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Ultraprecise studies of the thermal expansion coefficient of diamond using x-ray

diffraction in backscattering

Stanislav Stoupin, Yuri Shvyd’ko
Advanced Photon Source, Argonne National Laboratory, Illinois, 60439, USA

The linear thermal expansion coefficient of diamond crystals of type IIa and type Ia was measured
in the temperature range from 10 to 295 K. Neither negative thermal expansion nor any substantial
difference in the thermal expansion coefficient in crystals of the different types were observed. An
empirical expression was obtained that approximates the temperature dependence of the thermal
expansion coefficient of diamond. The T 3 temperature dependence of a Debye solid holds below ≈

100 K with an accuracy of ≈ 10−8K−1. A slight increase in the value of the lattice parameter was
found for Ia type crystal which suggests lattice dilatation by nitrogen impurity. The measurements
were performed using Bragg diffraction in backscattering from diamond crystals of highly monochro-
matic 23.7 keV x-rays with the recently demonstrated high relative accuracy of 1.2 × 10−8 in the
determination of the lattice parameter [S. Stoupin and Yu. Shvyd’ko PRL 104, 085901 (2010)].

PACS numbers: 65.40.De, 61.72.S-, 61.05.cp

I. INTRODUCTION

Diamond is a crucial material for many branches of modern technology. A growing number of demanding applica-
tions rely on the unique properties of diamond. For example, x-ray optics for next generation synchrotron sources is
facing a new challenge: to provide diffracting crystals stable under the extremely bright incident x-rays.1–4 Diamond
is the primary candidate for this application due to its high radiation hardness, low x-ray absorption, record high ther-
mal conductivity and record high reflectivity for hard x-rays in Bragg diffraction. To keep stable the Bragg reflection
energy band of x-rays it is important to minimize the thermal variation of the crystal lattice parameter. This can be
accomplished by cooling to cryogenic temperatures where the linear thermal expansion coefficient of diamond drops
by a few orders of magnitude with respect to its room temperature value of ≃ 1×10−6. The knowledge of the thermal
expansion coefficient allows quantitative evaluation of deviations in the lattice parameter δa/a due to a variation in
the crystal temperature δT . At temperatures around 40 K the coefficient becomes as small as 1

a
δa
δT

≈ 2× 10−9K−1 as

reported recently.5 For practical considerations, it is of special importance to verify the result by performing series of
experiments on diamond crystals of different type and origin with the best available accuracy. As continuation of the
work5, here we present detailed studies of the thermal expansion in diamond.

The demonstrated in Ref. 5 accuracy in determination of lattice parameter ∆a/a ≃ 1.2 × 10−8 is crucial for such
ultraprecise x-ray characterization of thermal expansion. Earlier experimental results of other groups6–10 are based
on the relative accuracy ∆a/a ≈ 10−6 or more. For example, Haruna et al.7,9,11 have measured the temperature
dependent lattice parameter of diamond using Bond method12 with an accuracy of about 1 × 10−6. Values of the
thermal expansion coefficient less than 10−8K−1 at low temperatures have been predicted by polynomial extrapolation
(i.e., have not been directly measured). Fig. 1 summarizes experimental data on thermal expansion coefficient of
diamond reported in the literature prior to 2010.

Early theoretical studies discuss the possibility of negative thermal expansion (NTE) for diamond13,14. More recent
theoretical works show that in contrast to Si and Ge, the effect does not exist for diamond because of the positive
values of of transverse-acoustic-mode Grüneisen parameters15,16. At the same time, low-concentration impurities in
some crystals might cause low-temperature anomalies in the thermal expansion coefficient. It is also possible that
some of these anomalies appear as the NTE effect.17,18

