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We present a hybrid approach for GW/Bethe-Salpeter Equation (BSE) calculations of core ex-
citation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and non-
resonant inelastic x-ray scattering (NRIXS). The method is based on ab initio wavefunctions from
the plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented
wave (PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole GW
self-energy model to account for final-state broadening and self-energy shifts. Multiplet effects are
also approximately accounted for. The approach is implemented using an interface dubbed OCEAN
(Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we
present results for the K-edges in LiF as probed by XAS and NRIXS, the K-edges of KCl as probed
by XAS, the Ti L2,3-edge in SrTiO3 as probed by XAS, and the Mg L2,3-edge in MgO as probed by
XAS. These results are compared with experiment and with other theoretical approaches.

PACS numbers: 78.70.Dm, 78.20.Bh, 71.15.Qe

I. INTRODUCTION

Recently there has been considerable progress in the theory of optical response beyond the independent-particle
approximation.1 For example, methods based on time-dependent density-functional theory (TDDFT) and the
GW/Bethe-Salpeter Equation (GW/BSE) approach have been extensively studied.1–4 While computationally sim-
pler than the BSE, TDDFT is currently limited by approximations to the exchange-correlation functional. On the
other hand, the GW/BSE approach includes an explicit treatment of quasi-particle effects within Hedin’s GW self-
energy approximation5 and particle-hole interactions, both of which are often crucial to a quantitative treatment. In
the GW approximation the electron self-energy is related to the product of the one-electron Green’s function and the
screened Coulomb interaction, which are respectively denoted by symbols G and W . A number of codes based on
these approaches have been developed both for periodic6–8 and aperiodic systems.9,10

Calculations of core-level spectra, on the other hand, pose additional theoretical challenges. Core-hole effects,
energy-dependent damping, self-energy shifts, and atomic multiplet effects all complicate the theory. Consequently rel-
atively few GW/BSE treatments presently exist.11–14 To address these challenges, we present here a hybrid GW/BSE
approach for periodic systems encompassing x-ray absorption spectra (XAS) and related core-excitation spectra.
Quasi-particle damping and self-energy shifts are included in terms of a many-pole self-energy and the quasi-boson
formalism. Our BSE Hamiltonian also accounts approximately for atomic-multiplet effects in the spectra by explicitly
including intra-atomic Coulomb and spin-orbit interactions. Also, in contrast to atomic-multiplet models that rely
on crystal-field parameters, our implementation includes self-consistent potentials for an extended system. While
multi-electron excitations and correlation effects beyond the quasi-particle approximation can also be treated with
the quasi-boson formalism, such effects are presently neglected. Also, although our approach is designed for periodic
systems, aperiodic systems can be modeled using supercells. However, the method is limited to a range of order 102

eV above a given core threshold due to the limited size of the plane-wave basis sets in practical calculations. Thus
the method is complementary to the real-space Green’s function (RSGF) approach for core spectra,13,15,16 which is
applicable over a very broad spectrum of excitation energies up to about 104 eV. Though formally equivalent to the
GW/BSE of this work, the RSGF implementation uses finite clusters and spherical scattering potentials which can
be inaccurate near threshold.

GW/BSE calculations of core-level spectra rely on a number of theoretical and many-body considerations. A key
ingredient is the screened electron-core hole interaction. In the BSE, this interaction is typically treated via linear
response, which in itself can be a demanding task. In contrast, many current calculations of core-excitation spectra are
based on effective, independent-electron models with various ad hoc treatments of the screening effects.17–19 For exam-
ple, a number of implementations use a final-state Hamiltonian with a self-consistently screened core hole,7,14,17,19–21

as in the final-state rule. A second important ingredient is a complex, energy-dependent self-energy to account for
final-state self-energy shifts and damping. As shown below, such quasi-particle effects are important for a quanti-
tative account of peak positions, heights, and widths in the spectra. Although small near an absorption edge and
often neglected, final-state damping becomes particularly important above about 10 eV where interband and plasmon
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excitations can be important. A third important ingredient is an account of intra-atomic interactions that lead to
multiplet effects in the spectra. Finally, the approach should include accurate self-consistent potentials and a basis
that encompasses the near edge structure over a range of about 10 eV to 100 eV.

