
many theoretical researchers to explore possible broken sym-
metry states. As first proposed in Ref. [7], and confirmed
in this article, the lowest energy states in the Hartree-Fock
approximation are characterized by charge-density contribu-
tions from each spin and valley that are spontaneously layer
polarized. The quasiparticles of these ordered states have mo-
mentum space vortices with cores centered on the Dirac mo-
menta, near which bilayer pseudospins are polarized toward
one of the two layers, contributing layer polarization, Hall
conductivity, and orbital magnetization. Other states have also
been proposed for bilayers, however, and the experimental ev-
idence is not yet completely unambiguous. For example one
early study, motivated by analogies with conventional two-
dimensional electron gases, suggested that a conventional ex-
change driven ferromagnetic instability would occur at low
densities in bilayer graphene.8 More recent renormalization
group studies of bilayer graphene models9–11,13,15 agree on the
tendency toward order, but have reached different conclusions
on on its nature. Indeed quadratic band crossings were studied
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FIG. 7: External bias dependence of layer resolved charge density,

band gaps and sublattice charge asymmetry. We have considered the

F configuration where all four valley-spin components are polarized

towards the same layer. Upper panel: Charge accumulation depen-

dence as a function of bias in presence of Hartree and Fock terms

and charge accumulation dependence as a function of bias in pres-

ence of Hartree screening only. The evolution of ∆nl as a function

of bias has a slightly larger slope in the Hartree only approximation

than the Hartree-Fock case. Middle panel: Band gaps obtained for

Hartree-Fock and Hartree approximations using different values of

εr as a function of external electric field E . We notice a substantial

enhancement of the band gap when the exchange term is included.

Lower panel: Measure of deviation from neutrality in the charge

differences for each one of the sublattices in a given layer normal-

ized by the total sloshed charge. The asymmetric distribution of the

charge between low energy sublattice A and high energy sublattice

B of a given graphene layer is enhanced in presence of electron ex-

change. This asymmetry becomes smaller as the external bias be-

comes stronger.

from a general point of view in Ref. [11], where it was argued
that different types of broken symmetries are in general pos-
sible. The main alternative to spontaneous layer polarization
states are ones with broken rotational symmetry states,10,16

nematic states, which when viewed from the layer-pseudospin
point of view have spontaneous polarization in the x̂− ŷ plane
rather than in the layer-polarization ẑ direction. Nandkishore
et al.14 have explicitly argued that the layer polarized gapped
states have lower energy than gapless broken rotational sym-
metry phases. This conclusion appears to be consistent with
recent transport experiments which indicate the existence of a
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gap.20 The theoretical issues associated with the competition
between the two different types of pseudospin ferromagnets
lie outside the scope of the present paper, however. One of the
interesting properties of the layer-polarized states is the pres-
ence of large interaction induced Berry curvatures and asso-
ciated quantized Hall responses.9,11,14,15,17 There are a variety
of layer-polarized states that are distinguished by the way in
which different spin and valley degrees of freedom combine
to form the ground-state.14,17

In this paper we have presented a numerical study of the
layer polarized broken symmetry states in graphene bilayers
within a lattice Hartree-Fock approximation, studying their
dependence on dielectric screening and short-range model pa-
rameters, and on temperature. The use of a lattice model is
necessary to obtain quantitative estimates of gap sizes and
condensation energies and to assess the competition between
different ordered states. We estimate that the density shift for
each spin-valley flavor is ∼ 10−5 electrons per carbon atom,
that the gaps are ∼ 10−2eV , that the total condensation energy
is ∼ 10−7 eV per carbon atom, and that the energy differences
between the competing ordered states is ∼ 10−9 eV per carbon
atom. The gap sizes and the temperature ranges over which
these states are expected to occur should allow them to be ex-
perimentally accessible in samples with weak disorder. The
broken symmetry mechanism of these states is most effective
for a neutral bilayer since the energy gain due to charge trans-
fer is greatest for electrons closest to the Dirac point. The
size of the interlayer charge transfers suggests that the broken
symmetry states will be suppressed by smooth disorder that is
strong enough to produce charge puddles with density varia-
tions larger than around 10−5 electrons per carbon atom. The
total amount of spontaneous charge transfer from one layer to
another in the broken ground state is ∼ 1011cm−2, smaller but
comparable in magnitude to the densities that can be induced
by gating the device or depositing impurities1, and can there-
fore be relevant for interpreting gating experiments in bilayer
graphene. Our mean field calculations show that the trigonal
warping γ3 in the band hamiltonian has very little effect in
suppressing the instability of bilayer graphene, indicating that
electron states away from the immediate vicinity of the Dirac
points do play a relevant role in opening a band gap in the
system.

The most interesting feature of these broken symmetry
states is the spontaneous quantum Hall effects which appear
when opposite valleys have opposite layer polarizations.17

When they have the same layer polarization, the system has
only a valley Hall effect, which is not manifested in standard
electrical measurements. There is no energy difference be-
tween valley Hall and anomalous Hall states in a continuum
model which does not account for lattice-scale physics. We
find that the energy difference between these states decreases
rapidly depending on the strength of the on-site effective inter-
action in our π-band only model, with valley Hall states being
favored over anomalous Hall states. States in which electrons
with one spin orientation form a valley Hall state, while elec-
trons with the other spin form an anomalous Hall state also
occur. Unlike Nandkishore and Levitov,14 we find that valley
Hall states have lower energy than anomalous Hall states, but

that the energy difference is quite small ∼ 10−9eV per carbon
atom. Because of this close competition the anomalous Hall
state which has spontaneous orbital magnetism has a lower
energy in the presence of weak external magnetic fields. This
scenario appears to be consistent with experiments from the
Yacoby group in which a ν = 4 quantized Hall effect persists
down to very weak magnetic fields. The small energy differ-
ences between competing states could mean that domains of
all character are present, separated by domain walls, because
of entropic and disorder considerations. In the presence of
a magnetic field, coupling of spontaneous orbital magnetism
to the external field favors anomalous Hall states and should
coarsen any domain structure. Similarly an externally applied
potential bias favors valley Hall states and should also coarsen
domain structures. In the absence of disorder we do find that
the charge gap is first decreased by potential bias, and finally
increased once both spins have valley Hall effects with the
same layer polarization. This finding is also qualitatively con-
sistent with experiment.20

We have also presented mean field theory estimates of the
critical temperatures associated with spontaneous layer polar-
ization states in graphene bilayers. According to these esti-
mates, order will not survive to room temperatures and there-
fore these interesting interaction effects are unfortunately un-
likely to be useful for applications. On the other hand, the
exchange interactions which produce broken symmetry states
at low temperatures, will still play a role in enhancing gaps
produced by external potential biases at room temperature.
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