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The spin and orbital Kondo effects and the related shot noise for a laterally coupled double
quantum dot are studied taking account of coherent indirect coupling via a reservoir. We calculate
the linear conductance and shot noise for various charge states to distinguish between the spin and
orbital Kondo effects. We find that a novel antiferromagnetic exchange coupling can be generated by
the coherent indirect coupling, and it works to suppress the spin Kondo effect when each quantum
dot holds just one electron. We also show that we can capture the feature of the pseudospin Kondo
effect from the shot noise measurement.
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I. INTRODUCTION

The Kondo effect was discovered many years ago in metals with dilute magnetic impurities and has long been
studied as one of the most important many-body correlations in condensed matter physics1,2. We have obtained
the physical understanding in equilibrium Kondo systems using the powerful methods such as exact solution and
numerical renormalization group (RG) approach3,4 More recently it has been predicted that the Kondo effect occurs
in semiconductor quantum dots (QDs)5,6, and indeed, it has been observed in transport measurements for various
kinds of QDs7. In a single QD system, the Kondo effect gives rise to the enhancement of the conductance, and
the conductance reaches the value of 2e2/h at the unitary limit8,9. Since then the Kondo effect in QDs has been
attracting a lot of new interests associated with extended degrees of freedom, such as tunnel coupling to reservoirs,
the number of trapped electrons in a QD, and the number of Kondo channels. By tuning these parameters, various
aspects of the Kondo effect have been revealed including enhancement induced by state degeneracy10, the unitary
limit11, and the nonequilibrium Kondo effect12. Therefore, QDs are regarded as artificial Kondo systems, in which
various theoretical approximations can be tested to acquire a better understanding of strongly correlated electron
systems. In particular, the nonequilibrium Kondo problem is not yet solved completely despite the large number
of theoretical studies. The nonequilibrium magnetization of the QD was revisited using the Schwinger-Keldysh
perturbation formalism13. When the large bias voltage or a magnetic field is applied, the transport through the QD
was studied by the perturbative RG approach14–16 (so-called poor man’s scaling developed by Anderson17). Using
the real-time perturbation theory in Schwinger-Keldysh formulation, the universal properties that the perturbative
series of any average in the steady state satisfies the equilibrium Callan-Symanzik equations18. By the real-time
RG in frequency space, the nonequilibrium anisotropic Kondo model was examined in the weak coupling regime,
where the maximum of bias voltage and magnetic field is larger than the Kondo temperature19. In the framework
of the same approach, the dynamical spin-spin correlation function was calculated in nonequilibrium Kondo systems
describing spin and/or orbital fluctuations20. Using the generalized flow equation approach to include a magnetic
field similar to the real-time RG performed by Schoeller et al., the spin-spin correlation function, the T -matrix, and
the magnetization were calculated as a function of applied magnetic field21. By a nonequilibrium RG method, the
real-time evolution of spin and current in the anisotropic Kondo model were investigated at a finite magnetic field
and bias voltage22.

Recently, in not only the single QD but also the double quantum dot (DQD) systems, the Kondo effects have
been studied. In particular, the interplay between the Kondo effect and inter-dot correlation was discussed23–26. It
is theoretically predicted that the two-channel Kondo model realized in a DQD system exhibits a non-Fermi liquid
quantum critical point27. Such a two-channel Kondo problem was experimentally investigated28. Moreover, the Kondo
problem is more intriguing in DQDs than in single QDs because of the competition between the spin Kondo effect and
the orbital (pseudospin) Kondo effect29–33. In a DQD, the pseudospin state is represented as a state with an electron
in either of two capacitively coupled QDs but separately contacted to a pair of reserviors (see Fig. 1(a)). It has been
predicted that the SU(4) Kondo effect will provide a novel feature for a highly symmetric DQD configuration31,34.
However, it is difficult to realize the SU(4) condition experimentally since the intra-dot Coulomb interaction is usually
larger than the inter-dot Coulomb interaction. The pseudospin Kondo effect is only defined in DQDs, and has recently
been confirmed experimentally, but not in reference to the interplay with the spin Kondo effect35. In contrast with
an ideal DQD as shown in Fig. 1(a), most experiments are performed for DQDs with an integrated reservoir (see
Fig. 1(b)). In such DQDs, the pseudospin-dependent linewidth function is induced by the coherent indirect coupling
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FIG. 1: Schematic diagrams of laterally coupled DQDs with a separated drain reservoir. s12 is the minimum distance that
electrons propagate in the source reservoir. (a) The source and drain reservoirs are both completely separated, namely there is
no coupling between two QDs via the reservoirs. This situation corresponds to s12 → ∞. (b) The source reservoir is common
and the drain reservoir is separated. (c) There is maximal coherence between two QDs via the reservoirs. This condition
corresponds to s12 = 0.