In order to address the above considerations our core-level GW/BSE approach is based on several key elements:
1) Orbitals for occupied and unoccupied Kohn-Sham levels from a self-consistent plane-wave pseudopotential code;
2) atomic core-level states and projector augmented wave (PAW) transition matrix elements; 3) the NIST core-level
Bethe-Salpeter Equation solver (NBSE); 4) a many-pole GW self-energy model (MPSE) to approximate final-state
broadening and self-energy shifts; and finally 5) atomic-multiplet effects are included through the inclusion of core
hole spin-orbit splitting and atomic multipole interactions. In the present implementation ABINIT22 is used for the
Kohn-Sham wave functions; however, this is not a strict restriction and the code can be adapted to other plane-wave
pseudopotential codes. For the multiplet calculations, the electron/core-hole wave function is expressed in terms of
electron PAW/core-hole product states, with the Coulomb interaction matrix elements between these product states
calculated using an atomic structure program. Both electron- and spin-degrees of freedom are included.23 However,
our approach neglects multi-electron excitations and interference between intrinsic and extrinsic losses, although such
effects can be included in principle, in terms of an effective spectral function and the quasi-boson model. We also
neglect the effects of dynamic disorder. Other sources of error in the approach arise from the pseudo-potentials,
the PAW derived transition matrix elements, and the adiabatic RPA core-hole screening approximation. Thus our
approach is not applicable to strongly correlated systems. Moreover, vibrational damping is neglected. While often
small in the near-edge regime, such damping is sometimes important, e.g., in the final-state dependent broadening in
SrTiO3,

24,25 and in cases where symmetry breaking effects of disorder are important.
Within the scope of the above approximations, our hybrid GW/BSE approach provides a first-principles method for

calculations of near-edge spectra, including x-ray absorption spectra (XAS), electron energy-loss spectra (EELS), and
non-resonant inelastic scattering spectra (NRIXS), also known as x-ray Raman spectra, at finite momentum-transfer
q. The core-BSE calculations are quite efficient compared to those for optical spectra based, e.g., on AI2NBSE, since
the core-level subspace is smaller than the valence band manifold. The approach is implemented using an interface
dubbed OCEAN (Obtaining Core Excitations using ABINIT and NBSE), which generates relevant input files for
the various modules and serves as a driver for all steps of the calculation. This interface is a generalization to core
excitations of AI2NBSE, a recently developed interface for valence excitations.6 In the current implementation, the
OCEAN package can handle up to about 50 atoms per unit cell and spectra up to about 100 eV above threshold.

The remainder of this paper is as follows. Section II. summarizes the theory underlying our approach. Section
III. presents illustrative results for the K-edges in LiF and KCl, the Mg L2,3-edge in MgO, and the Ti L2,3-edge in
SrTiO3. Finally, Section IV. presents a summary and prospects for future development.

II. THEORY

A. BSE for Core-level Spectra

Core-level x-ray absorption spectra (XAS), electron energy-loss spectra (EELS), and non-resonant inelastic x-ray
scattering (NRIXS) are all related to the loss function L(q, ω) = −Im ǫ−1(q, ω), which is proportional to dynamic
structure factor S(q, ω). Here q is the momentum transfer, while ω is the photon-energy in XAS and the energy
transfer in NRIXS and EELS. (Unless otherwise specified we use Hartree atomic units with e = h̄ = m = 1 throughout
this paper.) For XAS we have |q| = ω/c, where c ≈ 137.036 is the speed of light. Formally the loss function is given
by

