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An effective low energy field theory is developed for a system of two chains. The main novelty of
the approach is that it allows to treat generic intrachain repulsive interactions of arbitrary strength.
The chains are coupled by a direct tunneling and four-fermion interactions. At low energies the
individual chains are described as Luttinger liquids with an arbitrary ratio of spin vs and charge vc

velocities. A judicious choice of the basis for the decoupled chains greatly simplifies the description
and allows one to separate high and low energy degrees of freedom. In a direct analogy to the
bulk cuprates the resulting effective field theory distinguishes between three qualitatively different
regimes: (i) small doping (vc << vs), (ii) optimal doping (vs ≈ vc) and (iii) large doping (vs << vc).
I discuss the excitation spectrum and derive expressions for the electron spectral function which turns
out to be highly incoherent. The degree of incoherence increases when one considers an array of
ladders (stripe phase).

PACS numbers: PACS numbers: 71.10.Pm, 72.80.Sk

I. INTRODUCTION

In their seminal paper Dagotto and Rice1 came with an idea that one can get an insight into physics of copper oxide
materials by studying just two coupled CuO chains. This gave rise to the belief that the two-chain problem contains
in itself seeds of the rich physics of the cuprates. Since then the interest to the problem of ladders (that is how
such two-chain systems are usually called) has never faded and there have been numerous attempts to tackle it using
both numerical and analytical approaches. There are also experimental examples of fermionic ladder materials, such
as ”telephone number” compound Sr14−xCaxCu24O41, which display similarities and differences with the uniform
cuprates2,3. There is a possibility that a model of weakly coupled ladders may describe the cuprates with stripe
ordering (for a review, see4).

As far as the theory of fermionic ladders is concerned, the efforts to tackle it can be separated into numerical
and analytic ones. Numerical techniques allow to deal directly with the experimentally relevant range of the model
parameters. A fermionic ladder is usually modeled by the t−J model with equal tunneling matrix elements along the
rungs and legs of the ladder, the ratio of the exchange to the tunneling matrix element is taken as J/t = 1/3 − 1/2,
the ring exchange is also considered. Examples of the state-of-the-art direct diagonalization results and DMRG
calculations can be found in5,6 and7,8 respectively . The use of the t − J model assumes that the on site Coulomb
interaction on the individual chain is significantly greater than the tunneling matrix elements. At such circumstances
one may expect a significant difference between the spin and the charge velocities for an individual chain and the
numerical approaches obviously take this feature into account. The analytical approaches follow the seminal papers9

and are based on bosonization and renormalization group theory (see10 and references therein). They all start from
the limit of weak interactions and have a great problem with tackling the difference in velocities. For approximately
equal spin and charge velocities there is a remarkable result first obtained in9. It turns out that for a quite generic
choice of bare coupling constants the theory scales to a strong coupling state with an enlarged U(1)×O(6) symmetry
greater than the symmetry of the lattice Hamiltonian. This feature allows one to solve the low energy model exactly11

and to calculate its correlation functions11,12. The phase diagram of the strongly correlated model contains a phase
with a d-wave superconducting quasi long range order; this has been taken as evidence that such model may be
relevant for the physics of cuprates.

Both numerical and analytical approaches have their drawbacks. The present day numerical techniques used to
study 2-leg ladders are exact diagonalization (Lanczos method) and DMRG. Although Lanczos method has generated
many impressive results for the problem of doped ladders (I discuss them further in the text), it does not allow to
study long chains nor (for a reasonable doping fraction) the doping dependence. For instance, in5 the maximal length
of the system studied was 16 and the doping was represented by just two holes. There are significant size effects
and it is also difficult to extract directly information about correlation functions. DMRG approach allows to work
with much longer ladders (up to 100 cites in length), but to extract frequency dependent information is difficult. In
any case, an analysis of numerical results frequently requires some input from field theory (see, for instance,6,7,8),
and it would be highly desirable to have a description valid for unequal velocities. This is just what the available
analytical techniques fail to provide. Although they have been very successful in describing the low energy sector of
the model with equal velocities, it is not clear what happens if the velocities are different, as one may expect it to be
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in experimentally relevant situations. Another major difficulty is related to the richness of the fermionic ladder phase
diagram which includes various phases with superconducting as well as Charge Density Wave quasi-long-range order
(see10 and references therein). Since the analytic approaches start with unrealistic values of the bare interactions,
parameters of the effective theory should be considered as phenomenological and one cannot, for example, trace their
doping dependence.

In this paper I present a procedure based on bosonization and subsequent refermionization of the 2-leg ladder
Hamiltonian which allows one to derive an effective low energy field theory for a generic ratio of spin and charge
velocities. My only assumption is that the resulting spectral gaps are small in comparison with the spin excitation
bandwidth ∼ J which seems to be consistent with the numerics5. The novelty of the approach lies in the judicious
choice of the basis for the decoupled chains. Such choice greatly simplifies the form of the interaction and allows one
to separate high and low energy degrees of freedom. Whenever is possible I compare my results with numerical ones.

The paper is organized as follows. In Section II I discuss the model of doped ladder and derive the corresponding
low energy effective field theory. In Section III I discuss different regimes ( I call them underdoped, optimally doped
and overdoped) with an emphasis on the underdoped one. In Section IV I discuss the problem of coupled ladders.
There are separate sections for Conclusions and Acknowledgements. The paper has several appendices.

II. FROM THE LATTICE MODEL TO THE LOW ENERGY FIELD THEORY

As a starting point for our consideration I take the following model of coupled chains:

H = H1 +H2 −
∑

n

t⊥
[

c+n1,σcn2,σ + h.c.
]

+ V12 (1)

Hi =
∑

n

{

− t
[

c+ni,σcni,σ + h.c.
]

+ UNi↑Ni↓
}

+
1

2

∑

n,m

VnmNinNim (2)

V12 =
1

2

∑

n,m

[

Vnm,⊥N1nN2m + JnmS1nS2m

]

(3)

where N =
∑

σ c
+
σ cσ, Sa = 1

2c
+
σ σ

a
σσ′cσ′ . In what follows I will assume that the interactions on chains are pretty much

arbitrary and predominantly repulsive and the interactions between the chains (including the interchain tunneling t⊥)
are small in comparison to the characteristic single chain energy scales. Below I will elaborate on these restrictions.
The Hamiltonian (1) has U(1)×SU(2)×Z2 symmetry.

A. Derivation of the low energy field theory

Away from half filling the low energy dynamics of the single chain problem is universal and is described by a
sum of two Tomonaga-Luttinger models describing the charge and the spin sector. All details of the original lattice
Hamiltonian (2) are encoded in few parameters such as the Luttinger parametersKc,Ks and spin and charge velocities
vs, vc. The SU(2) symmetry of the spin sector fixes the value of Ks to be one. In the future we set Ks = 1 and drop
the subscript for Kc so that Kc = K. The Lagrangian of two noninteracting chains is

L0 =

∫

dx
[

(L1c + L2c) + (L1s + L2s)
]

(4)

Lic =
1

2K

[

v−1
c (∂τΦic)

2 + vc(∂xΦic)
2
]

, i = 1, 2 (5)

Lis =
1

2

[

v−1
s (∂τΦis)

2 + vc(∂xΦis)
2
]

− 2πvsgJRJL, (6)

where Φic,Φis are bosonic fields from the charge (c) and spin (s sectors) of i-th chain. The last term in (6) represents
a marginal interaction of right- and left-moving spin currents Ja

R,L. These currents satisfy the SU1(2) Kac-Moody
algebra; their explicit expressions in terms of bosonic fields are not necessary for the present discussion. For systems
with predominantly repulsive interactions g > 0, g ∼ 1 the current-current interaction is marginally irrelevant. The
present universal description is valid below certain doping dependent cut-off Λ(δ) (δ is doping). For the Hubbard
model with strong on site repulsion U >> t the cut-off is

Λ = min
[

J ≈ 4t2/U, 4t sin2(πδ/2)
]

. (7)
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The ratio vs/vc is also doping dependent since vc as a function of doping has a maximum vanishing in the limit of
zero doping and vs is weakly doping dependent (see, for example,13).