via the integrated reservoir36. The effect of the indirect coupling on the spin Kondo effect in DQDs with integrated
reservoirs have been discussed only where the indirect coupling is at its maximum value as shown in Fig. 1(c)37–39.
However, most of the actual experimental conditions correspond to an intermediate condition (for example40), and so
it is important to study the effects of indirect coupling on the Kondo effect. Moreover, theoretical studies often focus
on a situation where two QDs are energetically aligned. The pseudospin Kondo effect strongly depends on the charge
states in the DQD. Therefore, it is useful to employ the entire charge state diagram to capture the signature of the
pseudospin Kondo effect.

In this paper, we investigate the effects of coherent indirect coupling via a reservoir on the Kondo effects in a
laterally coupled DQD. We employ the finite Coulomb interaction slave-boson mean-field theory (SBMFT)41 using the
nonequilibrium Green’s function method. This approach allows us to take account of the coherence between two QDs
nonperturbatively. To characterize the indirect coupling, we introduce a coherent indirect coupling parameter α42,43.
For finite α, the pseudospin Kondo effect is suppressed since the linewidth function depends on the pseudospin and the
SU(2) symmetry is broken36. Here we newly find that the coherent indirect coupling leads to novel antiferromagnetic
kinetic exchange coupling between two local spins in QDs via the reservoir. This kinetic exchange coupling via the
reservoir competes with the Kondo exchange coupling, and hence the spin Kondo effect is suppressed when each QD
holds just one electron. Such a phenomenon can occur in parallel but not series coupled DQDs. Then, we examine
the shot noise to devise a new approach for characterizing the pseudospin Kondo effect. To distinguish between the
spin Kondo effect and pseudospin Kondo effect can be difficult in standard conductance measurements. We find that
the shot noise experiment can provide a clear contrast between them. The shot noise has recently been discussed
extensively in relation to charge fluctuations in mesoscopic systems44. The current noise S(ω) is defined by a Fourier
transform of S(t, t′) = 〈{δI(t), δI(t′)}〉, where δI(t) ≡ I(t) − 〈I(t)〉 is the amount by which the current deviates from
its average value. The equilibrium zero-frequency current noise S(0) cannot carry additional information beyond the
conductance. In contrast, the nonequilibrium zero-frequency shot noise can provide information on charge fluctuations,
which is not accessible in conventional transport measurements. The source-drain bias voltage dependence of the shot
noise through a QD in the spin Kondo regime has been studied theoretically45. Here, the pseudospin Kondo effect is
generally promoted by the charge fluctuation, so we examine the shot noise in the charge stability diagram, and find
that it is strongly enhanced in the pseudospin Kondo regime.

This paper is organized as follows. In Sec. II, a standard tunneling Hamiltonian is employed to describe a laterally
coupled DQD. We introduce the notion of the coherent indirect coupling for the source reservoir. We provide the
expressions of the linear conductance and the zero-frequency shot noise at zero temperature using the nonequilibrium
Green’s function method. We discuss the numerical results for the linear conductance and zero-frequency shot noise
at zero temperature in Sec. III. In particular, we derive the new antiferromagnetic kinetic exchange coupling induced
by a coherent indirect coupling via the reservoir. We show that the spin-spin correlation is antiferromagnetic. All
our results are summarized in Sec. IV. In Appendix A, we provide the detailed derivation of the effective spin-spin
Hamiltonian with an antiferromagnetic kinetic exchange coupling induced by a coherent indirect coupling using the
4th-order Rayleigh-Schrödinger degenerate perturbation theory.
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II. MODEL AND FORMULATION

We consider a DQD tunnel coupled to one common source reservoir and two drain reservoirs as shown in Fig.
1(b). We assume only a single energy level for each QD. The Hamiltonian represents the sum of the following terms:
H = HR + HDQD + HT . The Hamiltonian of the Fermi liquid reservoirs is

