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Abstract 

In graphene devices with a varying degree of disorders as characterized by their 

carrier mobility and minimum conductivity, we have studied the thermoelectric power 

along with the electrical conductivity over a wide range of temperatures. We have 

found that the Mott relation fails in the vicinity of the Dirac point in high-mobility 

graphene. By properly taking account of the high temperature effects, we have 

obtained good agreement between the Boltzmann transport theory and our 

experimental data. In low-mobility graphene where the charged impurities induce 

relatively high residual carrier density, the Mott relation holds at all gate voltages. 
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     Since the first discovery of gated two-dimensional atomic carbon layer device 

in 2004 [1], tremendous effort has been put into the research of single- and few-layer 

graphene materials [2-5]. In addition to the electrical conductivity, thermoelectric 

power or TEP, which is the derivative of the energy-dependent electrical conductivity 

in the degenerate limit according to the Mott relation [6], provides a sensitive probe to 

study the transport properties of graphene since the Fermi energy can be conveniently 

tuned by a gate voltage as reported previously [7-12]. From the temperature 

dependence of TEP, one can in principle distinguish different scattering mechanisms 

[10]. Although the Mott relation was used earlier in single-layer [8] and bi-layer [13] 

graphene systems, in this work, we have prepared graphene devices with a wide range 

of carrier mobility therefore with a varying degree of disorders, and carefully 

examined the validity of the Mott relation as we approach the low-density region near 

the Dirac point. 

Single-layer graphene sheets are exfoliated from either Kish graphite or HOPG 

and selected with optical microscopy followed by electron beam lithography as 

described in [8]. The inset of Figure 1 is a false colored scanning electron micrograph 

of a single-layer device for both electrical conductivity σ and TEP measurements. For 

TEP, a temperature gradient, , is generated by a micro-fabricated heater, resulting 

in a thermo-voltage response, Vth. Electrodes 4 & 1 are the current leads, and 

electrodes 2 & 3 are the voltage leads for measuring both σ and Vth. This four-point 

(4P) geometry allows us to exclude the contact resistance and to ensure both σ and Vth 

to come from the same locations, where the local temperatures are measured by 

electrodes 2 & 3 via their 4P resistivity as described in [8]. The measurements are 

carried out in a continuous flow cryostat with a temperature range from 4 to 300 K. 

The results reported in this works are based measurements on 13 samples, with the 

carrier mobility  ranging from 1,500 to 13,000 cm2/Vs. Most graphene samples 

have both four electrodes plus a heater, but some have two electrodes plus a heater, 

and some have only four electrodes for electrical measurements. 
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Fig. 1 shows the measured Seebeck coefficient, , of a device 

with µc ~ 1,500 cm2/Vs as a function of the gate voltage  represented by the open 

circles. Other three curves are calculated from the measured σ=σ(Vg) using the Mott 

relation, 

 

,      (1) 

  

where , µ, and e are the Boltzmann constant, the chemical potential, and the 

electron charge, respectively. To compute , we use , where the 

capacitance per unit area C is 115  for our device geometry, and , the 

single-particle density-of-states, is determined from the dispersion relation. Three 

calculated curves, , are shown in Fig. 1. First of all, a quadratic dispersion 

produces the largest discrepancy with (dashed), even using the 4P resistivity which 

does not include the contact resistance (~ 4,500 Ω). Using a linear dispersion relation, 

we calculate  from σ measured with both the two-point (dotted) and 4P (solid) 

methods and yield better agreement with . The best agreement is reached with the 

4P resistivity, suggesting that the Mott relation holds for all  if the graphene 

resistivity is properly measured by the 4P method and a linear dispersion relation is 

used.  

We find that the local resistive thermometry reports a larger , which is 

probably caused by the high thermal conductivity of graphene [14-15]. This occurs 

because the local thermometers, i.e. segments of Au/Cr electrodes, are actually much 

longer than the width of the graphene device (as shown in the inset of Fig. 1); 

therefore, the temperature rise of the thermometers is primarily determined by the 

substrate, which consequently overestimates  of graphene and underestimates the 

magnitude of SM. We have verified this by comparing the resistance change of the 
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thermometers with that of the graphene probed between electrodes 1&2, 2&3, and 

3&4. The discrepancy in the resulting  evaluated from these two methods can be 

as large as a factor of two. However, for a fixed temperature,  should remain 

constant as Vg is swept; therefore, the measured and calculated TEP should only differ 

by a Vg-independent factor. In Fig. 1, we allow an adjustable parameter to match the 

calculated TEP curves with . The solid curve clearly matches the data best. If the 

Fermi velocity of  m/s is used, the Vg-independent calibrator factor is found 

to be about two. 