L(q, ω) = −
4π

q2
Im 〈Ψ0|P̂

†[E0 + ω − Ĥ + iη]−1P̂ |Ψ0〉. (1)

Here P̂ is the operator that couples the many-body ground state |Ψ0〉 with the probe photon, e.g., eiq·r for NRIXS. In
the case of XAS, a slightly different formula provides the spectrum. This formula involves a different operator, namely
(ê · r) + (i/2) (ê · r) (q · r) + · · · , where ê is the electric field direction. Ĥ is the particle-hole Hamiltonian including
self-energy and lifetime effects as described below, and η is a positive infinitesimal. Our approach for calculating
Eq. (1) is adapted from the treatments of the BSE in the quasi-particle approximation of Soininen and Shirley19 and
Shirley,23 which are summarized below. Satellite effects due to multi-electron excitations are neglected, though they
can be approximated a posteriori in terms of an effective spectral function in our self-energy approximation.

In order to evaluate the core-loss function in Eq. (1), we make the approximation that the excited states of a system
can be described using a basis set of electron-hole states {|Φnk+q,αk〉} . Each electron-hole state has an electron in
band n with crystal momentum k + q, and a core hole denoted by an atomic level α, with the corresponding orbitals in
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each cell combined using a phased sum to form a Bloch state with crystal momentum k. Our calculations also account
for electron and hole spin degrees of freedom, which are not explicitly written in what follows. The Hamiltonian Ĥ is
represented by an effective particle-hole Hamiltonian Ĥeff

Ĥeff = Ĥe − Ĥh + Ĥeh. (2)

Here Ĥe/h account for the single-particle energies of the electron and hole states, including the spin-orbit interaction
for the core states and self-energy and/or lifetime corrections.

Ĥe = Ĥ0 + Σ,

Ĥh = ǫc + iΓ, (3)

where Ĥ0 is the non-interacting single-particle Hamiltonian, ǫc is the core binding energy, Σ is the final state self-energy
and Γ the core-hole lifetime. The electron-hole interaction is given by

Ĥeh = V̂D + V̂X , (4)

where V̂D and V̂X account for the direct and exchange electron-hole interactions respectively. The highly localized
nature of core states allows for division of the screening of the direct term V̂D into a short-range part calculated
using the RPA, and a long-range part treated with a model dielectric function,26 while the exchange term V̂X is
unscreened. In order to treat multiplet effects the shortest range electron-core hole interaction is expressed using a
compact multiplet Hamiltonian based on the core atomic orbitals, PAW functions, and the related Slater F and G
integrals, following the treatment of Ref. 23.

Inserting a complete set of electron-hole states {|Φ〉}, Eq. (1) becomes

Im [ǫ−1(q, ω)] = −
4π

q2

∑

Φ,Φ′

Im
[

〈Ψ0|P̂
†|Φ〉

×〈Φ|[ω − Ĥeff + iΓ]−1|Φ′〉〈Φ′|P̂ |Ψ0〉
]

. (5)

To obtain the particle-hole states, {|Φ〉}, the band states φn,k+q(r) are calculated for both occupied and unoccupied
levels using the ground-state Kohn-Sham Hamiltonian, while the core states χα,k(r) are taken to be Bloch states
derived from the atomic core states for a given absorption edge calculated with an atomic Hartree-Fock code. A
transition |Ψ0〉 → |Φnk+q,αk〉, has a matrix element of the form

〈Φn,k+q,αk|P̂ |Ψ0〉 = N−1
∑

R

eik·R〈φn,k+q|P̂ |χα,R〉

= 〈φn,k+q|P̂ |χα,R=0〉. (6)

Here N is the number of unit cells in the crystal. Making use of an appropriate sum over identical core states located
at every lattice site {R}, the particle-hole state is thus constructed to have good crystal momentum k. The resolvent
in Eq. (5) is then calculated using a Lanczos algorithm which was found to converge within about 100 iterations.23