HR =
∑

ν∈{S,D1,D2}

∑

k

∑

σ∈{↑,↓}

ǫνkaνkσ
†aνkσ, (1)

where ǫνk is the electron energy with wave number k in the reservoir ν and the operator aνkσ (aνkσ
†) annihilates

(creates) an electron with spin σ in the reservoirs. HDQD describes an isolated DQD,

HDQD =

2
∑

i=1

∑

σ∈{↑,↓}

ǫiniσ +

2
∑

i=1

Uini↑ni↓ + Vinter

∑

σ∈{↑,↓}

∑

σ′∈{↑,↓}

n1σn2σ′ , (2)

where ǫi is the energy level of the ith QD, Ui is the on-site Coulomb interaction in the ith QD, and Vinter is the
inter-dot Coulomb interaction. Here the following notations are introduced: ciσ (ciσ

†) is an annihilation (creation)
operator of an electron in the ith QD with spin σ and niσ = ciσ

†ciσ is its number operator. The tunneling Hamiltonian
between the QDs and source and drain reservoirs is given by

HT =
∑

k

2
∑

i=1

∑

σ∈{↑,↓}

[

t
(i)
SkaSkσ

†ciσ + tDikaDikσ
†ciσ + H.c.

]

. (3)

We take account of the propagation process of electrons in the source reservoir. This leads to coherent indirect
coupling between two QDs via the source reservoir42,43, which is characterized by a parameter α. The linewidth
function matrices are then given by

Γ
S
σ = ΓS

(

1 α
α 1

)

, Γ
D1
σ = ΓD

(

1 0
0 0

)

, Γ
D2
σ = ΓD

(

0 0
0 1

)

, (4)

where the boldface notation indicates a matrix whose basis is the localized state in each QD. Here we assume

that |t
(1)
Sk |

2 = |t
(2)
Sk |

2 ≡ |tSk|
2 and |tD1k|

2 = |tD2k|
2 ≡ |tDk|

2. The linewidth function is defined by Γν(ǫ) ≡
(2π/~)

∑

k |tνk|
2δ(ǫ − ǫνk), and we neglected its energy dependence in the wide-band limit, namely Γν(ǫ) = Γν .

α is a function of the propagation length s12 of the electrons in the reservoir43, and in general, |α| ≤ 1. The condition
s12 = 0 is equivalent to α = 146. The importance of the sign of the coherent indirect coupling parameter was pointed

out by S. A. Gurvitz47. The wave number dependence of the tunneling amplitude t
(j)
νk is usually neglected in the

theoretical treatment. However, in case the two QDs are indirectly coupled via the source reservoir as assumed here,
the wave number dependence of the tunneling amplitude plays an important role in generating an indirect hopping
between the QDs. As explained later, such an indirect hopping process causes an antiferromagnetic kinetic exchange
coupling. The mechanism is similar to that by a direct inter-dot coupling mechanism25, however, for the indirect
inter-dot coupling, the exchange coupling constant includes information of coherence in the source reservoir.

We use the finite Coulomb interaction SBMFT41 to investigate the linear conductance and shot noise through DQDs.
In this approach, the slave-boson operators are replaced by nonfluctuating average values, leading to a noninteracting
resonant tunneling model, whose 28 unknown parameters have to be determined self-consistently. The result obtained
with this method agrees fairly well with a numerical Lanczos calculation and a numerical renormalization group
calculation for a tunnel-coupled DQD25,48,49.

The tunneling current through a DQD can be expressed in terms of the transmission matrix50,

I =
e

h

2
∑

i=1

∑

σ∈{↑,↓}

∫

dǫ[fS(ǫ) − fDi(ǫ)]Tr {Tiσ(ǫ)} . (5)

Here the transmission matrix is defined as Tiσ(ǫ) = G
r
σ(ǫ)ΓS

σG
a
σ(ǫ)ΓDi

σ using the retarded (advanced) Green’s function
G

r
σ(ǫ) (Ga

σ(ǫ)) of the DQD, and fν(ǫ) = 1/(1 + e(ǫ−µν)/kBT ) is the Fermi-Dirac distribution function in the reservoir
ν at temperature T . Within the framework of the finite Coulomb interaction SBMFT, the retarded Green’s function
is given by

