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We measured the heat capacity on random alloys of Nd1−xCaxB6 (x < 0.4) in

the 0.4 to 300 K temperature range. We calculated the lattice contribution to the

specific heat, arising from the Debye-type phonons of the boron framework and

Einstein-type oscillators of the cation sublattice. Subtracting lattice and Schottky-

type contributions from the measured heat capacity, we find that the electronic

portion, linear in temperature, decreases sharply upon doping with Ca.

PACS numbers: 71.27.+a, 75.40.-s, 65.40.Ba
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I. INTRODUCTION

Rare-earth and alkaline-earth metal hexaborides show unusual physical properties, more

so if they are synthesized with divalent cations. Their properties can be altered profoundly

by slight variations in the band structure, for instance, through doping. For this reason

they have been the subject of extensive experimental and theoretical studies for over four

decades. Hexaborides exist in the cubic CsCl crystal structure, in which a cage of B6 octa-

hedra surrounds each cation atom. Compounds with divalent cations are semiconducting.

Trivalent cations give rise to metallicity with an estimated one conduction electron per metal

atom. Since the hexaborides with different cations remain isostructural, doping studies have

been a major component of the experimental work done on these materials. In addition, the

strong interaction between the conduction electrons, at low temperatures, makes this class

of materials one of the most interesting in the field of strongly correlated electron systems.

Most of the rare earth hexaborides exhibit some sort of long-range order at low tempera-

tures. The most common is antiferromagnetic (AF) ordering through the Ruderman-Kittel-

Kasuya-Yosida (RKKY) exchange interaction, which is strongly influenced by crystal field

effects, as is seen in NdB6. This compound orders in an A-type collinear antiferromagnetic

(AF) structure below TN ≈ 8 K.2 The ground state of the Nd+3 ions (J = 9/2) is split in

a cubic crystal field into two Γ8 quartets and a Γ6 doublet.3,4 The first excited energy is

approximately 135 K above the ground Γ2
8 state, and the nearest Γ6 excited doublet lies at

278 K.3–5 A competition between ferro–quadrupolar6 and crystalline–electric field4 (CEF)

interactions gives rise to a low–field magnetic anisotropy in NdB6 which is much weaker

than the isotropic magnetic exchange interaction. The topology of the Fermi surface (FS)

of NdB6 has been explored in several works.7–9 It resembles the FS observed in LaB6,
10 but

with additional weak correlations. The FS consists of six large ellipsoids, centered at the

X points of the Brillouin zone, which slightly overlap on the ΓMX plane. A simple folding

procedure can be used to obtain the AF bands from their paramagnetic counterparts in this

hexaboride.11 In addition, the experimentally found frequency branches of the de Haas-van

Alphen effect8 can be well reproduced from the calculated Fermi surfaces.12 Band structure

calculations also show that 4f levels are rather deep in NdB6.
13

Results of experiments on the thermodynamic properties of NdB6 have been reported in

several papers.5,14–18 Magnetic contributions to the specific heat have been found, subtracting
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the results which had been reported for isostructural LaB6. Experimental estimations of the

electronic term of the specific heat are scarce and vary from 2 to 80 mJ/K2mol.15,16

In this paper we report heat capacity measurement results for Nd1−xCaxB6 alloys, in

which some of the trivalent rare-earth atoms are substituted with divalent Ca atoms. We

aim to study how a decreasing valence, and the variations in the Fermi surface (FS) that

follow from it, affect the properties of these alloys. We find that the electronic (linear in

temperature) specific heat is moderately enhanced in the paramagnetic region of NdB6. It

decreases sharply with increasing the content of Ca for x . 0.1.

We describe the experimental procedure in Section II. Results of measurements are re-

ported and discussed in Section III. Conclusions are drawn in Section IV.