Although similar satisfactory agreement is found in other low- samples, 

high- samples exhibit a quite different behavior. Fig. 2a is the TEP data on a much 

higher sample (~ 13,000 cm2/Vs).  shows a more diverging trend with a sharp 

peak and dip near the Dirac point or the charge neutral point (CNP) at all temperatures. 

Moreover, the diverging can be very well fitted by  on both sides 

except over the central region bounded by the peak and dip. ΔV, the peak-to-dip width 

in Vg, is about 5 V at 200 K, narrower than that in the low- sample, i.e. ~10 V in Fig. 

1. Fig. 2b shows the similar Mott relation analysis using a linear dispersion and 4P 

resistivity for four selected temperatures. At 100 K, and agree well over the 

whole Vg range. At higher temperatures, a deviation starts to develop near CNP and 

grows progressively in both the magnitude and Vg range. The same qualitative 

behaviors are observed in other high- samples. Due to the aforementioned 

uncertainty in local temperature measurements, we also allow a Vg-independent factor 

to match the calculated data with at each temperature. We expect the Mott relation 

to hold at high Vg where the carriers are degenerate; therefore, we force  and 

 to match at the highest Vg. However, it is impossible to match the sharp features 

in by varying the adjustable parameter. 
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The connection between the magnitude of µc and the deviations from the Mott 

relation is better seen in Fig. 3a. A comparison is made between  and  in 

four samples with different µc. All measurements were performed at T=200 K.  

Evidently, the Mott relation holds for the lowest sample, but deviates most 

significantly in the highest . Below 100 K, the deviation is insignificant even in the 

highest samples (data not shown). More interestingly, this trend is observed in a 

device whose can be set at different values (Fig. 3b). In our earlier study [16], we 

reported that µc can be widely tuned using molecule-wrapped nanoparticles which 

modify graphene’s charge environment. Using the same method, µc at 295 K is tuned 

by a factor of two. The contrast between these two cases confirms that the validity of 

the Mott relation is intimately related to µc. 

The Mott relation is obtained from the Boltzmann equation which is applicable 

for single-electron systems. Failure of the Mott relation could indicate importance of 

the electron-electron interaction in high- samples near CNP. However, the fact that 

it fails only at higher temperatures argues strongly against such a scenario. On the 

other hand, the Mott relation is only an approximation for degenerate electron systems 

when T is far below the Fermi temperature TF. In the language of the linear response 

theory,     

, where ,   

and                                         (2) 

                                                                                                                                                     

 is the Fermi-Dirac distribution function.  and L12 are two 

coefficients in the linear transport equations and is simply the electrical 



6	  

	  

conductivity. If kBT<< , can be legitimately replaced by the delta-function 

and the leading order in S yields the Mott relation. However, the carrier density near 

CNP can be so low that kBT<< no longer holds; therefore, the Mott relation is 

violated. This is what precisely occurs in high- graphene because the low-density 

region near CNP renders kBT<< invalid. In low- graphene, on the other hand, the 

charged impurities are bountiful, so are the electron and hole puddles in the vicinity of 

CNP. In the charged impurity model [17-18], the impurity density determines by 

. Although the net charge density can be small near CNP, the residual 

local charge fluctuation, , can be significantly large, which implies the absence of a 

low-density region near CNP.  

We determine n* by  [15] and then calculate other relevant 

parameters for all devices. As shown in table I, both and can vary by an order 

of magnitude in samples with various mobility values. As a result, the calculated TF 

can be as low as 359 K in the highest but as high as 1,458 K in the lowest . The 

complete TF vs. data are shown in the inset of Fig. 4. Below, we try to assess this 

effect in terms of a calculated range. We convert n* to an effective gate voltage 

 using , which is the equivalent gate voltage that produces the 

corresponding carrier density n* electrostatically. Then the region from - n*/2 to n*/2 

in residual density defines a region near CNP where the transport is governed by 

electron and hole puddles, the same source for the plateau [19]. The calculated 

width of this region is plotted in Fig. 4. The triangles represent the data from 9 

different devices with various values, the squares are the data taken from one 

device (its Seebeck data were shown in Fig. 2) whose variable was obtained by 
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manipulating the charge environment using nanoparticles as described in detail in [16]. 

These two sets of n* data are calculated from σ of different devices taken under 

different conditions. Surprisingly, the calculated ΔV from those two sets of data 

overlap well with each other when they meet in the intermediate range. For 

comparison, the circles are the width of the central region measured from the peak to 

dip in TEP. Apparently, this width is slightly larger than that determined from n*, 

which may be attributed to the somewhat arbitrary criterion in defining the region. 

The former is obtained by reading off the  values at the peak and dip in SM and the 

latter is essentially defined by the region of the minimum conductivity plateau. Both 

decrease in the same trend as increases, indicating that the TEP behavior near CNP 

is governed by the residual local charge density.  