G
r
σ(ǫ) =

(

ǫ−ǫ̃1
~

+ i
2 Γ̃11,σ

i
2 Γ̃12,σ

i
2 Γ̃21,σ

ǫ−ǫ̃2
~

+ i
2 Γ̃22,σ

)−1

, (6)
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where ǫ̃i and Γ̃ij,σ are the renormalized energy level of the ith QD and the (i, j) matrix element of the linewidth
function matrix for spin σ. Such renormalizations indicate the Coulomb interaction effects. The advanced Green’s
function is obtained from the retarded Green’s function: G

a
σ(ǫ) = [Gr

σ(ǫ)]†. The source and drain reservoirs have
chemical potentials µS = µ+ eVSD/2 and µDi = µ− eVSD/2 with the source-drain bias voltage VSD, and µ = 0 is the
origin of the energy. Here we assume that the two drain reservoirs have the same chemical potential. In the following,
we focus on the zero temperature condition. Then, the linear conductance through the ith QD is given by

Gi =
e2

h

∑

σ∈{↑,↓}

Tiσ, (7)

where Tiσ ≡ Tr {Tiσ(0)} is the transmission probability of the conduction channel for spin σ in the ith QD. Within
the framework of the SBMFT, the zero-frequency shot noise is given by the Khlus-Lesovik formula51,52,

S(0) =
e2

π

2
∑

i=1

∑

σ∈{↑,↓}

∫ eVSD/2

−eVSD/2

dǫ

~
Tr {Tiσ(ǫ) [1 − Tiσ(ǫ)]}

=
e2

π

2
∑

i=1

∑

σ∈{↑,↓}

∫ eVSD/2

−eVSD/2

dǫ

~
Tiσ(ǫ)[1 − Tiσ(ǫ)], (8)

where Tiσ(ǫ) = Tr {Tiσ(ǫ)}. In our problem, although the transmission matrix has finite off-diagonal elements for
α 6= 0, the zero-frequency shot noise can be expressed as Eq. (8) in terms of the simple summation of Tiσ(ǫ)[1−Tiσ(ǫ)]
for each conduction mode since the drain reservoirs are separated and there is no indirect coupling.

III. THEORETICAL RESULTS

A. Linear transport

In the following discussions, we assume that U1/~Γ = U2/~Γ ≡ U/~Γ = 2Vinter/~Γ = 6, and ΓS = ΓD = Γ
as a typical example, and to show the charge configurations, we introduce the notation (N1, N2), where Ni is the
population of the ith QD. First, we consider the situation without coherent indirect coupling, namely α = 0, shown
in Fig. 1(a). The total linear conductance G = G1 + G2 is shown in Fig. 2(a) as a function of ǫ1 and ǫ2 (charge
stability diagram). The conductance is suppressed owing to the Coulomb blockade in the (0, 0), (2, 0), (0, 2), and
(2, 2) regimes. In the (1, 0), (0, 1), (2, 1), and (1, 2) regimes, G ≃ 2e2/h since the conductance is enhanced as a result
of the spin Kondo effects. In the (1, 1) regime, we have the double spin Kondo effect, namely spin Kondo effects in
each QD, and the conductance value reaches 4e2/h. Without depending on the ratio between U and Vinter , the linear
conductance can reach 4e2/h at ǫ1/~Γ = ǫ2/~Γ = −(U/2+Vinter)/~Γ, namely the center of the (1, 1) region53. In Fig.
2(b), we plot the energy offset ∆ǫ(≡ ǫ1 − ǫ2) dependence of the linear conductance along the white line in Fig. 2(a).
∆ǫ = 0 corresponds to ǫ1 = ǫ2 = −Vinter/2. For the spinless electrons, the linear conductance cannot exceed 2e2/h
in the pseudospin Kondo regime, namely the (1, 0)− (0, 1), (2, 0)− (1, 1), (1, 1)− (0, 2), and (2, 1)− (1, 2) boundaries.
However, when the spin and pseudospin degrees of freedom are entangled, G exceeds 2e2/h as shown in Fig. 2(b).
For a large ∆ǫ, G approaches 2e2/h since the situation becomes equivalent to that of the spin Kondo regime in a
single QD. These results are qualitatively consistent with those obtained with the numerical renormalization group
method34.