B. PAW Transition Matrix Elements

The transition matrix between the ground state and one-electron excited states in Eq. (6) is then calculated locally
by expressing the conduction band states in terms of atomic states centered about the specific core-hole located at
position τ within the unit cell using the projector augmented wave (PAW) expansion27

φn,k+q(R + r + τ) ≈ ei(k+q)·R
∑

νlm

Ank+q

νlm F ps
νl (r)Ylm(r̂), (7)

where {F ps
νl } are the PAW basis functions with angular quantum numbers l and m. The index ν denotes the use of

multiple PAW basis functions per angular momentum to adequately span the space. In terms of these PAW basis
functions, transition matrix elements are found easily using an atomic structure program. Further details are given
elsewhere.19
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FIG. 1: (Color online) a) Imaginary part of the dielectric function (top) ǫ2(ω) calculated with AI2NBSE (red, solid line) and
experiment30 (blue, dotted line) (data taken from Puschnig and Ambrosch-Draxl31); and b) loss function −Im ǫ−1(ω) (bottom)
with (inset) real and imaginary parts of the self-energy calculated from AI2NBSE. The self-energy is calculated from the loss
function using the many-pole self-energy method (see text) and is shown relative to the valence band maximum. This self-
energy is applied to the LiF K-edges providing energy dependent broadening and energy shifts to correct the single-particle
energies from DFT.

C. Many-pole Self-energy

One of the key considerations in calculations of core excitation spectra is the treatment of the final-state self-
energy shifts and damping effects observed in experimental spectra. A number of methods for this purpose now
exist.28 Because these effects are small near an excitation threshold they are often neglected. However, they become
increasingly important when the excitation energy exceeds plasmon and interband energies of order 10 eV, and thus
become crucial at high excitation energies. To treat these effects we have implemented the efficient many-pole GW
self-energy model (MPSE) of Kas et al.29 This MPSE is a straightforward extension of the Hedin and Lundqvist single
plasmon-pole GW self-energy model, and is based on the calculated dielectric response specific to a given material,
e.g., as obtained using AI2NBSE.

In brief, our implementation of the MPSE is as follows. We first represent the loss function in the optical regime
L(ω) = −Im[ǫ−1(q = 0, ω)] as a weighted sum over closely-spaced delta-functions at ωj with weights wj = L(ωj)∆j

chosen to preserve the loss-function sum-rule. The inclusion of many (typically of order 102) poles allows for smooth,
energy dependent broadening and quasi-particle shifts in excitation energies, and accounts for losses in the near-edge
region well below the dominant excitations. As an example, Fig. 1 shows a comparison of the imaginary part of the
dielectric function ǫ2(ω) for LiF as measured experimentally and that calculated by AI2NBSE. The pole representation
also permits a straightforward way to extrapolate the long-wavelength limit ǫ−1(q = 0, ω) to finite momentum transfer.
Our MPSE uses the same the dispersion relation as in the original Hedin-Lundqvist plasmon-pole model29. We then
calculate the self-energy Σ = iGW within the GW approximation, where the Green’s function G is taken to be the
free propagator of an electron gas and W = ǫ−1v is calculated using the many-pole model of the dielectric function.
Using the same strategy as for the plasmon-pole model, the resulting self-energy can be expressed as a Hartree-Fock
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exchange term, plus a weighted sum of plasmon-pole like, dynamically screened exchange terms, each with a different
plasma frequency ωj. Thus the model retains the efficiency of the plasmon-pole model yet yields accurate calculations
of the self-energy over a broad energy range from near the Fermi level to of order 104 eV above the Fermi level. A
typical calculation can be performed in only a few minutes on a modern single-processor desktop computer once the
loss function at zero momentum transfer is known. In order to apply the self-energy [inset of Fig. 1 (b)] to calculations
of core level XAS, we use an a posteriori convolution of the spectrum with a Lorentzian spectral function built from
our calculated quasi-particle self-energy. Multi-electron excitations and interference effects leading to satellites can
also be included in this convolution,29 but are currently ignored.