If n* is so large that , we expect the Mott relation to hold. This is indeed 

the case in low- devices. If the opposite is true, the Mott relation is violated, which 

is the case in high- samples. At large Vg, the electrostatically induced charge density 

is high, and so is TF. As Vg approaches CNP, the charge density is low in 

high- samples; therefore, the Mott relation fails. In this low-density central region, 

it is still possible to calculate the Seebeck coefficient from Eq. 2. At finite 

temperatures, three factors must be considered: full (- ) function, T-dependent 

chemical potential µ(T), and the energy dependent kernel function, σ(ε). We adopt Eq. 

17 in [20] for µ(T). σ(ε) can explicitly depend on T via electron-phonon interaction 

and/or dielectric constant due to screening. Although these effects on the kernel 

function have been addressed theoretically [20], here we replace σ(ε) in L12 by 

measured Vg-dependent conductivity, i.e. σ(Vg)=L11. In the upper left panel of Fig. 2b, 

we include two additional calculated curves (open triangles and solid) which 
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correspond to the following approximations: (a) replacing σ(ε) by measured a low-T 

σ(Vg), denoted as ; (b) replacing σ(ε) by σ(Vg) measured finite-T, denoted as 

. Obviously,  leaves out the explicit T-dependence of σ(ε), which 

inevitably underestimates the effects of temperature in L12.  uses the 

measured finite-T conductivity which already includes the effect of the energy spread 

in f(ε) along with other temperature effects such as the screening and phonons. Hence, 

this latter approximation overestimates the temperature effect. Both approximations 

yield better agreement with the experimental data than the Mott relation calculations. 

In comparison, the second approximation appears to be slightly better, which indicates 

that the effects of screening and phonons on σ are important at high temperatures. The 

other panels in Fig. 3a only contain  curves. 

In conclusion, we have studied TEP along with the electrical transport and 

examined the Mott relation in over a dozen graphene samples with a wide range of 

values. In high- samples that have low residual carrier density , the Mott 

relation is violated in the vicinity of CNP, which is in contrast to poor samples in 

which the Mott relation is found to always hold over the entire gate voltage range. 

Finally, the Boltzmann transport theory taking account of the temperature effects can 

satisfactorily explain the experimentally measured Seebeck coefficient in low-density 

electron systems near CNP. 

We thank Peng Wei, Wenzhong Bao, Vivek Aji, Vincent Ugarte, Chandra Varma, 

Qian Niu, Le He, and Yadong Yin for their technical assistance and useful discussions. 

This work is supported in part by DOE DE-FG02-07ER46351 and NSF 

ECCS-0802214. 
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Figure Captions: 

Figure 1. (Color online) Comparison of experimentally measured Seebeck coefficient 

SM (open circles) and three Seebeck curves calculated from measured electrical 

conductivity using the Mott relation. The solid line is calculated with the 4P resistivity 

and a linear dispersion relation; the dotted line is with the two-point (2P) resistivity 

and a linear dispersion relation; and the dashed line is with the 4P resistivity and a 

quadratic dispersion relation. of this device is ~ 1,500 cm2/Vs. The inset shows a 

false colored scanning electron microscopy image. 

Figure 2. (Color online) (a). Seebeck coefficients of a device (~ 13000 cm2/Vs) 

measured from T = 100 to 250 K (correspongding to the solid curves from bottom to 

top on the left side). The 4P resistivity data are shown in the inset. (b). Comparison of 

experimentally measured SM (solid circles) and calculated Seebeck coefficient at four 

temperatures. The 4P resistivity and a linear dispersion relation are used for all cases. 

Blue open squares (  are the results calculated from the Mott relation. Open 

triangles are calculated using Eq. 2 with σ(Vg) measured at T = 100 K. The 

solid curve for T= 230 K is calculated using Eq. 2 but with σ(Vg) measured 

at T= 230 K. 

Figure 3. (Color online) (a). Comparison of experimentally measured (SM, solid 

circles) and calculated ( , open squares), Seebeck coefficient for four graphene 

samples with different values (from 2,100 to 13,000 cm2/Vs) at T = 200 K.  (b). 

Comparison of the data from one device with two different values (1,500 and 

3,300 cm2/Vs). 

Figure 4. (Color online) Gate voltage range corresponding to the residual charge 

density range from –n*/2 to n*/2 in devices with varying values. Blue triangles are 

calculated from the data taken at T= 200 K in 9 different devices, whereas green 

squares are from one device but with a range of values at 20 K. Red circles 
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represent the peak-to-dip gate voltage range in measured Seebeck coefficient. Insets 

(a) and (b) show the calculated Fermi temperature TF and residual carrier density n* 

vs. for all devices, respectively.  

 

Table I. Carrier mobility µc, minimum conductivity σmin, charged impurity density nimp, 

residual carrier density n*, and the Fermi temperature TF for five representative 

graphene devices. 
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