Next, we consider the effect of α. In Fig. 3(a), we show the conductance difference ∆Gα between G of α = 0.5 and
G of α = 0. From Fig. 3(a), we find that the linear conductance decreases only in the (1, 1) charge configuration.
In this (1, 1) charge configuration, the coherent indirect coupling gives rise to antiferromagnetic kinetic exchange
coupling as follows: We consider the tunneling Hamiltonian (3) as a perturbation, and we calculate the effective spin-
spin interaction Hamiltonian using the 4th-order Rayleigh-Schrödinger degenerate perturbation theory, namely the
effective Hamiltonian is given as Hα

eff = HT
1

E−H0

HT
1

E−H0

HT
1

E−H0

HT , where H0 ≡ HR +HDQD is the unperturbed
Hamiltonian. As a result, we obtain the following effective spin-spin interaction Hamiltonian: Hα

eff ≃ JαS1 ·S2 with

Jα = 16ǫF

(

α~Γ

πU

)2

, (9)

where Si is the spin operator of the ith QD and ǫF is the Fermi energy. Here we consider the possibility to observe this
exchange coupling experimentally. To observe the Kondo effect, we usually use the QD systems in the strong coupling
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FIG. 2: Total linear conductance G for α = 0 and U1/~Γ = U2/~Γ = 2Vinter/~Γ = 6. (a) The charge configuration is shown as
(N1, N2). The white dotted line indicates the charge degeneracy line schematically. (b) ∆ǫ dependence of the linear conductance
along the white line in (a). The broken, dotted, and solid lines indicate the conductance G1, G2, and the total conductance G,
respectively.

regime, namely large Γ, since the Kondo temperature becomes higher. Thus, we expect to be experimentally possible
to verify the antiferromagnetic kinetic exchange interaction induced by the coherent indirect coupling in the strong
coupling QD systems since the factor ~Γ/U in Eq. (9) is not small in such systems. We provide the detailed derivation
of this antiferromagnetic kinetic exchange interaction in Appendix A. This kinetic exchange coupling competes with
the Kondo exchange coupling. Therefore, in the (1, 1) regime, the spin Kondo effect is suppressed with the increase
in |α| and hence the conductance decreases as shown in Fig. 3(b). This suppression is independent of the sign of
α. In inset of Fig. 3(b), we plot the |α| dependence of the conductance when ǫ1/~Γ = ǫ2/~Γ = −6 as indicated by
green circle in Fig. 3(a). The linear conductance decreases monotonically with increasing |α|. Similarly, we show the
spin-spin correlation function 〈S1 · S2〉 in Fig. 3 (c). We evaluate the spin-spin correlation function 〈S1 · S2〉 using
the nonequilibrium Green’s functions as follows:

〈S1 · S2〉 =
3

8π2

∫

dω

∫

dǫ

~
G−+

21,σ(ǫ)G+−
12,σ(ǫ + ~ω), (10)

where G−+
ij,σ(ǫ) and G+−

ij,σ(ǫ) are the (i, j) matrix element of the lesser and greater Green’s functions for spin σ. These

can be obtained from the retarded and advanced Green’s functions using the Keldysh equation54 as follows

G
−+
σ (ǫ) = i

∑

ν∈{S,D1,D2}

fν(ǫ)Gr
σ(ǫ)Γν

σG
a
σ(ǫ), (11)

G
+−
σ (ǫ) = −i

∑

ν∈{S,D1,D2}

[1 − fν(ǫ)]Gr
σ(ǫ)Γν

σG
a
σ(ǫ). (12)

