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The detection of quantum spin Hall effect (QSHE) is investigated by using ferromagnetic leads
as probes. A polarization resistance is introduced and it is defined as a voltage over a current,
thus, can be measured with high precision like usual resistance. The polarization resistance exhibits
the quantum plateau with the plateau value h/2e2. In particular, this quantized plateau is found
to be robust against both spin and normal dephasing effects. Furthermore, such robust feature of
the plateau is insensitive to all experimental probing conditions and fluctuations, including type of
probes, coupling strength, probing position, coupling means, fluctuation of magnetic flux. Therefore,
the polarization resistance Rp can well reflect the topological nature of QSHE and it provides a direct
and quantitative way to detect QSHE with high precision in an experiment.
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I. INTRODUCTION

Being a topologically nontrivial state of matter, quan-
tum spin Hall effect (QSHE) has gained great interest in
the past few years. It was first introduced in graphene,1
a monolayer hexagonal lattice of carbon atoms with
a massless Dirac-like linear dispersion near the Fermi
surface.2 Soon after that, the prediction3 in HgTe/CeTe
quantum wells was made and the QSHE was observed
in the experiment.4 QSHE has many peculiar features
due to the nontrivial property:5 edges provide channels
for electrons tunneling whereas the bulk remains insu-
lated because that the spin-orbit coupling opens a band
gap. In the view of band energy, there are two heli-
cal edge states crossing inside the bulk energy gap,1,6
which means that electrons with opposite spin polariza-
tions move along opposite directions at any given edge.
Such helical edge states are topologically protected by
time reversal symmetry and insensitive to disorder of the
time reversal invariance since backscattering process is
forbidden.7 Therefore, it has greatly enlarged our under-
standing of nature and fundamental physics. Soon af-
ter the discovery of QSHE in two-dimensional system,3,4
the topological insulator8 in some three-dimensional ma-
terial was also predicted in theory9 and observed in
experiments,10 in which the movements of electrons are
only permitted on the surface of the material. Generally
speaking, the realization of a quantum spin Hall state re-
quires spin-orbit coupling, as first realized in HgTe/CeTe
quantum wells,4 since QSHE is nontrivial with Z2 topo-
logical quantity1 ν = 1. Nonzero value ν = 1 makes the
obstructions necessary for wavefunctions within the ef-
fective Brillouin zone,11 while it is not for an ordinary
insulator which has ν = 0. Very recently, an alternative
way to realize QSHE is suggested in ferromagnetic (FM)
graphene,12 in which the system is CT invariant (here C
and T respectively are the charge conjugation and time-
reversal operation) rather than time reversal invariant.

FM graphene has spin-resolved unique energy band with
the linear dispersion relation for the low-energy carri-
ers. In FM graphene, its carriers contain both electrons
and holes, in particular, electrons and holes are com-
pletely spin-polarized with opposite spin polarization di-
rection. Recently, some approaches have been suggested
to realize the FM.13,14 For example, the FM graphene
can be realized by growing graphene on a FM insula-
tor (e.g., EuO).13 Based on such unique energy band of
FM graphene and the split of spin-up and spin-down en-
ergy bands,13,15 the CT-invariant QSHE can be realized.
Specifically, when the Fermi energy EF is tuned to be-
tween spin-resolved Dirac points, carriers with different
spins will belong to different types (i.e., electron- and
hole-like), accordingly QSHE occurs under an applied
perpendicular magnetic field.