My goal now is to choose a convenient basis of fields to treat the coupled chains. The first step is standard. Namely,
I introduce bosonic fields

Φ(±)
c,s =

[

Φ(1) ± Φ(2)
]

c,s
/
√

2 (8)

together with their chiral components φ, φ̄ = (Φ ± Θ)/2, Θ being the field dual to Φ. Let us consider, for instance,
charge Lagrangian (5). After transformation (8) it becomes

L1c + L2c =
1

2K

∑

a=±

[

v−1
c (∂τΦ(a)

c )2 + vc(∂xΦ(a)
c )2

]

. (9)

Away from half filling the Umklapp processes are suppressed and field Φ
(+)
c decouples from the interactions (this

statement is also supported by the direct calculations presented below). As far as the (c,−) Lagrangian is concerned,
I refermionize it:

1

2K

[

v−1
c (∂τΦ(−)

c )2 + vc(∂xΦ(−)
c )2

]

=

r+(∂τ − ivc∂x)r + l+(∂τ + ivc∂x)l + gKvcr
+rl+l, (10)

where

r =
κ√

2πa0
ei

√
4πφ(−)

c , l =
κ√

2πa0
e−i

√
4πφ̄(−)

c , κ2 = 1, (11)

with κ and a0 being a coordinate independent Klein factor and a small distance cut-off respectively. The coupling gK

is related to the Luttinger parameter K; for |K − 1| << 1 we have:

gK ≈ 2π(1/K − 1) (12)

In view of the further developments I introduce Majorana fermions ξ3R,L and ηR,L related to the real and imaginary
parts of conventional fermions r, l:

r = (ξ3R + iηR)/
√

2, l = (ξ3L + iηL)/
√

2, ξ3
+

= ξ3, η+ = η. (13)

In the bosonic language these Majorana operators are

ηR =
κ̃√
πa0

sin(
√

4πφ(−)
c ), ξ3R =

κ̃√
πa0

cos(
√

4πφ(−)
c ). (14)

Majorana fermion fields can be expanded in terms of conventional creation and annihilation operators. For instance,
we have

η(x) =
∑

k>0

[ηke−ikx + η+
k eikx], {ηk, η

+
p } = δkp. (15)

Substituting (13) into (10) I obtain the Majorana fermion form of the Lagrangian for the antisymmetric charge mode:

L(c,−) =
i

2
ηR(∂τ − vc∂x)ηR +

i

2
ηL(∂τ + vc∂x)ηL +

i

2
ξ3R(∂τ − vc∂x)ξ3R +

i

2
ξ3L(∂τ + vc∂x)ξ3L + 2gKvcηRηLξ

3
Rξ

3
L. (16)

Similar transformations in the spin sector (see14 for details) yield the following Lagrangian density:

Ls =
1

2

3
∑

a=0

[

χa
R(∂τ − ivs∂x)χa

R + χa
L(∂τ + ivs∂x)χa

L

]

+ Vex (17)

Vex = −πvsg
∑

i>j

(χi
Rχ

i
L)(χj

Rχ
j
L), (18)
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where χa
R,L are also Majorana fermions defined as

χ0
R =

κ̃s−√
πa0

sin(
√

4πφ(−)
s ), χ3

R =
κ̃s−√
πa0

cos(
√

4πφ(−)
s ),

χ1
R =

κ̃s+√
πa0

sin(
√

4πφ(+)
s ), χ2

R =
κ̃s+√
πa0

cos(
√

4πφ(+)
s ). (19)

with κ̃s,± being new Klein factors. In the process of derivation I used the fact that

J1,a
R + J2,a

R =
i

2
ǫabcχ

b
Rχ

c
R, J1,a

R − J2,a
R = iχ0

Rχ
a
R, (20)

with similar expressions for the left currents.
Now let us consider the interchain tunneling:

Vt = t⊥
∑

n

(c+1n,σc2n,σ + h.c.) ≈ t⊥

∫

dx(ψ+
1R,σψ2R,σ + ψ+

1L,σψ2L,σ + h.c.) + ..., (21)

where

cn = e−ikF nψR(x) + eikF nψL(x), x = na (22)

and the dots stand for interaction terms generated by virtual high energy processes. The latter terms contribute to
the renormalization of interachain exchange and density-density interactions. Using for ψR,L bosonization formulae
similar to (11) I obtain:

ψ+
1R,σψ2R,σ + h.c =

Z2

2πa0

∑

σ

κ1σκ2σ

[

ei
√

4πφ(−)
c eiσ

√
4πφ(−)

s − h.c.
]

, (23)

where Z is a nonuniversal amplitude which magnitude depends on the intra-chain interaction. Taking into account
that the combinations of Klein factors κ1↑κ2↑ and κ1↓κ2↓ commute with each other and their squares are equal to -1,
we can choose them as equal to ±i and get for (21)

Vt ≈ 2it′⊥

∫

dx
[

ηRχ
0
R + ηLχ

0
L

]

+ interchain exchange, (24)

where t′⊥ = Z2t⊥. In what follows I’ll drop the prime superscript at t′⊥. Recall that χ0 is one of the Majorana
fermions from the spin sector. However, since it transforms as a singlet under action of the SU(2) group, the entire
tunneling term is an SU(2) singlet, as it must be. Naturally, the tunneling entangles the charge and the spin sectors,
but only the singlet fermion participates. As the next step I diagonalize the quadratic part of the Largangian (16, 24,
17) containing η and χ0. Switching to the Hamiltonian formalism and dropping the superscript and subscript for χ0

R

I get the following Hamiltonian for the right moving sector:

H ′ =
∑

k>0

[

vckη
+
k ηk + vskχ

+
k χk + t′⊥(χ+

k ηk + η+
k χk)

]

, (25)

with ηk, ηk
+, χk, χ

+
k being conventional creation and annihilation operators. The spectrum is

E±(k) = (vc + vs)k/2 ±
√

(vc − vs)2k2/4 + t′⊥
2, k > 0. (26)

Linearizing the spectrum close to the point Q = t′⊥/
√
vsvc where E−(Q) = 0 and ignoring the upper branch of the

spectrum which lays at high energies: E+ > t′⊥, I get

H ′ ≈
∑

|k|<<Q

ukR+
k Rk, u =

2vcvs

vc + vs
, (27)

χ0
R(x) ≈

[ vc

vs + vc

]1/2(

e−iQxR + eiQxR+
)

=
[ 2vc

vs + vc

]1/2(

cosQxξ1R + sinQxξ2R

)

, (28)

ηR(x) ≈
[ vs

vs + vc

]1/2(

e−iQxR− eiQxR+
)