Given the importance of precise knowledge of the magnitude of thermal expansion of diamond for high-tech ap-
plications, its significance for understanding fundamental properties of solids and the ability to perform ultraprecise
measurements, further experimental studies are necessary. In this paper, we report results of thermal expansion
measurements for three high-quality IIa type synthetic crystals from different manufacturers and for a crystal of type
Ia. We show that contrary to previous studies9, temperature variation of the thermal expansion coefficients of these
crystals can be approximated with a single empirical formula and that the deviation of the experimental values from
the formula does not exceed 3 × 10−8K−1 in the temperature range 10 - 295 K. The empirical formula deviates from
the Debye T 3 approximation at temperatures of ≈ 200 K and above. No evidence of negative thermal expansion is
found for any of the samples. An influence of impurities on the thermal expansion coefficient is not clearly manifested
and thus remains speculative.
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FIG. 1: Linear thermal expansion coefficient of diamond versus temperature: data from the literature prior to 2010. An
experimental uncertainty of 5 × 10−7 K−1 reported by Giles et. al10 is representative. Such uncertainty prevents direct
measurements of the thermal expansion coefficient at temperatures <

∼
100 K.

II. MEASUREMENT PRINCIPLE

The important role of x-ray Bragg backscattering in precision measurements was recognized a while ago (e.g., Sachs
and Weerts19). The technique was improved in the early 70s when x-ray backsattering instruments for measuring
relative changes of lattice parameters in crystals with an accuracy of 10−6 were built.20–23 Further improvement in the
measurement accuracy became possible with the use of monochromators with high energy resolution. High-energy-
resolution Bragg diffraction in the backscattering configuration has been used to measure lattice parameters and x-ray
wavelengths with high accuracy.24–28

The Bragg’s law in backscattering is

λ(1 + w) = 2d(1 − Θ2/2) , (1)

where λ is the wavelength of radiation reflected backwards from a set of parallel atomic planes with interplanar
distance d. In this equation, Θ is a small angular deviation from normal incidence to the reflecting planes, and w
is the refraction correction, which is to a good approximation, a small invariant magnitude for a given set of atomic
reflecting planes.29 In the backscattering configuration, the influence of the angular variations δΘ on λ is minimized
due to the Θ2 dependence. If Θ ≤

√
2ǫ, where ǫ is the required relative uncertainty of measurements, a direct relation

between the radiation wavelength and the interplanar distance can be established: λ(1 + w) = 2d.
However, any Bragg reflection and the incident radiation both have finite spectral widths. Only the central wave-

length of the reflected x-rays satisfies equation (1). The precision in measuring the interplanar distance is determined
by several factors: the intrinsic spectral width ∆E of the chosen Bragg reflection, the bandwidth of the incident x-rays
∆EX , and the statistics with which the reflection is measured in the experiment.

III. EXPERIMENTAL

High quality diamond single crystals were preliminary studied using white-beam x-ray topography performed at
X19C beamline of National Synchrotron Light Source (Brookhaven National Laboratory). These studies provided
information on crystal orientation and quality. Locations of stacking faults, dislocations and inclusions were identified.
Four diamond crystals with substantial defect-free areas have been pre-selected for studies of thermal expansion.
Samples C1,C2 and C3 were synthetic high-pressure high-temperature (HPHT) crystals of IIa type from different
manufacturers: Sumitomo (Japan), Element Six (USA) and Technological Institute for Superhard and Novel Carbon
Materials (TISNCM, Russia) respectively. Sample C4 was manufactured by Delaware Diamond Knifes (DDK, USA)
and was of Ia type. Main characteristics of these crystals are given in Table I. Diamond single crystals of type IIa
are classified as those that do not reveal infrared absorption due to boron impurity. The nitrogen impurity content
is low for these crystals (<∼ 1 ppm). Diamonds of type Ia contain nitrogen impurities predominantly in the form of
aggreagates (see, e.g., Ref.30 for details). Nitrogen concentrations vary from ≈ 10 ppm up to 3000 ppm.