II. EXPERIMENT

Single crystals of Nd1−xCaxB6 with x < 0.4 were grown from stoichiometric amounts of

hexaboride components in an Al flux. Crystals grown by this method can often contain

flux inclusions or secondary phases within the bulk, or on the surface. We used electron

probe analysis to check the composition and homogeneity of the crystals we studied. We

found that the Ca and Nd concentrations are spatially uniform over the crystal surfaces. A

negligible contamination from Al was seen on some samples. The crystalline structure of

alloys was determined by x-ray diffraction.

In our heat capacity experiments, we used small single crystals with an approximate mass

of 2 mg. We also measured the heat capacity of a LaB6 single crystal for a reference purpose.

All measurements were performed in a Quantum Design Physical Properties Measurement

System (PPMS), with a He3 insert, which enables access to temperatures as low as 0.38 K.

A small amount of Apiezon N grease was used in order to hold the crystal in place on a

sapphire platform and to assure good thermal contact between the crystal and the platform.

The PPMS measures the heat capacity at constant pressure using the relaxation method.

III. RESULTS AND DISCUSSION

How the zero–field specific heat C, obtained for several Nd1−xCaxB6 single crystals, varies

with temperature T in the range from 0.4 to 300 K is shown in Fig. 1. The sharp peaks
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FIG. 1. Plots of C vs T for Nd1−xCaxB6 single crystals. A blow up of the transition region is

shown in the upper inset. The solid and dashed lines are guides to the eye. The variation of the

critical temperature with x is displayed in the lower inset. The solid line is the expected variation

(see text).

in the C(T ) curves come from the antiferromagnetic phase transition; for NdB6, TN = 7.7

K. Upon doping with Ca, the peak at TN shifts to lower temperatures and becomes smaller

with a larger high–temperature tail. This is shown in the inset of Fig. 1. The variation

of the critical temperature with x can easily be explained within the frame of molecular

field theory for which TN is linearly proportional to the number nNd of nearest magnetic

neighbors for each Nd3+ ion. Since the inclusion of calcium causes a change in nNd, the

shift of the ordering temperature is expressed as TN (Nd1−xCaxB6) = (1−x)TN (NdB6). The

lower inset of Fig. 1 shows that the agreement between the observed and expected (from

the above relation) ordering temperatures is very good.

Generally, there are electronic, magnetic and phonon contributions to the specific heat

C(T ), i.e. C(T ) = Cel+Cmag+Cph. In order to analyze the electronic Cel and magnetic Cmag

parts of the specific heat, we need to model and then subtract from the total heat capacity

the phonon contribution Cph. The latter was calculated using a model, first proposed by

Mandrus and collaborators19 for hexaborides, that treats the rare earth or other metal ions as

independent harmonic (Einstein) oscillators embedded in a Debye bath of boron ions. This
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FIG. 2. Specific heat per mole of LaB6 vs temperature and model calculations performed as

described in the text.

follows from the observation that the metal ions are weakly bound in hexaborides but strong

covalent bonds between boron atoms give rise to a very rigid boron sublattice. To check

the applicability of this model, we have compared its predictions to the experimental data

which we have obtained for the heat capacity of a LaB6 single crystal in a temperature range

0.3–40 K. A value of 150 K and of 1160 K has been assumed for the Einstein and Debye’s

temperature, respectively. These values follow from corresponding atomic displacements

parameters.19 As shown in Fig. 2, the agreement between experimental and calculated heat

capacity is nearly perfect, assuming a small electronic term of 0.002 J/mol K2.