In order to detect the QSHE in experiments, some
probing methods are applied and now the QSHE has
been experimentally observed. The first try is to de-
tect the induced spin accumulation on transverse bound-
aries with the use of Kerr rotation microscopy.16 This
method is indirect and qualitative, accordingly the quan-
tized plateaus would not be obtained. The second way
is to measure the longitudinal resistance.4,5 Due to the
helical edge states, the longitudinal resistance in QSHE
system expects to be quantized with the quantum plateau
value h/2e2. But this quantum plateau can only survive
in small-size sample (or mesoscopic sample) and it fails
in macroscopic samples because of the spin dephasing.
This is very different from quantum Hall effect. In the
quantum Hall effect, the Hall resistance is measured and
has the quantum plateaus. In particular, the quantum
Hall plateaus are very robust against various impurity
scattering as well as various dephasing effect,17 and it
can well survive in macroscopic sample. So it is urgent
to find an observable physics quantity which can well re-
flect the topological nontrivial property of the QSHE, or
in other words, this physical quantity exhibits the plateau
which is robust against various dephasings and can sur-
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vive in both mesoscopic and macroscopic samples. Re-
cently we suggest and confirm that the quantized spin
Hall resistance18 Rs, the transverse spin bias over the lon-
gitudinal current, has the aforementioned characteristics.
However, unlike the resistance, the high precision mea-
surement of spin bias is hard to achieve experimentally.
In fact, there is no efficient enough way to measure spin
bias at the moment. Does there exist another approach
to detect QSHE directly in both mesoscopic and macro-
scopic samples, where the observed quantity can reach
high precision like the resistance and quantized plateaus
can well hold in the presence of various dephasing pro-
cesses?

In this paper, taking CT-invariant QSHE for example,
the detection of QSHE is investigated in a four-terminal
system by using FM probes. A polarization resistance
Rp is introduced and it can well indicate the topological
feature of QSHE. Rp is defined as the bias over current,
so it can be measured with high precision in an experi-
ment. The polarization resistance Rp versus the Dirac-
point energy (or Fermi energy) exhibits the plateau with
the plateau value h/2e2. Specifically, the plateau can
be robust against various dephasing effects so it can sur-
vive in macroscopic samples. Furthermore, we find that
the robust feature of Rp is insensitive to type of probes,
coupling strength between the probe and FM graphene,
probing position, coupling means, fluctuation of mag-
netic flux etc. Noticeable, the topological feature of Rp
is just due to the helical edge states in QSHE and it is
independent on specific realizations, and accordingly the
quantum plateau of Rp still exist and the way of detec-
tion is suitable for other types of QSHE as well.

The rest of this paper is organized as follows. In Sec.
II we introduce our model and methods as well as ways
of detection. In Sec. III we show numerical results of the
polarization resistance Rp under dephasing effect which
indicate topological feature of QSHE. Finally, Sec. IV
gives the conclusion.

II. MODEL AND METHODS

We consider a four-terminal system consisting of a FM
graphene ribbon coupled by two FM leads (the terminals
2 and 4) as shown in Fig.1(a). The FM terminals 2 and
4 are as the probes and they have the same polarization
direction. The direction of polarization in FM graphene
is assumed to be upward, but the FM terminals 2 and 4
can be spin-up or spin-down polarized corresponding to
parallel or antiparallel with FM graphene respectively.
In the parallel case, we let a small longitudinal current
I flow from the terminal 1 through the central region
to the terminal 3, and the FM terminals 2 and 4 are as
the voltage probes with the voltage of FM terminal 2
denoted as VP . In similar, in the antiparallel case, the
voltage of the FM terminal 2 VAP can also be obtained
while a same longitudinal current I flows through the sys-
tem which can be realized by using the constant current

source. The polarization resistance Rp is then defined as
Rp ≡ (VP − VAP )/I. Furthermore, considering that VP
and VAP are all voltages rather than spin bias, so the po-
larization resistance Rp can be measured in experiments
at high precision like the usual resistance.

A four-terminal system is illustrated in Fig. 1(a). The
FM graphene ribbon with width N is divided into three
parts: the terminal 1, central region, and the terminal
3. The dephasing process is assumed to occur only in
the central region whose length is Nc. The terminals
2 and 4 as the probes can be made of the usual FM
leads (the square lattice) or FM graphene (the hexagonal
lattice). In addition, an intermediate zone between the
FM graphene ribbon and the probing terminal 2 (4) is
introduced in order to avoid the spin-flip scattering in
the contact of the probing terminals and FM graphene.
The intermediate zone consists of the hexagonal lattice
of the carbon atoms with the size Ng ×Np. Besides, we
also consider two coupling means between FM graphene
and the probing terminals, where one has particle-hole
symmetry (shown in Fig.1(a)) while the other one does
not (shown in the inset of Fig.5(b)). In Fig.1(a) we show
coupling mean with the particle-hole symmetry and the
probing terminals are set in the middle of central region.
In fact, the probing positions can be set anywhere along
the boundaries.