Currently the MPSE is calculated only for the unoccupied states, and no attempt is made to determine absolute
edge energies. This self-energy is then added, assuming that all transitions occur either from the highest occupied
level in the case of the valence response, or from a single localized core level in the case of core response. For core
excitations this is a good approximation, while for valence response the approximation is valid only for narrow valence
bands and future refinements should take the width of the valence band into account. An example of the resulting
XAS is shown for LiF in Fig. 2. Clear improvement can be seen due to the MPSE, which corrects both the peak
positions and amplitudes in the spectrum.

III. CALCULATIONS AND RESULTS

In this section we illustrate our approach with a number of examples. The results are sensitive to the choice
of pseudopotentials and PAW projectors, and care must be taken to ensure an adequate treatment. Briefly, our
implementation of OCEAN uses ABINIT wave-functions with norm-conserving pseudopotentials generated using the
FHI32 or OPIUM33 codes utilizing the designed non-local approach. Our choice of cutoffs is generally larger than in
typical ground state calculations to avoid possible convergence issues. Our PAW transition elements from atomic core
states utilize from 4 to 10 projectors depending on valence band width; the NIST NBSE solver for core excitations;
and the GW MPSE outlined above. Our calculations use separate grids to calculate the wave-functions for the final
states and for the screening. For all of the materials, calculations of the final states on a 10 × 10 × 10 Brillouin-zone
grid with a symmetry breaking shift of (1/80, 2/80, 3/80) were found to be adequate for convergence. The number
of final state bands included in the calculation only affects the range of validity of the spectrum above the edge.
Depending on the example, between 40 and 70 conduction bands are included.

The screening in the direct interaction V̂D was calculated using states from a 2 × 2 × 2 Brillouin-zone grid with a
similar symmetry breaking shift as the final state calculation. This grid was found to be adequate for convergence.
For the screening calculation, a large number of unoccupied states must also be included for convergence. Including
bands up to 100 eV above the Fermi level was found to be sufficient for all of our cases. Dielectric screening was
calculated in real-space as described by Shirley.26

A. LiF

LiF is a wide-gap insulator leading to strongly bound excitonic peaks in the absorption spectra which are highly
dependent on the screened direct interaction between the excited electron and hole for their strength and binding
energy. LiF has a rocksalt structure with a lattice constant of 4.028 Å,37 and the electronic dielectric constant ǫ∞
(i.e., the value for low frequencies well above characteristic vibrational frequencies) is 1.92.38 The first 56 conduction
bands were included covering energies up to 100 eV above the Fermi level, and a 100 Ry cutoff was used for the
plane-wave basis. The plane-wave cutoffs necessary for our calculations reflect both the need for psuedopotentials to
be accurate several Rydbergs above the fermi level and the inclusion of semi-core states in heavier elements: Ti, Sr,
and K. While LDA calculations often underestimate band-gaps in insulators, the MPSE almost completely corrects
the conduction energy levels and bandgap in LiF. This is illustrated in the UV calculation of ǫ2 and the loss function
−Im ǫ−1 (Fig. 1).

Results for the Li K-edge XAS of LiF are presented in Fig. 2. Note that the inclusion of final-state broadening and
self-energy shifts from our MPSE yields results that agree well with experiment. If these final-state effects are ignored,
one obtains sharper, more compressed spectra, in poorer agreement with experiment. However, our calculation fails
to account for the strength of the experimental peak near 70 eV, i.e., about 10 eV above the edge. The reasons for
this discrepancy are not yet understood. While the use of the Tamm-Dancoff approximation is known to give errors
in the optical spectra at high energies,39 we expect such errors to be negligible for core-spectra. A comparison is also
included with the results from the BSE-based EXC!TING code.36 Although EXC!TING ignores energy dependent
GW corrections, we find good agreement in peak positions and spacing between the two codes for this case.
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FIG. 2: (Color online) a) The x-ray absorption near-edge structure (XANES) spectra for the Li K-edge of LiF (top) and b) the
F K-edge (bottom). The BSE spectra (solid, red line) are compared to the same spectra convoluted with the MPSE correction
(green, dashed line) and experiment34,35 (Li data from Olovsson et al.36) (blue, dotted line). In a) the result of another BSE
code,36 (light blue, dashed-dotted line) and in b) a calculation with the FEFF9 code (light blue, dashed-dotted line) are shown
for comparison.