To proceed with calculations of the phonon contribution in Nd1−xCaxB6 alloys, we esti-

mate Einstein temperature TE of the Nd and Ca atoms from their atomic displacement

parameters at room temperature.19–22 We used a value of 150 K and of 280 K for TE

of Nd and Ca, respectively. These are very close to the values which one obtains by

renormalization of TE(La) by the square root of the corresponding mass ratio. An ex-

amination of x-ray refinements implies a Debye temperature of approximately 1300 K for

the simple cubic B6 lattice in NdB6.
21 The lattice specific heat is now given by: Cph =

Cph(Debye)+xCph(Einstein, Ca)+(1−x)Cph(Einstein, Nd); six moles of B ions are treated

as a Debye solid and 1−x (x) moles of Nd (Ca) ions as Einstein oscillators. How these terms
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FIG. 3. Specific heat per mole of NdB6 and Nd0.74Ca0.26B6 vs temperature and model calculations

performed as described in the text.

depend on temperature for Nd1−xCaxB6 alloys is shown in Fig. 3. The Debye term is, as

expected, very small at low temperatures, and only the Einstein contribution is significant

for T & 10 K.

We now turn to the electronic and magnetic specific heat. Away from the phase transition,

in the paramagnetic region, Cmag ≈ CSch, where CSch is the Schottky contribution, brought

about by the CEF splitting of the Nd+3 levels. This can be straightforwardly calculated

from the known parameters.3–5 After Ref. 5, we use a value of 100K for the first excited

energy above the ground Γ2
8 state, and a value of 278 K for higher lying excited doublet.

We then assume that the Schottky contribution scales linearly with x; i.e. CSch = (1 −

x)CSch(NdB6). To fit experimental data, we need in addition the electronic term, whose

linear in T contribution is also shown in Fig. 3 for the x = 0 and x = 0.26 alloys. We

obtain a value of 90 ± 10 mJ/K2mol for γ in NdB6 (Cel = γT ), in good agreement with

previously reported experimental15 and calculated23 values. We note that this value of γ, in

the free electron gas model, leads to an effective mass of about 50me (me is the free electron
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mass), which is much larger than the effective masses that follow from de Haas-van Alphen

experiments.8,9 It may happen that the Fermi surface is made up of two distinct sets of bands

and only a FS sheet with a light mass is observed in de Haas-van Alphen experiments. Such

situation has been proposed to explain a similar discrepancy in CeB6.
24 We also note that

de Haas-van Alphen measurements are performed in high magnetic field, so the effective

masses may be small.

A linear fit to the data points Cel = C(T ) − CSch − Cph in the temperature range from

approximately 25 to 300 K for x=0, 0.075, and 0.264, and in the range from 25 to 40K for

x=0.043, 0.124, and 0.33, gives the variation of γ(x) which is displayed in Fig. 4 with the

corresponding error bars. The coefficient of the electronic specific heat decreases sharply

upon alloying of NdB6 with Ca, for x . 0.1. Our previous Hall effect measurements on

Nd1−xCaxB6 showed that the carrier concentration n decreases linearly with x.25 Knowing

n, we can compare the value of γ(x) obtained from the present specific heat measurements

with those expected from the Sommerfeld model of the free electron gas, in which γ =

π2nk2
Bm∗/~

2k2
F . Here, kB is the Boltzmann constant, m∗ is the effective mass of carriers, and

kF is the Fermi momentum, given by kF = (3π2n)1/3, which yields the relation γ ∝ m∗n1/3.

It is clear that γ(x) does not follow an n1/3 dependence, which suggests that m∗ decreases

non-linearly with increasing Ca content. Interestingly, the anomalous contribution to the

Hall effect in Nd1−xCaxB6 single crystals shows a similar, strongly non-linear variation upon

doping with Ca.25 Such behavior may arise from drastic alterations of the Fermi surface

upon doping.

The log-log plot of C(T )/T in the ordered state is shown in Fig. 5 for two single crystals.

Below 0.6 K, the experimental heat capacity increases slightly towards 0.3 K owing to the

hyperfine splitting of the Nd and B nuclei’s magnetic levels.26,27 We tried to fit the heat

capacity in the ordered state using expressions for magnetic spin waves. However, we failed

to find a reasonable fit. Solid lines in Fig. 5 show how heat capacity, arising from gapped

ferromagnetic spin waves and given by (C − Chf)/T ∝ T nexp(−δ/kBT ) , where Chf is the

hyperfine contribution, kB is the Boltzmann constant, δ is the spin wave energy gap, and

n =0.5,28 fits experimental points in the ordered state. The quality of the fit is poor for

temperatures below 1K.