=
[ 2vs

vs + vc

]1/2(

− sinQxξ1R + cosQxξ2R

)

. (29)



5

where R,R+ is a conventional (Dirac) right-moving fermion defined on the entire k axis and ξ(1,2) are its Majorana
components (its real and imaginary parts). For the left-moving fermions I get the same expressions with u→ −u and
Q→ −Q. Substituting (29) into (16) for energies less than t′⊥ I obtain the following Hamiltonian density:

Hc,− +Hs = H0 + Vint,

H0 = (30)

ivc

2
(−ξ3R∂xξ

3
R + ξ3L∂xξ

3
L) +

iu

2

∑

a=1,2

(−ξa
R∂xξ

a
R + ξa

L∂xξ
a
L) +

ivs

2

3
∑

a=1

(−χa
R∂xχ

a
R + χa

L∂xχ
a
L),

where Vint contains four-fermion terms. At this point it is worth to discuss briefly the problem of Fermi points.
Naturally, one expects that the interchain tunneling splits the original Fermi point in two. From the above discussion
one may get an impression that there is just one Fermi point. This is certainly not the case since even from Eqs.(28,29)
one can see that there are oscillations at wave vectors kF ± Q. To check that no low energy modes got missing on
the way, I compare the central charge of (30) with the central charge of theory of four noninteracting fermions. The
latter one is equal to 4; central charge C=1 goes into the symmetric charge mode (c,+) which decouples from the
rest of the system. What remains is C=3 which coincides with the central charge of model of six Majorana fermions
(30). Indeed, every Majorana mode representing a half of conventional fermion carries central charge 1/2 so that
1/2 × 6 = 3.

To obtain the interacting part of the Hamiltonian we have to take into account the four-fermion interaction in (10),
as well as (18) and the properly bosonized and refermionized interchain interaction. The latter one has the following
form (21)

i

πa0
cos(

√
4πΦ(−)

c )
[

(−J + V )
∑

a=1

χa
Rχ

a
L + (3J + V )χ0

Rχ
0
L

]

+ Ṽ (∂xΦ(−)
c )2 (31)

Here J and V are related to the interchain exchange and density-density interaction and Ṽ to the density-density
forward scattering. Since the forward scattering usually yields only weak corrections to coupling constants, I will put
Ṽ = 0. In terms of the Majoranas we have

1

2πa0
cos(

√
4πΦ(−)

c ) =
i

2
(ηRηL + ξ3Rξ

3
L) =

i

2

{

ξ3Rξ
3
L +

vs

(vs + vc)
[ξ1Rξ

1
L − ξ2Rξ

2
L]

}

χ0
Rχ

0
L =

vc

vc + vs
[ξ1Rξ

1
L − ξ2Rξ

2
L] (32)

As it was mentioned above, the symmetric charge mode Φ
(+)
c does not appear in the interactions and thus decouples.

Combining (18) and (32) I obtain

Vint = −2(ξ3Rξ
3
L)

[

gσ,−(χa
Rχ

a
L) + gc,ss(ξ

1
Rξ

1
L − ξ2Rξ

2
L)

]

− gρ,−(ξ1Rξ
1
l − ξ2Rξ

2
L)2

−2gc,st(ξ
1
Rξ

1
l − ξ2Rξ

2
L)

3
∑

a=1

(χa
Rχ

a
L) − 2gσ,+

3
∑

a>b,a,b=1

(χa
Rχ

a
L)(χb

Rχ
b
L) (33)

where

gσ,− = (V − J)/2, gc,ss = vc

(

− gKvs + V + 3J
)

/2(vc + vs), gρ−
=

(vsvc)(V + 3J)

(vc + vs)2
,

gc,st =
[

(V − J)/2 + πgvc

] vs

vc + vs
, gσ,+ = πgvs. (34)

The complete effective Hamiltonian is a combination of the Luttinger Hamiltonian for Φ
(+)
c and (30,33). It has a

similar form to the one obtained by the weak coupling bosonization procedure (see, for instance,10 which notations I
follow). There is one important difference: the velocities of different Majorana modes are now different. The resulting
Hamiltonian, as expected, has the same Z2×U(1)×SU(2) symmetry as the original lattice model (1). In that sense
its general form is dictated by the symmetry considerations. However, the microscopic derivation is not without use
since it puts constraints on the model parameters which I am going to exploit.
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C+(1) CC (1) +(2) C+(1) C+(2)C (2) C (1) C (2)

Bare fermions

Φ c
(+)

Φ c
(−)

Standard Bosonization

Refermionization

Φ s
(−)

sΦ
(+)

ηξ
3 χ 0

χ 3 χ 2 χ1

SU(2) triplet

ξ
1

ξ
2

U(1) doublet

t

FIG. 1: The succession of transformations leading from the original formulation (1) to Eq.(30) . The framed fields is the ones
taking part in the final effective theory.

B. Some important operators.

Since the resulting field theory is qualitatively the same as the one described in10, all expressions for possible order
parameters (OP) are the same as in10. Since I am going to concentrate on conditions for superconducting pairing,
only two OPs are needed, one of them being the superconducting OP antisymmetric under chain permutation. In
one dimension this property imitates d-wave symmetry. Since a model of a single Majorana fermion is equivalent to
the Quantum Ising model (see Appendix A, a more detailed discussion of this subject is given, for instance, in14,15),
it is convenient to express the order parameters in terms of order and disorder operators of the corresponding Ising
models: σ, µ (for χ fermions) and Σ,M (for ξ ones). So we have

∆SCd ∼ ei
√

πΘ(+)
c

{

σ1σ2σ3Σ3Σ1M2 − iM3M1Σ2µ1µ2µ3

}

. (35)

The other important operator is the 4kF component of the particle density. Its importance is related to the fact that
the 4kF instability corresponding to crystallization of pairs competes with the d-wave superconductivity. Meanwhile,
the form of this operator remains controversial. In10 it was conjectured on symmetry grounds, as in other publications
(see, for instance,8). Here I provide a rigorous derivation. For the Hubbard model we have

ρ(4kF , x) = F cos(4kFx+
√

8πΦc) (36)

where F is a non-universal amplitude. For the fermionic ladder one can define symmetric and antisymmetric combi-
nations of charge densities:

ρ(+)(4kF , x) = 2F cos(4kFx+
√

4πΦ(+)
c ) cos(

√
4πΦ(−)

c ) ≈
iF cos(4kFx+

√
4πΦ(+)

c )
{

ξ3Rξ
3
L +

vs

(vs + vc)
[ξ1Rξ

1
L − ξ2Rξ

2
L]

}

(37)
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and

ρ(−)(4kF , x) = 2F sin(4kFx+
√

4πΦ(+)
c ) sin(

√
4πΦ(−)

c ) =

2F sin(4kFx+
√

4πΦ(+)
c )[ηRξ

3
L + ξ3RηL] ≈

iF
√

vs/(vc + vs) sin(4kFx+
√

4πΦ(+)
c )

[

e−iQx(Rξ3L + ξ3RL+) − h.c.
]

. (38)

The latter formula indicates that weaker harmonics appear on wave vectors 4kF ±Q.
The standard approach to fermionic ladders maintains that when the system scales to strong coupling and gaps

emerge in various sectors, amplitudes of the corresponding OPs freeze and only the phase factors containing gapless

charge mode Φ
(+)
c or its dual Θ

(+)
c remain. As a result the scaling dimensions of the OPs become much smaller than

for noninteracting fermions leading to a strong enhancement of the corresponding susceptibilities. For instance, the
SCd OP (35) being a bilinear combination of fermions; in the absence of interactions its scaling dimension dbare = 1,
for decoupled chains ddecoupled = 3/4 + 1/4K > 1. On the other hand, in the SCd phase of 2-leg ladder when the
amplitude

A =
{

σ1σ2σ3Σ3Σ1M2 − iM3M1Σ2µ1µ2µ3

}

. (39)

acquires a nonzero ground state average the scaling dimension becomes

dSCd = 1/4K < 1. (40)

One may think that 2kF Charge Density Wave OPs containing ei
√

πΦ(+)
c exponents with scaling dimension K/4 are

more relevant when K < 1 (repulsive interactions). This, however, is not the case because it turns out that in the
phase with nonzero SCd amplitude (39) the amplitudes of all other OPs (except of the 4kF density one!) do not have
nonzero ground state averages. The amplitudes of (38) also can never form because of the symmetry (ξa

R and ξb
L with

a 6= b never pair).