Results for the F K-edge of LiF including the final-state corrections from MPSE are shown in Fig. 2b. As for the Li
K-edge, the broadening and self-energy shifts from the GW MPSE lead to good agreement with experiment. Overall
the F K-edge (Fig. 2b) exhibits much better agreement with the experiment than for the Li K-edge. A comparison is
also included with the FEFF9 code.40 While the results are generally in good agreement, our calculation yields better
agreement with experiment in the edge region.

As an illustration of momentum transfer dependent calculations with OCEAN, results for the NRIXS of LiF are
shown in Fig. 3 for q =3.55 Å−1, 7.25 Å−1 and 8.26 Å−1. For this predominantly s-p electron system the momentum
transfer dependence is strong only in the edge region, and reflects the behavior of an s-type exciton. Our results are
found to be in good agreement both with experiment and with previous calculations.

B. KCl

As an example of deep core K-edge spectra we present the XAS for both the K and Cl K-edges in KCl. KCl has a
rocksalt structure with lattice constant 6.29 Å and ǫ∞ = 2.19.38 A plane-wave cut-off of 160 Ry and 172 conduction
bands were used for the screening calculations. Both K-edges exhibit very good agreement with experiment both for
peak positions and intensities (Fig. 4).
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FIG. 3: (Color online) The theoretical (above) and experimental41 (below) NRIXS spectra for LiF for momentum transfer
q = 3.55 Å−1, 7.25 Å−1 and 8.26 Å−1 normalized to the height of the main peak. Note that momentum transfer only affects
the edge-spectra due to the behavior of the s-type exciton in this system.
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FIG. 4: (Color online) a) The K-edge XAS of potassium (top) and b) the Cl K-edge in KCl calculated with OCEAN (red, solid
line) and compared to experimental results42 (blue, dotted line).

C. MgO

To illustrate a shallow L-edge calculation we show the XAS for the Mg L2,3-edge in MgO (Fig. 5). MgO also has a

rocksalt structure with a lattice constant of 4.212 Å and ǫ∞ = 2.95.38 The screening calculation used 196 conduction
bands and a plane-wave cut-off of 200 Ry. The splitting between the L2 and L3-edges in Mg is only 0.25 eV and is
therefore hidden by conduction band widths and experimental broadening. Our XAS calculation of the Mg L2,3-edge
in MgO is particularly sensitive to computational details such as the treatment of core-hole screening. The calculation
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FIG. 5: (Color online) Calculated XANES spectra for the Mg L2,3-edge of MgO compared with experimental reflection (R1/2)
data.43 The calculated spectra has been broadened and by a Gaussian of 0.9 eV FWHM in addition to the MPSE.
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FIG. 6: (Color online) Calculated XANES spectra for the Ti L2,3-edge of SrTiO3 (red, solid line) compared to experimental
data (blue, dotted line) and a multiplet calculation44 (green, dashed line). Due to the close spacing of the edges the full MPSE
was not included. Instead, the imaginary part of the self-energy was applied by aligning the onset with respect to each edge
and including a core-hole lifetime (0.10 eV and 0.24 eV), shifting between the two at 461.5 eV. This lifetime broadening also
neglects solid-state Coster-Kronig and phonon effects.

is in good agreement for peak positions, though not the relative strengths. The calculated spectrum is too weak in
the range 60 eV to 70 eV while the peak near 75 eV is too strong and more narrow than that in the experiment. The
excitonic peak is also too strong compared to the main edge (Fig. 5). It seems likely that under-screening of the core
hole leads to the overestimation of the strength of the excitonic peak.