In the tight-binding representation, the Hamiltonian
of the aforementioned device is given by:12

H = HG +HP +HT

HG =
∑
iσ

(εd − σM)c†iσciσ − t
∑
〈ij〉,σ

eiφijc†iσcjσ

HP =
∑
iσ

εpσa
†
iσaiσ − t

∑
〈ij〉,σ

eiφija†iσajσ

HT = −tc
∑
〈ij〉,σ

eiφijc†iσajσ + H.c. (1)

where H has been divided into three parts: HG, HP and
HT corresponding to FM graphene ribbon, the FM prob-
ing terminals, hopping term between them respectively.
In the above Hamiltonian, Fermion operator ciσ denotes
the band states of FM graphene with on-site energy εd,
spin σ ∈ {↑, ↓}, and FM exchange field M , while aiσ
with on-site energy εpσ is the same denotation in prob-
ing terminals. Here we assume that the FM probing ter-
minals are completely polarized. Specifically, during the
detection procedure, we set the spin-down coupling term
in HT to be 0 (i.e., Γ↓ = 0) for parallel case and FM
leads are spin-up polarized, whereas for the antiparal-
lel case situation reverses. Moreover, we only consider
the nearest neighbor hopping, and t is hopping element
between the nearest neighbor sites, while tc stands for
the hopping element between FM graphene and prob-
ing terminals. In the presence of external perpendicular
magnetic field B, there is an additional phase factor12

adding to the hopping elements with φij =
∫ j
i
~A · d~l/φ0

where ~l ≡ ~j −~i, φ0 = ~/e and ~A is the vector poten-
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tial. In our calculation, the magnetic field is described
by the magnetic flux in a honeycomb lattice 2φ where
φ ≡ (3

√
3/4)a2B/φ0 with a being the lattice constant of

graphene.
There are two types of dephasing in realistic samples:18

the first kind, which is called spin-dephasing process,
makes carriers lose both phase and spin memories such
as magnetic impurity induced spin-flip dephasing pro-
cess, by contrast the normal dephasing process only in-
duces the loss of phase memory for carriers such as
electron-electron/phonon interaction. The influence of
dephasing process can be simulated by using virtual-leads
method.19,20 The current flowing from lead p (including
both real and virtual leads) can be calculated by using
the multiprobe Landauer-Büttiker formula:21,22

Ipσ =
e

h

∫
dε

∑
q

Tpqσ(ε)× [fqσ(ε)− fpσ(ε)] (2)

where Ipσ is the current in terminal p (either real or
virtual lead) with spin σ, and e and h are elemen-
tary charge and Planck constant respectively. fqσ(ε) =
1/{exp[(ε − µqσ)/kBT ] + 1} is the Fermi distribution
function in terminal q with chemical potential µqσ and
temperature T . In Eq.(2), Tpqσ(ε) represents the trans-
mission coefficient at energy ε, and it can be calcu-
lated through the equation Tpqσ = Tr[ΓpσGrσΓqσGaσ]
where Γpσ(ε) = i[Σrpσ(ε) − Σapσ(ε)] and Green’s function
Grσ(ε) = [Gaσ(ε)]† = {ε−HC

σ −
∑
p Σrpσ}−1 with HC

σ be-
ing the Hamiltonian of central region. For the real leads,
the self-energy Σrpσ needs to be numerically calculated.23
But for the virtual leads, Σrp = −iΓd/2 where Γd denotes
the dephasing strength. In the case of zero temperature,
Eq. (2) is reduced to:

Ipσ =
e2

h

∑
q

Tpqσ(Vqσ − Vpσ) (3)

with Tpqσ ≡ Tpqσ(EF ) and Vpσ denoting the bias in ter-
minal p with spin σ. Noticeable, Tpqσ is the transmission
coefficient for electrons tunneling from terminal q to ter-
minal p with spin σ, and hereafter the Fermi energy is
fixed at EF = 0. Besides, Vpσ is actually the spin-σ
chemical potential in terminal p (i.e., eVpσ = µpσ).