III. DIFFERENT REGIMES.

Although model (30,33) is not integrable, some general statements can be made concerning its spectrum, especially
in the regions where two of the velocities vc and vs are very different. Since interactions (33) are marginal, for general
value of parameters they can all flow either to weak or strong coupling. The numerics done on two-leg ladders usually
points to the strong coupling regime. However, a possibility of the weak coupling also exists27,28 and, as I will discuss
further, apparently is realized in this model for vc ∼ vs when one can apply the standard RG.

As I am going to argue, the strong coupling regime is realized when the velocities are very different so that one
excitation branch lays well above the other in most of the phase space. In that case I use the adiabatic approximation.
Such approximation has been used extensively to study soliton excitations in the Peierls-Fröhlich model pertaining to
the polyacetylene problem where the slow subsystem is represented by the lattice phonons. The representative papers
on the model in question are29, the summary can be found in review articles30,31.

A. Underdoped regime vc << vs. Adiabatic approximation

In the given case the fast particles are spin Majorana fermions χa. I bosonize slow fermionic modes ξ1, ξ2 so that
the Hamiltonian (30,33) becomes

L =
1

2

[

u−1(∂τθ)
2 + u(∂xθ)

2
]

+
1

2

[

ξ3R(∂τ − ivc∂x)ξ3R + ξ3L(∂τ + ivc∂x)ξ3L

]

∆2

2γ
+ i∆

[gs,cc

gs,st
(ξ3Rξ

3
L) +

3
∑

a=1

(χa
Rχ

a
L)

]

+

1

2

3
∑

a=1

[

χa
R(∂τ − ivs∂x)χa

R + χa
L(∂τ + ivs∂x)χa

L

]

+ (4-fermion interaction), (41)

∆ =
gs,st

πa0
cos[

√
4πθ], γ = 4gc,st

2/gρ,−.
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Here it is assumed that gρ,− > 0. In the limit u << vs field θ becomes static32. The ξ3 fermion being nonclassical
object on this stage should be neglected. I will also neglect for time being the interaction between χ-fermions.
This interaction will renormalize the mass gap, but will not produce any qualitative changes. Then the problem is
equivalent to the Peierls-Frölich one discussed in the classic soliton theory29,30,31. Namely, the field theory problem
is reduced to the solution of differential equations for the fast Majorana fermion wave functions supplemented by a
self-consistency condition:

EχE =
[

ivsτ̂
3 d

dx
+ ∆(x)τ̂2

]

χE , (42)

∆(x)/γ =
3

2

∑

E

Tr
(

χ∗
E τ̂

2χE

)

, (43)

where χE is a two component vector and τ̂2,3 are the Pauli matrices. It should be emphasized that though ∆-field is
static, it is coordinate dependent.

As was shown in29 the latter problem is exactly solvable. All excitations have spectral gaps. For the present
purposes it will suffice to consider just a single soliton solution of (42,43). The self-consistent solution of (42,43)
corresponds to ∆(x) = −k0 tanh[k0(x − x0)/vs], where k0 depends on parameters of the model. Dirac equation (42)
with such potential has two kinds of solutions. One solution corresponds to E = 0 and is localized at the soliton
center:

(

χr

χl

)

k0>0

=

(

1
−1

)

exp
[

∫ x

0

∆(y)

vs
dy

]

;

(

χr

χl

)

k0<0

=

(

1
1

)

exp
[

−
∫ x

0

∆(y)

vs
dy

]

. (44)

The total energy of this solution is finite and originates from the ∆2-term in (41). Therefore this excitation has a
spectral gap (I denote it MB). Its quantum numbers are supplied by Majorana zero modes (44) which also include
ξ3. In the limit u = 0 the soliton does not move; at u 6= 0 it acquires dispersion and in that sense it is a slow particle.
Further down I will discuss these excitations in more detail.

Another solution is a scattering state of a (anti)soliton and a massive particle of mass k0:

χr(x) =
eikx

2
√
L

[

1 +
−kvs + ik0 tanh[k0(x− x0)/vs]

√

k2
0 + (kvs)2

]

,

χl(x) =
eikx

2
√
L

[

1 − −kvs + ik0 tanh[k0(x− x0)/vs]
√

k2
0 + (kvs)2

]

, (45)

(these wave functions are normalized) with energy

E(k) =
√

k2
0 + (kvs)2. (46)

As I have said, the spectral gap k0 for this excitation is established via self-consistency condition (43). This gap is
different from MB, as well as quantum numbers of this massive particle do not coincide with quantum numbers of the
slow soliton since its wave function is not localized at x = x0. Namely, the fast particle carries quantum numbers of
the Majorana fermion χa and hence it is S=1 neutral spin exciton. In order to treat quantum corrections to its gap I
now reinstate the four-fermion interaction and write down the effective Hamiltonian for the renormalized fast modes:

Hfast = (47)

ivs

2

3
∑

a=1

(−χa
R∂xχ

a
R + χa

L∂xχ
a
L) − ik0

∑

a

χa
Rχ

a
L − 2gσ,+

3
∑

a>b,a,b=1

(χa
Rχ

a
L)(χb

Rχ
b
L). (48)

Since k0 is related to the amplitude of ∆, it follows from (41) that it is related to the vacuum average:

k0 = −i(V + gπvc − J)〈(ξ1Rξ1L − ξ2Rξ
2
L)〉 ∼ (J − V − πgvc) ln(Λ/MB)

4πvc
MB. (49)

The fermion-fermion interaction in (47) leads to a substantial renormalization of the bare mass. The latter is deter-
mined from the following equation:

ms =
k0

1 + g
2 ln(Λ/ms)

. (50)
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As it follows from (49, the spin gap ms becomes smaller with the increase of vc (that is with the increase of doping).

Naturally, in the presence of gapless charge mode Φ
(+)
c the spin exciton is incoherent. Since the staggered spin

density operator includes a bosonic exponent of this mode, the exciton is emitted together with a cascade of gapless
excitations18. The resulting composite object is frequently called ”magnon-hole-pair bound state”, though, strictly
speaking this is not a bound state, but a composite. This picture agrees with the numerical results for δ = 1/8, 1/6
2-leg ladder obtained in16,17 and19 for 2×24 and 2×12 ladders respectively. Fig. 1 in16 and Fig. 4 in19 show a sharp
peak centered around π(1 − δ) which gradually merges into the continuum at larger wave vectors.