When |α| increases, 〈S1 · S2〉 increases negatively. This means that the antiferromagnetic kinetic exchange coupling
becomes dominating as |α| increases.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is well known as an indirect exchange interaction between
two local spins55–57. In the RKKY interaction the exchange coupling becomes weak with changing the sign between
positive and negative, and therefore changing the magnetic character between ferromagnetic and antiferromagnetic
as the two local spins become separated from each other. The RKKY interaction in semiconductor QD systems has
been studied both theoretically and experimentally58,59. Particularly when α = 1 for both source and drain reservoirs
with ∆ǫ 6= 0, Konik discussed the RKKY-Kondo like effect in a similar type DQD39. In contrast we concentrate
on the competition between the Kondo exchnage and Jα when ∆ǫ = 0 and α = 0 for the drain reservoir. If we
investigate this competition when ∆ǫ = 0 and α = 1 for both the source and drain reservoirs, we expect the single
channel Kondo effect (the exchange coupling caused by the coherent indirect coupling vanishes as shown in Appendix
B) since there is only a single conduction mode in such a situation, namely one of the two orbital channels is in a
dark state43. Here, although we considered the effect of the integrated reservoir only for the source, we can expect
stronger suppression of the spin Kondo effect in the (1, 1) regime when both the source and drain reservoirs are
integrated with 0 < |α| 6= 1. It is noted that the kinetic exchange coupling induced by a coherent indirect coupling is
different from the RKKY exchange coupling. The main difference between these two exchange interactions is where
the dependence of the inter-dot distance is included. In our exchange interaction the coherent indirect coupling
parameter α is a decision factor, and the interaction strength is proportional to |α|2, and the magnetic character is
always antiferromagnetic. Note that α becomes small and changes the sign with increasing distance between the two
local spins. In the RKKY interaction, although the wave number dependence of the response function is considered,
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FIG. 3: Reduction of the linear conductance caused by the coherent indirect coupling and the spin-spin correlation function.
(a) ∆Gα for α = 0.5. (b) G for ǫ1 = ǫ2. The solid, broken, dotted, and dash-dotted line lines indicate α = 0, |α| = 0.5,
|α| = 0.8, and |α| = 1, respectively. Inset: |α| dependence of the linear conductane at ǫ1/~Γ = ǫ2/~Γ = −6 indicated by the
green circle in (a). (c) |α| dependence of the spin-spin correlation function at ǫ1/~Γ = ǫ2/~Γ = −6 indicated by the green circle
in (a).

the wave number dependence of the tunneling amplitude t
(i)
Sk is neglected, just like the case for an impurity as a point

scatterer, to account for the oscillatory behavior of the exchange coupling with the distance between the impurities.
However, it is very important to take account of the wave number dependence of the tunneling amplitude in DQD
systems since the wave function of electron confined in QDs relatively spreads, and the tunnel couplings are highly
anisotropic. Thus, in the present problem, we believe that it is preferable to discuss our exchange interaction in terms
of the coherent indirect coupling than the RKKY exchange interaction.

B. Shot noise

Interplay or competition between the spin and pseudospin Kondo effects can appear in the linear transport char-
acteristic as shown in Fig. 2(b). However, it is still difficult to distinguish their contributions. This is particularly
the case in experiments, because the spin Kondo conductance observed for single QDs is usually less than 2e2/h.
To capture the feature of the pseudospin Kondo effect, which originates with the charge fluctuation, we investigate
the shot noise, which provides information on charge fluctuations. In the following, we focus on the condition where
eVSD/~Γ = 0.1. First, we consider the situation without coherent indirect coupling. The zero-frequency shot noise is
shown in Fig. 4(a). In the (0, 0), (2, 0), (0, 2), and (2, 2) regimes, the shot noise is strongly suppressed because of the
Coulomb blockade. In the (1, 0), (0, 1), (1, 1), (2, 1), and (1, 2) regimes, the shot noise is also strongly suppressed since
a perfect transmission is realized by the spin Kondo effect. By contrast, the zero-frequency shot noise is enhanced at
the Coulomb peaks owing to the maximum charge fluctuations in one of the two QDs. As an example, we consider the
(0, 0)−(1, 0) boundary. In this situation, the transmission probabilities T1↑ and T1↓ of two conduction channels for the
up and down spins in QD1, respectively, are T1↑ = T1↓ = 1/2, and thus the shot noise becomes large. Moreover, the
zero-frequency shot noise is enhanced in the pseudospin Kondo regimes, because the charge fluctuation is maximal,
as shown in Fig. 4(a). In the pseudospin Kondo regimes, there can be four conduction channels, for example, for the
(1, 0)− (0, 1) boundary, T1↑ = T1↓ = T2↑ = T2↓ ≃ 1/2. As a result, the shot noise in the pseudospin Kondo regimes is
about double that at the Coulomb peaks. Therefore, the shot noise in the charge stability diagram is maximal in the
pseudospin Kondo regime, and the signature can be easily captured experimentally. It should be noted that the shot
noise enhancement discussed here cannot be obtained in calculations of the mean-field level such as the Hartree-Fock
approximation, and thus the many-body correlation is essential.