In our simulation, a small longitudinal current I is ap-
plied between the terminals 1 and 3 and correspondence
boundary conditions for the probing terminals 2 and 4
are I2 = I4 = 0. For virtual leads, however, there ex-
ists two kinds of boundary conditions corresponding to
different dephasing types.18 In the spin-dephasing case it
has to be Ii ≡ Ii↑ + Ii↓ = 0 and Vi↑ = Vi↓, while it is
Iiσ = 0 in the normal dephasing case where i is the index
indicting virtual leads and σ ∈ {↑, ↓}. Thus, for the spin
dephasing case the spin-up chemical potential is the same
as spin-down chemical potential in all leads (either real or
virtual), accordingly Vp↑ = Vp↓. For the normal dephas-
ing case, on the other hand, we have Vi↑ 6= Vi↓ in usual
for arbitrary virtual lead i. Finally, by using Eq. (3)
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FIG. 1. (Color online) (a) illustration of four-terminal system
consisting of a FM graphene ribbon coupled to two FM leads.
In this diagram, the sizes of device are N = 3, Nc = 7, Ng = 1,
and Np = 3, and the FM leads couple to the middle of the
central region. (b) shows changes of coherent component Ico,
incoherent component Iinco, and total current I with increas-
ing Γd for a two-terminal system at εd = 0, and (c) presents
the evolution of two specific tunneling coefficients T1↑→2(3)↑
with varying coupling strength tc at εd = 0. The measure-
ments of VP /V, VAP /V and I/V versus on-site energy εd in
the spin dephasing case are plotted in (d) and (e) respectively
for Γd = 0 and Γd = 0.025. Other unmentioned parameters in
panels (b)-(e) are: EF = 0, N = 50, Nc = 31, Ng = 10, Np =
17,M = 0.05, φ = −0.02, t = 1, tc = 1, εps = 0. The probing
terminals are FM leads and coupling position is in the middle
of the central region.

and applying such boundary conditions, the voltage in
the probing terminal 2 (VP and VAP ) can be calculated,
and so is the polarization resistance Rp = (VP −VAP )/I.
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III. NUMERICAL RESULTS OF
POLARIZATION RESISTANCE UNDER

DEPHASING EFFECT

Before discussing the polarization resistance Rp, let us
first study the dephasing effect due to the virtual leads.
Fig.1(b) shows the coherent component Ico, incoherent
component Iinco, and total current I versus the dephasing
strength Γd for a two-terminal system (decoupling the
probing terminals 2 and 4). At around Γd ' 0.015, the
so-called critical dephasing strength, Ico and Iinco are
equal to each other so that current system length Nc
is just equal to the phase relaxation length Lφ at the
moment.19 At Γd ' 0.025 we can see Ico is nearly half
of Iinco, accordingly Nc is almost two times of Lφ. In
the following calculations, we use Γd = 0.015 as a typical
dephasing strength in which the system is just at the
verge of the mesoscopic and macroscopic sample, and
use Γd = 0.03 as the strong dephasing regime, in which
the system size is much longer than the phase relaxation
length so that the system is the macroscopic sample.

When the probing terminals couple to the FM
graphene ribbon, carriers can tunnel from the FM
graphene terminal 1 to the probing terminals, which is
shown in Fig.1(c). It can be seen clearly the transmis-
sion coefficient T1↑→2↑ is nearly one while the coupling
strength tc ' 1. This means that in the case tc ' 1
the contact between probing terminals and FM graphene
ribbon is fine, i.e. in the strong coupling regime. On the
other hand, while at around tc ' 0.1 the transmission
coefficient T1↑→2↑ is about 0.1, and the system is in a
weak coupling regime.