Now I return to the slow modes. As it has been explained above, these are solitons and antisolitons. As was
first suggested in33, they receive their quantum numbers from the zero modes of Majorana fermions (44) coupled to
them (in the present context the reader can also benefit from the discussion in10). Such zero modes (ξ3 mode are
included) compose spinor representations of the O(6) group. The latter ones are equivalent to the representations of
SU(4) group with Young tableaux consisting of one box (particles) and a column of three boxes (antiparticles). Hence
the solitons carry quantum numbers of electrons (that is transverse momentum and spin) modulo total charge. In
other words, the slow excitations are quasiparticles with electric charge stripped into the (quasi) condensate, in short,
Bogolyubov quasiparticles. I denote their spectral gap as MB. As I have mentioned above, I do not see any reason to
have different gaps for different transverse momenta as in16,19. Since model (30,33) is not Lorentz invariant, a general
form the spectrum is not fixed. At small momenta we have

EB(p) = MB +
p2

2M∗ +O(p4), (51)

where M∗ 6= MB due to the lack of Lorentz invariance. To get an idea of the relative size of the effective mass M∗ I
notice that all kinetic energy of a soliton comes from the bare kinetic term in (41). Thus in the leading order in u/vs

the correction to the energy of a moving soliton θ(x − vt) is

v2

2u

∫

dx
[dθ

dx

]2

∼ v2

2ul
∼MB(vs/u)(v/vs)

2, (52)

where l ∼ vs/MB is the solitons’s size. As expected, the kink turns out to be a heavy particle: M∗/MB ∼ 1/uvs.
This feature provides consistency to the adiabatic approximation. Since it becomes energetically disadvantageous for
zero energy bound states of slow Majoranas ξ3 to ”sit” on kinks moving with velocity v > vc, the region of solitons’s
stability in momentum space is restricted by the condition v < vc or |p| < M∗vc < MB/vs.

The last remaining problem is whether the underdoped regime may support d-wave superconducting pairing. As
was explained in Sec. IIB, such pairing requires a formation of the proper OP amplitude and this, in turn, requires
a proper structure of the vacuum. As follows from (33), the relation between vacua of ξ and χ fermions depends on
the sign of coupling constants gc,ss ∼ −gKvs + V + 3J , gc.st ∼ (V + πgvc − J) and gσ,− = (V − J)/2. When all
these constants are negative the masses of χa and ξ1, ξ3 fermions have the same sign opposite to the mass of ξ2. As
a consequence the average 〈σ1σ2σ3〉 forms simultaneously with 〈Σ1M2Σ3〉 ( or 〈µ1µ2µ3〉 with 〈M1Σ2M3〉) and hence
the entire SCd amplitude (35) freezes (see the discussion in10). Since V, J > 0 the conditions to be fulfilled are

(gKvs − V )/3 > J > V + πgvc. (53)

I conclude this long line of argument with the following comments.
A qualitative picture of the underdoped regime emerging from these calculations is as follows. First and foremost,

when condition (53) for the interchain exchange is fulfilled, the phase has quasi-long-range superconducting order
with d-wave symmetry. This requires sufficient strength of the exchange interaction which agrees with the previous
expectations. The doping dependence of the spin gap ms (49 and 50) originating from the presence of vc in (49) is a
new result.

In arrays of ladders SCd order competes with what is variously called Wigner Crystal of Pairs or 4kF Charge
Density Wave. The latter phase is probably realized in the telephone number compound26. There is a possibility
of ms changing sign before vc and vs become comparable, that is within the validity of the adiabatic approximation
(this corresponds to a violation of J > V + πgvc condition). This would lead to a transition to 2kF Charge Density
Wave phase10.

Third comment. Usually doping is associated with incommensurability. However, model (41) looks like commen-
surate Peierls-Frölich model; the reason for that is that the only charge participating in the game is the relative one,
and the way it couples to the spins reveals its Z2 nature: it is just cos

√
4πθ. Although the entire system is doped,

and correlations are indeed incommensurate, all this is accounted for by the total charge field Φ
(+)
c which is decoupled

from the rest of the system. The spin SU(2) symmetry is, of course, unbroken, so the spin Majorana mass bilinears
can appear only as a scalar (χa

Rχ
a
L), and a scalar can only couple to another scalar. The nontrivial conclusion is that
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as a result of the above the situation for a doped fermionic ladder is analogous to the commensurate Peierls-Frölich
model with a real order parameter ∆.

Forth comment. By using the results taken from the theory of Peierls-Frölich model I was able to demonstrate that
at vc << vs the fermion ladder has at least three types of excitations. They have all been found in the numerical

papers16,17,19. There are ”fast” (vs ∼ t2/U) spin S=1 magnetic excitons, gapless charge mode Φ
(+)
c and heavy (slow)

excitations. The spin excitations are triplet ones (spin S=1), that is they are qualitatively the same as the excitations
of the undoped spin ladder, described by the Hamiltonian similar to (47)14. They have a relativistic-like spectrum:

Es(k) =
√

m2
s + (vsk)2. (54)

As I have said, single S=1 is always emitted in conjunction with the charge gapless modes. The slow excitations
also have a spectral gap, but their spectrum is not relativistic (51). By their quantum numbers I identify them as
Bogolyubov quasiparticles. It is instructive to compare the described excitation spectrum with the spectrum for the
case vc ≈ vs studied in9,11. In the C1S0 phase this spectrum coincides with the one for the O(6) symmetric Gross-
Neveu (GN) model. It does contain Bogolyubov quasiparticles as kinks and antikinks. In that sense the difference
in velocities is not important, as it should be expected for topological excitations. The O(6) GN contains 6-fold
degenerate multiplet of vector particles. These ones are local with respect to our Majorana fermions ξ, χ. I have
found that at vc << vs this multiplet is reduced to 3-fold degenerate multiplet of spin excitons χa. Survival of the
other three components including the famous Cooperons remains an open question.

B. Single electron Green’s functions for single ladder

Some features of the single particle Green’s function whose spectral density is directly measurable by ARPES, can
be calculated in the strong coupling regime even if the model (30,33) is not integrable. I perform this calculation for

the right moving fermions. The decoupling of the total charge mode Θ
(+)
c from the rest of the Hamiltonian translates

into factorization of the fermion creation and annihilation operators. Namely, the creation operator operator for
right-moving electron on j-th chain is given by

ψ+
R,σ(j) = ei

√
πφ(+)

c

[

Z+
R,σ,+eiQx ± Z+

R,σ,−e−iQx
]

, (j = 1, 2), (55)

where operators Z+
R,σ,p create excitations in the spin and parity sectors, index p = ± corresponds to the transverse

momenta 0 and π. The correlation function of the bosonic exponents is known:

〈ei
√

πφ(+)
c

(τ,x)ei
√

πφ(+)
c

(0,0)〉 = (τ + ix/vc)
−1/4

[

τ2 + (x/vc)
2
]−(K+1/K−2)/16

(56)

The excitation with smallest energy produced by Z+ is a quasiparticle. It can also produce combinations of
quasiparticles with magnetic excitons, but these processes require higher energy. Therefore in order to calculate the
spectral function close to the low energy threshold MB we need to determine just one matrix element corresponding
to the emission of a quasiparticle. For Lorentz invariant models this can be done rigorously following the standard
procedure explained in34,35. Although model (30,33) is not Lorentz invariant, for energies not very different from the
gap MB when only slow solitons are excited this not be that important. In that case I will just treat (51) as the first

terms in the expansion of
√

M2
B + (vp)2 with v ∼ √

vcvs.
Taking these arguments into account I proceed further and assign operators with Lorentz spins. Recall that operator