X-ray diffraction backscattering experiments were performed at the undulator beamline XOR 30-ID at the Advanced
Photon Source at Argonne National Laboratory. The experimental setup is shown in Fig. 2. A highly monochromatic
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TABLE I: Characteristics of the studied diamond crystals.

Crystal C1 C2 C3 C4

Type IIa IIa IIa Ia

Manufacturer Sumitomo Element Six TISNCM DDK

Orientation (111) (100) (100) (111)

Thickness 0.4 mm 0.4 mm 1.0 mm 0.2 mm

Reflection (995) (13 3 3) (13 3 3) (995)

∆E 2.8 meV 2.7 meV 2.5 meV 3.7 meV

a, Å 3.56712(2) 3.56712(2) 3.56712(2) 3.56716(2)

High-heat-load
monochromator

High-resolution monochromator

(13 3 3)

2

(0 0 1)

10 m

0.5 m

IC
APD

Si6

Si5 Si4

Si3 Si2

Si1 D2
D1

FIG. 2: Experimental setup: A highly monochromatic x-ray beam with an energy bandwidth of ∆EX ≃ 1 meV obtained using
a two-stage monochromatization process is incident on a diamond crystal. In the first stage, application of the high-heat-load
monochromator produces x rays with an energy bandwidth of about 2 eV. In the second stage, the pre-monochromatized
beam passes through the six-bounce high-resolution monochromator (HRM, crystals Si1−6) to achieve the final bandwidth of
≃ 1 meV.31 The beam is reflected from either C (13 3 3) or C (9 9 5) atomic planes for samples with (100) and (111) orientation
respectively. The intensity of the reflected beam is measured using an APD detector placed next to the HRM at a distance
of about 10 m from the sample. The choice of the large distance permits a small angular offset Θ = 1.3 × 10−4 from normal
incidence. The ion chamber (IC) facilitates searching of the reflected beam.

x-ray beam with an energy bandwidth of ∆EX ≃ 1 meV obtained using a consecutive application of a high-heat-
load monochromator and a high-resolution monochromator (HRM) was incident on a diamond crystal. A high-order
reflections C (9 9 5) for crystals with (111) surface orientation and C (13 3 3) for crystals with (100) surface orientation
with spectral bandwidth of ∆E ≈ 3 meV were chosen. The expected theoretical values for the spectral bandwidth
depend on the crystal thickness (see Table I).

The intensity of the reflected x-rays was measured using an avalanche photo diode (APD) placed at a distance of 10
m from the sample. The reflected beam was aligned on the APD as described in appendix A assuring a small angular
offset Θ ≃ 1.3 × 10−4 with an accuracy δΘ ≈ 3.5 × 10−5. This produces a negligible uncertainty in the wavelength
δλ/λ ≈ ΘδΘ ≈ 4.6 × 10−9.

The Bragg energy of exact backscattering for chosen reflections (EH = hc/2d = 23.765 keV) is within an energy
range of a six-bounce HRM operated at the beamline.31,32 The HRM provides a monochromatic x-ray beam with a
bandwidth of ∆EX ≃ 1 meV in the energy range 23.7 - 29.7 keV. The relative spectral resolution of this instrument
is thus ∆EX/E ≃ 4 × 10−8, where E = hc/λ is the photon energy. The precision for the measurement of a relative
change in the central energy (or central wavelength) of a single diffraction peak is expected to be much better due to
good counting statistics.

The HRM involves three pairs of diffracting crystals as shown in Fig. 2. The first pair (Si1 and Si2) consists of two
asymmetric Si crystals using low-index Bragg reflections. The two crystals are coupled by a weak-link mechanism33.
This pair is used to reduce the angular divergence of the x-ray beam to ≃ 0.35 µrad, which is crucial for the
monochromatization. The second pair (Si3 and Si4) is a liquid nitrogen cooled Si channel-cut34 using high-index
Bragg reflections and is the actual monochromator. The third crystal pair (Si5 and Si6) is similar to the first pair and
is used to restore the size of the beam to the original size of the incident pre-monochromatized beam.