D. SrTiO3

The Ti L2,3-edge of SrTiO3 is included here as an example of our treatment of multiplet effects. Cubic perovskite

SrTiO3 has a lattice constant of 3.91 Å 45 and ǫ∞ = 5.82.46 A plane-wave cut-off of 220 Ry and 450 conduction bands
were used for the screening. Each Ti atom is surrounded by oxygen octahedra leading to a 2.5 eV splitting in the
3d-like Ti final states according to their symmetry.

Transition metal L2,3-edges exhibit strong multiplet effects due to the competition between intra-atomic Coulomb
interactions, spin-orbit coupling and the scattering potential of the surrounding atoms. This results in a shift in
the L3/L2 intensity ratio away from the non-interacting ratio of 2:1. By including the core-level spin-orbit energy
splitting and simultaneously treating 2p1/2 and 2p3/2 initial states in the BSE Hamiltonian, our approach yields ab

initio estimates of shifts in the spectral weight which are comparable to that in the experimental spectra. The Ti L2,3-
edge of SrTiO3 has also been the subject of recent work using the BSE,47 ab-initio charge-transfer multiplets in finite
clusters,48 and multi-channel multiple scattering calculations in finite clusters.49 All of these approaches including
that of our work account for the observed multiplet splittings in SrTiO3 reasonably well, but tend to underestimate
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the broadening observed in experiment. This is due in part to the neglect of energy-dependent phonon-broadening
effects.24,25 Additionally the calculated spin-orbit splitting between the L2- and L3-edges is found to be 5.7 eV, though
the observed splitting in the final calculated spectra is smaller due to other contributions to the BSE Hamiltonian.
Also an additional contribution was added to the imaginary part of the self-energy to match the experimentally
observed core-hole lifetime difference between the L2- and L3-edges. Our calculation gives good agreement for peak
positions and produces a ratio between the two edges in reasonable agreement with experiment (Fig. 6). The two
pre-edge features below 457 eV in the experiment are also reproduced in the calculation, though they are too close to
the leading edge. This error is likely due to our screening approximation.

IV. SUMMARY AND FUTURE PROSPECTS

We have developed a hybrid approach for GW/BSE calculations of core-excitation spectra in periodic materials
based on plane-wave pseudopotential wave functions (from ABINIT in this case), PAW constructed matrix elements,
the NIST BSE solver, and a many-pole GW self energy from AI2NBSE. The method takes into account the many-
body effects of inelastic losses and core-hole interactions, and can also include multiplet effects. This approach is
implemented in the OCEAN package, which is applicable to core level XAS, EELS and related spectra including finite
momentum transfer. Moreover, the approach can be applied to many other spectra, and some future extensions include
resonant inelastic x-ray scattering (RIXS),19 relativistic EELS,50 and the mixed dynamic form factor (MDFF). The
pseudopotential base allows for computationally efficient calculations of fairly large systems (currently up to about
50 atoms) for near-edge spectra within about 102 eV of threshold for arbitrary core levels. Moreover, by combining
OCEAN with AI2NBSE and the complementary RSGF code FEFF9, full-spectrum calculations from the UV-VIS to
hard x-rays are feasible. Overall the results are found to be in good to excellent agreement with experiment, and can
improve on other theoretical approaches. Nevertheless further improvements such as the inclusion of multi-electron
excitations and vibrational effects are desirable. Additional applications, e.g., to the XAS and NRIXS of water and
ice, are described elsewhere.51
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39 A. M. Myrta Grüning and X. Gonze, Nano Letters 9, 2820 (2009).
40 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, Phys. Chem. Chem. Phys. 12, 5503 (2010).
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