Oh with Lorentz spin h under Lorentz rotation

vt = (t′v) cosh θ + x′ sinh θ, x = (t′v) sinh θ + x′ cosh θ (57)

transforms as

Oh(x, t) = ehθOh(x′, t′). (58)

The right(left)-moving electron is a spinor and hence carries Lorentz spin 1/2 (-1/2), the chiral bosonic exponent
carries Lorentz spin 1/8(-1/8) and hence the right(left)-moving Z-operator must carry Lorentz spin 3/8(-3/8). This
means that the matrix element between the vacuum and quasiparticle excitation with energy ǫ = MB cosh θ and
momentum p = v−1MB sinh θ parametrized by rapidity θ is

〈θ|Z+
R,σ,±(x)|0〉 = Ze±iπ/4e3θ/8+iMB(x/v) sinh θ,

〈θ|Z+
L,σ,±(x)|0〉 = Ze±iπ/4e−3θ/8+iMB(x/v) sinh θ. (59)
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where Z is a normalization constant and v is of the order of vc ∼ u. The phase factor e±iπ/4 is necessary to maintain
the d-wave symmetry of the order parameter (see the discussion below). Substituting this expression to the Lehmann
expansion for the Green’s function and using (56), I arrive to the following leading asymptotics of the single electron
Green’s function:

〈ψR,σ,ν(τ, x)ψ+
R,σ,ν′(0, 0)〉 ∼ (60)

δν.ν′

eiνQx

(τ + ix/vc)1/4[τ2 + (x/vc)2](K+1/K−2)/16

(τ − ix/v

τ + ix/v

)3/8

K3/4

(

MB

√

τ2 + (x/v)2
)

with ν = ±1. Green’s function (60) is highly incoherent and is qualitatively similar to the Green’s function of the
1/2-filled Hubbard model with different charge and spin velocities calculated in34. For the sake of simplicity I restrict
the calculations for the case v = vc. In that case for K = 1/2 we get

A
[

ω, p+ νQ+ kF , k⊥ = π(1 + ν)/2
]

∼ (61)

M
−5/16
B

(ω − vp)
(

ω2 − (vp)2 −M2
B

)11/16
F

(

33/32, 9/32, 5/16;
M2

B + (vp)2 − ω2

M2
B

)

, (62)

where ν = ±1. The spectral function vanishes for ω2 < (vp)2 +M2
B. The above expression is valid below the lesser

of two energies: the three-particle threshold 3MB or the threshold for emission of two S=1 excitons 2ms + MB. It
is also interesting to note that Q = t⊥/

√
vcvs is non-universal and can be quite large. Therefore in the presence

of interactions the transverse tunneling may shift the spectral weight very substantially from the single chain Fermi
points kF ± t⊥/vF .

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

FIG. 2: The spectral function A(ω,±Q + kF ) = A(−ω,±Q + kF ) (61) as a function of ω/MB > 0 (blue). The sharp maximum
at ω = ǫ(k) is replaced by a power law singularity. The magenta graph shows the same function convoluted with the Gaussian
resolution function (3/

√
πMB) exp[−9ω2/M2

B ].

Two comments are in order. First, in the described energy range the spectral function is particle-hole symmetric
which agrees with the early findings18 and disagrees with the arguments by23. Particle-hole asymmetry is expected
to appear at energies of order of the ultraviolet cut-off and is related to deviations of the bare band dispersion from
linearity. Second, although the positions of the peaks in the spectral function depend on the transverse momenta, I
have not found any difference in the spectrum for py = 0, π which is reflected in the identical behavior of A(kF +Q)
and A(kF −Q). This contradicts the numerical results of16.

Although the anomalous Green’s function vanishes for an infinite ladder, for finite ladder it may be nonzero provided
proper boundary conditions are in place. This idea was exploited in19,20 to extract information about pairing.
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E,T

Doping, (vc

Spin gap m

Antinodal gap M

Critical point
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FIG. 3: The schematic phase diagram of doped 2-leg ladder.

According to (55) the anomalous Green’s function is

Fij(τ, x) = 〈〈ψR,↑,i(τ, x1)ψL,↓,j(0, x2)〉〉 = f(L, τ, x1, x2)Fij(τ, x12)

f(L, τ, x1, x2) = 〈〈e−i
√

πφc(+)(τ,x)ei
√

πφ̄(+)
c

(0,0)〉〉, (63)

F = 〈〈
{

ZR,↑,+(τ, x)ZL,↓,+(0, 0) + [2δij − 1]ZR,↑,−(τ, x)ZL,↓,−(0, 0)
}

〉〉. (64)

As I said, the first factor in the last line of (64) vanishes in the infinite system, but is finite in a finite one. It does not
contain information about pairing and I do not discuss it. The information about pairing is contained in the second
factor which leading asymptotics is determined by the formactors (59):

F ∼ K0(MB

√

τ2 + (x/v)2) → 1

(ω + i0)2 − (vp)2 −M2
B

. (65)

This expression is valid at frequencies less than 3MB. In this region it looks like the standard Gorkov pairing function.
The extensive incoherent part, found in19,20 apparently appears above 3MB when the simple approach described here
does not work.

C. Optimal doping vc ∼ vs

As it was established already in9, at vc ∼ vs the interactions scale together either to strong coupling or to zero.
In the former case the symmetry of the model dynamically increases at low energies and becomes U(1)×O(6). This
regime has been thoroughly described in9,11,12. It has been generally assumed that this situation is realized in t− J
ladders. However, as it was pointed out in27,28, this is not necessarily the case. Indeed, if one takes as bare couplings
(34) and assumes that J > V (recall that this was one of the conditions for SCd in the underdoped regime) and
vgK >> V, J g ∼ 1, the system will scale to the weak coupling phase C2S2.

D. Overdoped regime vc >> vs

Now the fast fermion mode is ξ3. For this mode we can repeat the arguments presented in Sec. IIIA. Namely, the
fast mode acquires a spectral gap (I denote it m3); its spectrum is

Ec(k) =
√

m2
3 + (vck)2. (66)

Its symmetry is Z2. There are also slow gapful solitons whose quantum numbers are the same as for the underdoped
regime. Their spectrum is not relativistic. Beyond these statements I can provide no reliable information.
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IV. LADDERS BECOME STRIPES.

The burning question is how properties of a single ladder are going to survive when one assembles ladders together.
In this setting doped ladders (”rivers of charge”) are separated by undoped ones. Such scenario have been considered
many times before in the context of stripe phases and here the present approach differs only in details.

The salient feature of the underdoped 2-leg ladder is a separation of scales between different excitations. Those
ones include the gapless charge mode, the fast spin excitons with spin gap ms and the slow Bogolyubov quasiparticles
with gap MB. This separation is likely to survive in the bulk system, at least in some areas of the Brillouin zone.
Since charge bosonic exponents enter into expressions for all relevant operators (such as 2kF and 4kF components of
spin and charge densities as well as interladder tunneling operators), transverse propagation of these excitations will
be overdamped by emission of gapless phase fluctuations. The coherence will emerge below the 3D superconducting
transition when the charge mode condenses (however, see the discussion of the single particle Green’s function below).
It is reasonable to assume that the overdamped Bogolyubov quasiparticles of our model correspond to the single
electron spectrum in the antinode regions (see a more detailed discussion below). On the other hand, the direct
interladder tunneling will give rise to Fermi pockets in the nodal direction, as was found in37. The precise position
of the Fermi pockets at the Brillouin zone diagonals together with their orientation constitutes a difficulty for the
present theory which it shares with all models of stripes (see, for instance,36).