Next, we discuss the effects of the coherent indirect coupling on the shot noise. First, in Fig. 4(b), we show the shot
noise difference ∆Sα between S(0) of |α| = 0.5 and S(0) of α = 0. We found that the spin Kondo effects are suppressed
with |α| in the (1, 1) regime. In this regime, the transmission probabilities of all the conduction channels become
smaller than 1 due to the kinetic antiferromagnetic exchange coupling induced by the coherent indirect coupling. As
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FIG. 4: Shot noise S(0) and shot noise difference ∆Sα for U1/~Γ = U2/~Γ = 6, Vinter/~Γ = 3, and eVSD/~Γ = 0.1. The
charge configuration is shown as (N1, N2). (a) S(0) for α = 0. (b) ∆Sα for |α| = 0.5. (c) S(0) for ǫ1 = ǫ2. The solid, broken,
dotted, and dash-dotted line lines indicate α = 0, |α| = 0.5, |α| = 0.8, and |α| = 1, respectively. (d) |α| dependence of the
zero-frequency shot noise at ǫ1/~Γ = ǫ2/~Γ = −6 indicated by the green circle in (b).

a result, the shot noise becomes large. We plot the QD energy dependence of the shot noise as shown in Fig. 4(c).
When |α| increases, the shot noise is mainly affected in the (1, 1) regime. In Fig. 4(d), we plot the |α| dependence
of the shot noise when ǫ1/~Γ = ǫ2/~Γ = −6 indicated by the green circle in Fig. 4(b). The value of transmission
probabilities for all conduction modes are the same since we consider the condition when the two QD energies align.
As shown in Fig. 3(c), the value of the transmission probability for each conduction mode are approximately equal to
1/2 at |α| ∼ 0.97 under low bias voltage since the linear conductance is proportional to the transmission probability
(see Eq. (7)). Therefore, from Eq. (8), the zero-frequency shot noise becomes maximal at |α| ∼ 0.97.

IV. CONCLUSIONS

To conclude, we have studied the effects of inter-dot coherent indirect coupling via the reservoir on the Kondo
effect and shot noise in a laterally coupled DQD using the finite-Coulomb interaction SBMFT to demonstrate the
significance of many-body correlations. In particular, we found that the coherent indirect coupling gives rise to
antiferromagnetic kinetic exchange coupling using the 4th-order Rayleigh-Schrödinger perturbation theory. Thus the
spin Kondo effect is suppressed in the (1, 1) regime. To support that the new exchange coupling is antiferromagnetic,
we estimate the spin-spin correlation function. The spin-spin correlation function increases negatively as the coherent
indirect coupling parameter increases. We discussed the difference between the RKKY exchange coupling and the new
antiferromagnetic exchange coupling induced by the coherent indirect coupling. Moreover, we suggested that shot
noise measurement is more appropriate than conductance measurement for capturing the signature of the pseudospin
Kondo effect, because the shot noise is strongly enhanced in the pseudospin Kondo regime.
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Appendix A: Derivation of antiferromagnetic kinetic exchange interaction by coherent indirect coupling

Here we show the detailed derivation of the antiferromagnetic kinetic exchange interaction induced by the coherent
indirect coupling as discussed in Sec. III. Starting from the state d1↑

†d2↓
†|F 〉, where the state |F 〉 corresponds to the

Fermi seas of conduction electrons in the source reservoir S with empty DQD, we consider the tunneling Hamiltonian
as a perturbation and derive the effective spin-spin interaction Hamiltonian using the 4th-order Rayleigh-Schrödinger
degenerate perturbation theory. Then, we consider the following process:

Hα
effd1↑

†d2↓
†|F 〉 = HT

1

E − H0
HT

1

E − H0
HT

1

E − H0
HT d1↑

†d2↓
†|F 〉, (A1)

where

H0 ≡ HR + HDQD (A2)

is the unperturbed Hamiltonian, E is its ground state energy, and HT is the tunneling Hamiltonian. Only the source
reservoir is essential for the coherent indirect coupling. Thus, in the following, we consider only the source reservoir
part of the tunneling Hamiltonian and omit the index S for clarity. As a result, we obtain 32 terms that contribute
to the kinetic exchange interaction. In such contributions, the most dominant contribution has the form

2
∑

|k|>kF

∑

|k′|≤kF

t
(1)
k′

∗
t
(2)
k′

ǫk − ǫk′ + iη

t
(2)
k

∗
t
(1)
k

(

ǫk + U
2

)2 d1↓
†d2↑

†|F 〉

+2
∑

|k|>kF

∑

|k′|≤kF

t
(1)
k′

∗
t
(2)
k′

ǫk − ǫk′ + iη

t
(2)
k

∗
t
(1)
k

(

ǫk − U
2

)2 d1↓
†d2↑

†|F 〉

−4
∑

|k|>kF

∑

|k′|≤kF

t
(1)
k′

∗
t
(2)
k′

ǫk − ǫk′ + iη

t
(2)
k

∗
t
(1)
k

(

ǫk + U
2

) (

ǫk′ − U
2

)d1↓
†d2↑

†|F 〉, (A3)

where η is positive infinitesimal, and we focused on the particle-hole symmetric condition, namely ǫ1 = ǫ2 =
−Vinter − U