Now we take our calculations of VP /V , VAP /V as well
as I/V , where V = V1 − V3 is the external voltage be-
tween the longitudinal terminals 1 and 3. Due to the
unique energy band of FM graphene, there will be two
types of carriers when −M < εd < M . Specifically, the
spin-up carriers are in the conduction band so that they
are electron-like. Reversely, the spin-down carriers are
hole-like since they are in the valence band. Because
that electrons and holes have different moving directions
under a perpendicular magnetic field (i.e., clockwise and
anticlockwise) due to opposite Lorentz force, accordingly
helical states occur at edges and also the QSHE is re-
alized. In Fig. 1(d) and (e), we show the influence of
spin-dephasing process on VP /V , VAP /V and I/V ver-
sus on-site energy εd. From Fig.1(d) and (e), we can
see that within the QSHE regime (−M < εd < M),
both VP /V and VAP /V are spin-dependent since oppo-
site spin-polarized carriers belong to different types and
move in opposite direction. All VP /V , VAP /V , and I/V
are strongly affected by the spin dephasing Γd, the dif-
ference between VP /V and VAP /V is reduced and I/V
is dropped, because of the occurrence of the loss-phase
spin-flipping scattering. On the other hand, while out of
the QSHE regime (εd < −M or εd > M), the spin-up
and spin-down carriers will be the same type (electron-
or hole-like) and accordingly they move in the same di-
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FIG. 2. (color online) Polarization resistanceRp versus energy
εd for the FM-graphene probes (in panel (a) and (b)) and
normal FM-lead probes (in panel (c) and (d)). The panels (a)
and (c) are for the spin dephasing, while the panels (b) and (d)
are for the normal dephasing. All unmentioned parameters
are the same as in Fig.1.

rection, thus VP /V , VAP /V and I/V remain invariant.
Next we focus on the polarization resistance Rp (Rp =

(VP /V − VAP /V )/(I/V ) = (VP − VAP )/I) and find out
how the dephasing effect influences Rp. Fig. 2 shows the
polarization resistance Rp versus the Dirac-point energy
εd. Without the dephasing effect(i.e.: Γd = 0), the po-
larization resistance exhibits a quantum plateau in the
QSHE regime −M < εd < M with the plateau value
h/2e2, because that opposite spin-polarized carriers be-
long to different types (electron- or hole-like) and move
in opposite directions. While out of the QSHE regime,
the polarization resistance is zero because now all carriers
move in one direction. While in the presence of dephas-
ing effect, as shown in Fig.2, the polarization resistance
Rp well remains the quantized plateau even for very large
dephasing strength Γd and also has nothing to do with
probe types (either FM-graphene probe or normal FM-
lead probe).

Specifically, the topological feature of Rp lies as fol-
lows. For the normal dephasing process, since the normal
dephasing process cannot induce the spin flipping of the
carriers, thus the carriers still well keep the direction of
movement.19 In fact, with varying Γd, values of VP /V ,
VAP /V and I/V are all maintained in this case. For the
spin dephasing process, on the other hand, spin-flipping
process makes a great contribution to the decrease of
VP /V (VAP /V ) and I/V (see Fig.1(d) and (e)). Notice-
able, these decreases occur simultaneously. Of more im-
portance, such decreases are induced by the same spin-
flipping process, so the polarization resistance Rp is ex-
pected to maintain its value with varying Γd due to its
definition. In other words, Rp should have robust feature
against both normal and spin dephasing processes. From
Fig. 2(a) and (c) we can see Rp does remain quantized
with varying dephasing strength Γd. Since the physical
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FIG. 3. (color online) Rp versus εd in the weak coupling
regime tc = 0.1 is shown. All unmentioned parameters are
the same as in Fig.1.
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FIG. 4. (color online) (a) shows VP /V, VAP /V versus probing
position x along the upper boundary of FM graphene ribbon
for different spin-dephasing strength Γd at fixed energy εd =
0, while (b) shows changes of the polarization resistance Rp

versus x. Other unmentioned parameters are the same as in
Fig. 1.

picture of Rp in the normal dephasing case is simple and
clear, thus only the influence of spin-dephasing process
is considered in the following investigation.

In Fig. 3 we present Rp versum energy εd in the weak
coupling regime tc = 0.1, in which the different curves
are for the different dephasing strength Γd. Here the
quantized plateaus are clearly shown as well, in partic-
ular, this quantized plateaus can well survive even at
the strong dephasing strength Γd. This is similar to the
strong coupling regime at tc = 1 shown in Fig.2(c). No-
ticeable, the coupling strength tc in parallel and antipar-
allel cases can be different in experiments, but it also has
little influence on the robust feature of Rp. In fact, in this
situation all VP /V, VAP and I are nearly independent on
tc. Therefore, this robust feature of Rp is independent on
the coupling strength between FM graphene and probing
subsystem.