The spin excitons are probably responsible for the famous ”hourglass” spectrum observed in the neutron scattering
experiments39. The calculation presented below is not that different from the one performed in38 where the doped
ladder was described by the O(6) Gross-Neveu model. Imagine doped 2-leg ladders running parallel with undoped
ones so that a unit cell contains one doped and one undoped ladder. The most singular operator in the spin sector is
the 2kF component of magnetization

S− = n− cos(
√
πΦ(−)

c ) cos(2kFx+
√
πΦ(+)

c ) + n+ sin(
√
πΦ(−)

c ) sin(2kFx+
√
πΦ(+)

c ) (67)

Since the sector of Φ
(−)
c is effectively frozen, we can consider all amplitudes to be static:

S− = Dn− cos(2kFx+
√
πΦ(+)

c ), D = 〈cos(
√
πΦ(−)

c )〉. (68)

So the spin operators in the underdoped regime are almost like the ones for undoped spin ladder, but slightly ”softened”
by the gapless charge mode. Then the effective interaction between the staggered magnetization of the undoped chains
N and the magnetic modes of doped ladders is

gNk

(

n−k+πδ + n−k−πδ

)

, (69)

and the RPA spectrum is determined by the equation

ω2 − ∆2
0 − (V k)2 − g2 cos2 q

[ 1

ω2 −m2
s − v2

s(k − πδ)2
+

1

ω2 −m2
s − v2

s(k + πδ)2

]

= 0, (70)

where q is wave vector transverse to the ladders and ∆0 is the spectral gap of the undoped ladders. When ms < ∆0

this equation yields the hourglass spectrum.

A. Superconducting fluctuations

At energies smaller than the quasiparticle gap MB and spin exciton gap ms one is left with the gapless charge
excitations. In the phase where SCd order parameter acquires a finite amplitude, the 4kF component of density (37)
also acquires a finite amplitude. These operators from different chains couple together via Josephson coupling and
the Coulomb interaction. This results in the following effective low energy Hamiltonian for the charge mode (I drop
the superscript (+) and subscript c):

Hcharge =
∑

r

∫

dxHr + UCoul (71)

UCoul =
e2

2π

∑

r6=r′

∫

dxdx′
∂xΦr(x)∂x′Φr′(x

′)
√

(r − r′)2 + (x− x′)2
, (72)

Hn =
vcK

2

[

(∂xΦr)
2 + (∂xΘr)

2
]

+ Vc(r, r
′) cos

[√
4π(Φr − Φr′)

]

−

VJ(r, r′) cos
[√
π(Θr − Θr′) −

2e

c

∫

r

r′

dlA
]

, (73)
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where A is a vector potential, Vc originates from 4kF component of the Coulomb interaction matrix element and
Vc is generated by the interladder Josephson coupling. The long range Coulomb interaction (72) is often omitted
from consideration though it is important to get the right electrodynamics. Model (71) is directly applicable to the
telephone number compound.

It is also instructive to write model (71) in the Lagrangian form:

L =

N
∑

n=1

∫

dxLn, (74)

Ln =
vcK

2
(∂xΦn)2 + i∂τΘn∂xΦn +

vc

2K
(∂xΘn)2 + Uint, (75)

where interaction term Uint contains all cosine terms. At K = 1/2 the two cosine terms in the interaction have
the same scaling dimension and the competition between the superconductivity and Wigner crystal ordering of pairs
becomes strong. Recall that K = 1/2 corresponds to the U >> t limit of the Hubbard model and is a very realistic
value in the present context. Then at VJ > Vc the ground state is a superconductor and at VJ = Vc there is a first
order phase transition to the Wigner crystal state40. The latter state may emerge even at Vc < VJ if the hopping
of pairs between the ladders is suppressed by a magnetic field. Since field Φ couples to disorder, In the presence of
disorder the pairs localize. It is well known that the suppression of superconductivity in underdoped cuprates reveals
the state with weakly insulating properties41,42.

In Appendix B I consider exactly solvable model of two coupled ladders.

B. Single particle Green’s function in the striped phase

In Section IIIB I studied the Green’s function for a single ladder. Now I am going to generalize this calculation for
a striped phase. Direct interladder tunneling produces bound states with quantum numbers of electrons. So, one may
think that when ladders are coupled together the quasiparticles are reconstituted. However, since the tunneling matrix
element is momentum dependent and changes sign throughout the Brillouin zone, the bound states (quasiparticles)
are not created at all momenta, but only in those parts of the Brillouin zone where the tunneling process pushes the
states below the continuum. It is well known that in the cuprates there are discernible quasiparticle excitations near
the nodes and completely incoherent ones at the antinodes43,44. Theoretically emergence of quasiparticle pockets in
systems of weakly coupled chains and ladders have been discussed in37,45 and more recently in46.

Below I ignore the direct tunneling which may be a good description for the antinodal region where the direct
tunneling between the ladders does not create quasiparticles. As far as virtual tunneling processes are concerned,
they generate the Josephson coupling between the ladders and are taken into account in effective Hamiltonian (71).
As for a single ladder case single electron excitation is a Bogolyubov quasiparticle dressed by fluctuations of the

gapless charge mode Θ
(+)
c . As for a single ladder one can assume that these two types of excitations are decoupled

and the electron creation and annihilation operators are factorized as in (55) . However, the charge mode is no longer
one-dimensional which makes the calculation slightly nontrivial.

For the sake of simplicity I will neglect the long distant Coulomb interaction (72). In the cuprates this may be
actually justified in the normal state where the Coulomb interaction is screened by nodal quasiparticles. Then in RPA
the charge mode has the phonon-like spectrum

Ω2 = (vcqx)2 + (v/a)
∑

i

Ji sin2(qei/2), (76)

where ei are the elementary lattice vectors. Above the transition there is a temperature dependent gap, but at the
moment I ignore all temperature effects. In the absence of the long range Coulomb interaction model (73) is Lorentz
invariant in (τ, x) space. Therefore one can still assign Lorentz spin to the chiral bosonic exponent

h = ei
√

πφ(+)
c

(r) (77)

and its value is still 1/8. Therefore the matrix element for emission of one bosonic excitation with transverse momen-
tum q⊥ and rapidity θ defined as

Ω(θ,q⊥) = m(q⊥) cosh θ, qxvc = m(q⊥) sinh θ, m2 = (v/a)
∑

i

Ji sin2(qei/2) (78)
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is given by

〈q⊥, θ|ei
√

πφ(+)
c

(r)|0〉 = Z1/2(q⊥)eirq⊥eθ/8, (79)

where Z is an unknown coefficient. Since in more than one dimension contribution of multiple emission processes is
usually small due to the phase space factors, I will not consider such processes here. The contribution of the single
emission to the correlation function of two the chiral exponents positioned on the same ladder is