2 . These have one electron-hole excitation pair in the intermediate states, and this pair leads to the
energy denominator of ǫk − ǫk′ . In Eq. (A3), we only need to consider the low energy excitation in the vicinity of
the Fermi surface because of the energy denominator ǫk − ǫk′ and the condition ǫk′ < ǫF < ǫk, where ǫF is the Fermi
energy. Moreover, we can neglect ǫk in ǫk ± U

2 since |ǫk| ≪
U
2 . Thus, we have

8

(

2

U

)2
∑

|k|>kF

∑

|k′|≤kF

t
(1)
k′

∗
t
(2)
k′ t

(2)
k

∗
t
(1)
k

ǫk − ǫk′ + iη
d1↓

†d2↑
†|F 〉. (A4)

Although we have to estimate the wave number integration, according to the prescription given in Ref. 43, the
azimuthal integration gives rise to the oscillatory behavior of the coherent indirect coupling parameter with respect
to the propagation length, and the radial integration is

8

(

2

U

)2 ∫ ǫF

−ǫF

dǫ

2π
f(ǫ)

∫ ǫF

−ǫF

dǫ′

2π
[1 − f(ǫ′)]

Γ12(ǫ)Γ21(ǫ
′)

ǫ − ǫ′ + iη
d1↓

†d2↑
†|F 〉. (A5)

In the wide-band limit, we neglect the energy dependence of the linewidth functions, and thus we obtain

Hα
eff ≃ 16ǫF

(

α~Γ

πU

)2

S1 · S2, (A6)

where we have neglected the spin-independent terms. Therefore, the exchange coupling constant is

Jα = 16ǫF

(

α~Γ

πU

)2

. (A7)



9

FIG. 5: For various quotients between αS and αD, |αS | dependence of the spin-spin correlation function at ǫ1/~Γ = ǫ2/~Γ = −6
indicated by the green circle in Fig. 3 (a).

Appendix B: Effect of coherent indirect coupling for both source and drain reservoirs on spin-spin correlation

In this Appendix, we show the α dependence of the spin-spin correlation when the coherent indirect couplings are
considered for both the source and drain reservoirs as discueed in Sec. III A. Then, we define the coherent indirect
coupling parameter of the reservoir ν (ν ∈ {S, D}) as αν . Then, in Fig. 5, we plot the |αS | dependence of the spin-spin
correlation function for various quotients between αS and αD at ǫ1/~Γ = ǫ2/~Γ = −6 indicated by the green circle
in Fig. 3 (a). It is clear that we have a stronger suppression of Kondo effect due to an antiferromagnetic kinetic
exchange coupling induced by the coherent indirect couplings for both the source and drain reservoirs in comparison
with the result shown in Fig. 3 (c). As shown in Fig. 5, the spin-spin correlation vanishes at |αS | = |αD| = 1. Under
this condition, there is only a single conduction mode43. As a result, we have the single channel spin Kondo effect,
and the linear conductance has a value of 2e2/h.
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26 V. Koerting, P. Wölfle, and J. Paaske, Phys. Rev. Lett. 99, 036807 (2007).
27 E. Sela and I Affleck, Phys. Rev. Lett. 102, 047201 (2009).
28 R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Nature 446, 167 (2007).
29 T. Pohjola, H. Schoeller, and G. Schön, Europhys. Lett. 54, 241 (2001).
30 U. Wilhelm, J. Schmid, J. Weis, and K. v. Klitzing, Physica E (Amsterdam) 14, 385 (2002).
31 A. L. Chudnovskiy, Europhys. Lett. 71, 672 (2005).
32 P. Trocha, Phys. Rev. B 82, 125323 (2010).
33 S. Y. Müller, V. Koerting, D. Schuricht, and S. Andergassen, Europhys. Lett. 92, 10002 (2010).
34 T. Sato and M. Eto, Physica E 29, 652 (2005).
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