So far, our probing terminals 2 and 4 have always been
set in the middle of central region which means a π ro-
tation symmetry resulting in that T21σ = T43σ. Follow-
ing we study how is the effect of probing position (i.e.
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FIG. 5. (color online) The polarization resistance Rp versus
energy εd for different spin-dephasing strength Γd under two
coupling means of probing terminals: (a) is a three-terminal
system now and the probing terminal only consists of terminal
2, and (b) is asymmetry-coupling probing case as shown in the
inset of (b) where the particle-hole symmetry is broken at the
moment. Other unmentioned parameters are the same as in
Fig. 1(d).

the coupling position of the probing terminals and FM
graphene ribbon) on the robust feature of the plateau of
polarization resistance Rp. In Fig. 4 we show measurable
quantities VP /V , VAP /V as well as Rp versus the prob-
ing position along the upper boundary of FM graphene
with varying Γd. First feature revealed in Fig.4(a) is the
parallel voltage lines for any spin dephasing strengths.
Besides, from Fig.4(b) one can see clearly that the po-
larization resistance Rp versus probing position x under
different Γd merge into one single line indicating that Rp
is insensitive to dephasing effect. And also, this line is
parallel with horizontal axis which means little influence
of probing position x on polarization resistance Rp.

Next, we adjust the coupling means of probing termi-
nals and the FM graphene, and such numerical results
are shown in Fig. 5. Here two specific coupling means
are considered. In Fig. 5(a), it is a three-terminal system
at the moment and the terminal 4 is decoupled. In the
subfigure (b), we adjust the coupling way as illustrated
in the inset. In this case particle-hole symmetry is not
held any more. We find that, the polarization resistance
Rp is insensitive to dephasing effect and always remain
quantized with the plateau value h/2e2 in either of the
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FIG. 6. (color online) The polarization resistance Rp versus
energy εd for different fluctuations of magnetic field ampli-
tude varying from 0 to 25%. It is in the spin dephasing case,
and the dephasing strength is chosen as Γd = 0.015. Other
unmentioned parameters are the same as in Fig. 1(d).

two cases. That’s to say, such robust feature have noth-
ing to do with specific coupling details between probing
terminals and FM graphene ribbon.

Finally, we investigate the influence of various fluctu-
ations on the quantum plateau h/2e2 of polarization re-
sistance Rp. As we know, in a real experimental setup
the actual device parameters have inevitable fluctuations,
such as the magnetic field amplitude (i.e., magnetic flux),
device width and device length etc. Here we take the
fluctuation of the magnetic field amplitude for instance
and consider that the fluctuation only exist in the center
region (see Fig.1a). While in the presence of the mag-
netic field fluctuation, the magnetic flux in each honey-
comb lattice of the center region is 2φ + ϕi2φ, where
ϕi is uniformly distributed in the range [−η/2, η/2] with
the fluctuation strength η. Fig. 6 shows the polariza-
tion resistance Rp versus energy εd with the fluctuation
strength η varying from 0 to 25%. From Fig. 6, we can see
that all curves almost overlap together and the plateau
of Rp can well keep for the fluctuation strength η up to
25%. This is because of the system having the nontriv-
ial topological property and the existence of the helical
edge states. Also because of the nontrivial topological
property and the existence of the helical edge states, the
quantum plateau h/2e2 of the polarization resistance Rp
is robust against to other fluctuations (e.g. the device
parameters N , Nc, Np etc) and disorder.

IV. CONCLUSION

In summary, we investigate the detection of QSHE by
using FM leads as probes. Taking CT-invariant QSHE
for example, we define a polarization resistance Rp to
indicate the topological feature of QSHE. Here Rp is de-
fined as a voltage over a current, so it can be measured at

high precision like the usual resistance. The polarization
resistance versus the Dirac-point energy (or the gate volt-
age in the experiment) exhibits quantized plateau with
the plateau value at h/2e2. In particular, this quantized
plateau is found to be robust against all dephasing ef-
fects (the normal and spin dephasing). Furthermore, the
robust feature of the polarization resistance is also insen-
sitive to all experimental probing conditions and fluctu-
ations, such as type of probes, coupling strength, prob-
ing position, coupling means, fluctuation of magnetic flux
etc. That’s to say, the polarization resistance Rp can well
indicate the topological nature of system, and it provides
a direct and quantitative way to detect QSHE with high
precision in experiments.
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