To obtain the magnetic entropy S, shown in the inset of Fig. 4, we use the relation

S(T ) =
∫ T

0
dT (∆Cmag/T ), where ∆Cmag is the remainder of the total heat capacity after
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FIG. 4. Coefficient of the electronic specific heat γ vs content of Ca in Nd1−xCaxB6 single crystals.

The variation of magnetic entropy S vs T for some Nd1−xCaxB6 single crystals is shown in the

inset.

the hyperfine, phonon, Schottky, and electronic contributions have been subtracted. The

calculated entropy is therefore associated only with the magnetic ordering. We used values

of γ shown in Fig. 4 below TN . This agrees with the observation that neither the number

of electrons contained in the Fermi surface nor the effective mass change significantly going

from the paramagnetic phase at higher temperatures to the antiferromagnetic phase at

lower temperatures. Our estimate of S indicates that about 85 % of the spin entropy,

associated with the ground quartet (R ln(4), where R is the gas constant), per mole at

TN expected for trivalent Nd is accounted for in x=0. The value of magnetic entropy at

TN agrees well with the results of earlier studies on the same system18,29 and with the

theoretical predictions.30 Correlation ranges decrease gradually as T increases beyond TN ,

and, consequently, S increases also gradually.

IV. CONCLUDING REMARKS

Experimentally found heat capacity of Nd1−xCaxB6 single crystals is fitted by a simple

model in which lattice and magnetic contributions are assumed to scale linearly with the
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content of Ca. Remarkably, with the above assumption we were able to fit experimental

data in a wide temperature and composition range. It shows that the RB6 structure does

not deform much when a trivalent R is replaced by a divalent one, as expected for the

rigid covalently–bonded boron network. Although the Raman scattering spectra of hexa-

borides show slight variations upon doping with divalent elements,31 these seem not to affect

significantly phonon and CEF parameters in alloys studied. Our results show a moderate

enhancement of the electronic part in x = 0 alloys both in the paramagnetic and antifer-

romagnetic phases. Interestingly, the low–temperature magnetic resistivity of NdB6 is also

strongly enhanced with respect to the usual values of electron-magnon scattering in magnetic

metals.32 It points to an important role of electronic correlations in this material.

Upon doping with Ca, the electronic term in the specific heat of Nd1−xCaxB6 in the

paramagnetic phase decreases sharply, and, for x & 0.1, shows values expected for magnetic

metals. The electronic properties of hexaborides depend critically on details of the band

structure in the vicinity of the X point. In NdB6, the electron ellipsoids centered at the

X point of the Brillouin zone slightly overlap and small necks are formed between them.

Doping of NdB6 with a divalent element lowers the electron concentration. Consequently,

the volume of the electron ellipsoids decreases and the overlap between them, as well as the

interconnecting necks, may disappear. The behavior of γ with Ca concentration is perhaps
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what one might expect if the electron ellipsoids become separated and the large value of

the electronic heat capacity is coming from the Fermi surface necks. This would explain the

main features of the electronic properties we have observed.

An alternative explanation would involve effects of quadrupolar interactions which are

apparently important in NdB6.
4 Quadrupole related effects lead to the exotic behavior found

in the filled skutterudites, and, in particular, to a large electronic specific heat.33 The large

value of γ in NdB6 (Cel = γT ) could be related to similar interactions. Then, the strain fields

that arise when Ca is doped into NdB6 lift the degeneracy of the ground state quartet of the

Nd ion. Quadrupole interactions are strongly reduced and, consequently, γ(x) decreases.

Further experimental and theoretical studies would be very helpful at this point.
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