∫

dDq⊥Z(q⊥)
(τ − ix/vc

τ + ix/vc

)1/8

K1/4

[

m(q⊥)
√

τ2 + (x/vc)2
]

(80)

where D is the number of transverse dimensions. Simplifying matters again I take vc = v and get for the total
correlation function

GRR(τ, x; r = r′) = (81)
(τ − ix/v

τ + ix/v

)1/2
∫

dDq⊥Z(q⊥)K1/4

[

m(q⊥)
√

τ2 + (x/v)2
]

K3/4

[

MB

√

τ2 + (x/v)2
]

Assuming further that m ∼ |q⊥|,Z = const and D = 1 for ω2 > M2
B + (vp)2 we get for the spectral function

ARR(ω, p+Q) ∼ ω − vp

ω + vp

√

ω2 − (vp)2F
(

11/8, 5/8, 1,
M2

B + (vp)2 − ω2

M2
B

)

(82)

2 4 6 8 10
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FIG. 4: The spectral function A(ω,Q) (82) as a function of ω/MB (blue figure). The threshold singularity present for single
ladder is removed by the emission of soft phase fluctuations (compare with Fig. (2)). The magenta figure represents the spectral
function convoluted with the Gaussian resolution function (3/

√
πMB) exp[−9ω2/M2

B ].

It may seem counterintuitive that the increase of dimensionality of the phase fluctuations leads to a stronger
suppression of singularity in the Green’s function than for a single ladder. The mechanism of this increase is related
to the factorization of the electron operator already discussed in Section IIIB. This factorization is similar in spirit to
the holon-spinon factorization frequently used in gauge field theories of the cuprates (see47,48 for a review):

ψ̂σ = ĥf̂σ, (83)

where operator ĥ carries charge and f̂σ carries spin. The difference is that holons in that theories are pure bosons
and hence can easily condense. The state with condensed holons is Fermi liquid where all incoherence is lost. There
have been always qualitative arguments that the strong gauge field interaction between holons and spinons somehow
prevents the former ones from condensation, but these claims have never been substantiated by calculations. In the
present case there is no such danger. The role of holon is played by the bosonic exponent (77) which has a nonzero
Lorentz spin and therefore cannot acquire nonzero average. On the other hand, an object with fractional Lorentz spin
becomes very incoherent in more than one dimension which explains the effect.
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V. CONCLUSIONS

The doped 2-leg ladder demonstrates the most salient features of the bulk cuprate materials.

• When the interchain exchange dominates over the interchange Coulomb repulsion the phase with one-dimensional
analogue of d-wave superconducting order parameter is formed. It is understood that for a one-dimensional
ladder this means only quasi long range order.

• When doping increases the system goes through different regimes distinguished by their excitation spectra and
behavior of correlation functions. They have many properties similar to underdoped, optimally doped and
overdoped regimes of the bulk cuprates.

• The excitation spectrum contains both Bogolyubov quasiparticles and collective modes. In the underdoped
regime energy scales of all excitations are well separated. Collective modes include spin-1 neutral excitons and
superconducting phase fluctuations.

• All excitations are incoherent being overdamped by gapless phase fluctuations. Hence the single particle spectral
function does not exhibit a sharp peak, but a broad maximum (pseudogap phenomenon).

• The ratio between spectral gaps of quasiparticles and spin excitons is interaction dependent. The spin exciton
gap decreases with doping.

• The magnitude of all gaps decreases with an increase of doping. There is a possibility that the optimally doped
regime where charge and spin velocities are approximately equal is completely gapless.

When ladders are assembled into a quasi-two-dimensional array

• Single particle spectral weight becomes even more incoherent when ladders are assembled in an array and
superconducting phase fluctuations cease to be one-dimensional (see the discussion in the end of the previous
Section). The long incoherent tail of the spectral function (see Fig. 4) is its an inherent property and not a
background.

• Likewise, a famous hourglass spectrum emerges in the dynamical spin susceptibility of the stripe phase.

• Suppression of superconducting coherence by magnetic field drives the system into the insulating state with
localized pairs.

As I have discussed above some of these properties have been detected in the numerical calculations.
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Appendix A: Bosonization rules for Ising operators

The Quantum Ising model

H =
∑

n

(

σz
nσ

z
n+1 − hσx

n

)

(A1)

is equivalent to the model of a single Majorana fermion. In the continuum limit its spectrum is relativistic ǫ(k) =√
k2 +m2 where m = 1−h. Since two Majoranas constitute one conventional fermion, two Ising models are equivalent

to a model of a single Dirac fermion of mass m. The latter model can be bosonized and is equivalent to the sine
Gordon model. Using this chain of equivalencies one can establish a correspondence between order and disorder
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parameters of the two Ising models and operators of the Gaussian model. The order parameter operator σ is defined
as a continuum limit of σz

n, its dual operator µ is a continuum limit of

µz
n+1/2 =

∞
∏

j=n

σx
j (A2)

The bosonization rules for Ising model operators are as follows.:

cos(
√
πΦ) = µ1µ2, sin(

√
πΦ) = σ1σ2

cos(
√
πΘ) = µ1σ2, sin(

√
πΘ) = σ1µ2 (A3)

The above order parameters are sensitive to sign of m; 〈σ〉 6= 0 for m > 0 and 〈µ〉 6= 0 for m < 0. This property
is used in the main text of the paper. I refer the reader to15 for a further discussion of applications of Majorana
fermions.

Appendix B: Phase fluctuations in 4-leg ladder. Exact results.

To illustrate a competition between Wigner crystallization of pairs and superconductivity, I consider a model of
two coupled ladders. I define the modes

Φ1,2 = (Φ+ ± Φ−)/
√

2 (B1)

and the symmetric mode (+) decouples. The Hamiltonian for the asymmetric mode is

H− =
vcK̃

2

[

(∂xΦ−)2 + (∂xΘ−)2
]

+ Vc cos
[√

4πΦ−
]

− VJ cos
[√

4πΘ−
]

, (B2)

where K̃ = 2K and

Vc ∼ U(4kF )MB, VJ ∼ (t2/MB)(MBms)
3/8 (B3)

After refermionization I get the sum of two off-critical Ising models:

H− =
ivc

2
(−ρR∂xρR + ρL∂xρL − ηR∂xηR + ηL∂xηL) +

4πvc(K̃ − 1)ρRρLηRηL + 2i(Vc + VJ )ρRρL + 2i(Vc − VJ )ηRηL. (B4)

Consider K ≈ 1/2. Neglecting the four-fermion interaction I obtain from (B4) that the amplitude of the supercon-
ducting order parameter diminishes when VJ approaches Vc from above and vanishes at VJ ≤ Vc:

ei
√

2πΘ = ei
√

πΘ+ei
√

πΘ− = ei
√

πΘ+

[

µ1σ2 + iσ1µ2

]

(B5)

The amplitude is

〈µ1σ2〉 ∼ (V 2
J − V 2

c )1/8 (B6)

At Vc > VJ one gets the same expression for the amplitude of the 4kF density wave.
Magnetic field adds to (B4) the term

2ih(ηLρL − ηRρR) (B7)

The spectrum becomes

ω2
1,2 = (vck)

2 + h2 + (V 2
J + V 2

c ) ±
[

4(vckh)
2 + 4h2V 2

J + V 2
c V

2
J

]1/2

. (B8)

The critical point where ω−(k = 0) = 0 is achieved at

h2 = (V 2
J − V 2

c )/4. (B9)
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