Monochromatization of x-rays in the HRM is obtained using properties of Bragg reflections from two crystals in
the dispersive configuration. A relative change of the central wavelength of the monochromatized beam is given by

δλ

λ
=

δψ12

tan θ1 + tan θ2
, (2)

where ψ12 is an angle between reciprocal vectors H1 and H2 of the Bragg reflections of the two crystals, and θ1 and θ2
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FIG. 3: Normalized reflectivity curves from either (995) (C1 and C4) or (13 3 3) (C2 and C3) atomic planes: experimental
curves for the selected region on each of the crystals (filled circles, solid black line); theoretical curves obtained using dynamical
theory of x-ray diffraction for an incident x-ray beam with a bandwidth ∆EX = 1 meV (dashed lines).

are glancing angles of incidence to the first and the second crystal respectively (see, e.g.,29 for details). In our setup,
the crystal pairs Si1,2 and Si3,4 represent the aforementioned two crystals. The angle ψ12 is varied with an increment
as small as 25 nrad.31 Eq. (2) is used to draw a correspondence between the angular scale of the monochromator and
the energy of the resulting monochromatic x-rays.

Initial measurements of reflectivity and the energy width ∆E were conducted at room temperature for different
positions of the x-ray beam on each sample.35 Crystal regions (≈ 0.7 × 0.7 mm2) were selected exhibiting a narrow
and symmetric reflectivity curve. These regions were found to be within defect-free crystal areas in the corresponding
white-beam x-ray topographs. For the sample C4 the reflectivity of any region exhibited substantial broadening due
to a lower crystalline quality. The best available region was chosen which exhibited a single reflectivity peak with
narrowest width. The reflectivity curves of the selected regions for each crystal C1−4 are shown in Figure 3 along
with theoretical curves. The theoretical reflectivity was calculated using dynamical theory of x-ray diffraction for each
diamond crystal of the given sample thickness and an incident x-ray beam with an energy bandwidth of 1 meV. The
full width at half maximum (FWHM) of the experimental curves closely matches the theoretical results except for
the type Ia crystal (C4). For all crystals, variation of the FWHM of the reflectivity curves with temperature did not
exceed 20% which indicates that the probed regions were not developing strain in the course of all the measurements.

After the initial evaluation of the crystal, measurements of the relative change in the lattice parameter were
performed as a function of temperature. The crystal was placed into a cryostat with a beryllium window to allow
passage of the x rays. To obtain data for each experimental point temperature of the cryostat was lowered and allowed
to equilibrate.

IV. RESULTS AND DISCUSSION

The absolute lattice parameter was determined for each sample using a procedure described in appendix B. Eqs. B6
and B7 and experimental uncertainties yield lattice parameter at 298 K: aIIa = 3.56712(2)Å for the crystals of IIa
type and aIa = 3.56716(2)Å for the crystal of type Ia (also given in Table I). Our value for aIIa is in agreement with
the result of Holloway et al.36 (3.56714(5) Å) and that of Yamanaka et al.37 (3.56711(5) Å) for diamond crystals with
natural isotopic abundance. The lattice parameter of the type Ia diamond is larger by (aIa−aIIa)/aIIa ≈ 1×10−5. Sato
et al.9 found a similar increase in the lattice parameter of a nitrogen containing Ib type diamond at room temperature.
The increase was attributed to lattice dilatation due to substitutional nitrogen and was in agreement with the result
of Lang et al.38 for a samle containing 88 ppm nitrogen. The observed agreement in our case suggests a nitrogen
concentration on the same order of magnitude, although, contrary to aggregated nitrogen in Ia type, diamonds of Ib
type contain single substitutional nitrogen as dominating defects.

The linear thermal expansion coefficients of the four crystals were obtained by point-by-point calculation. The
resulting values are plotted in Fig. 4a. The primary source of errors in the experiment is a limited reproducibility
in mechanical motion of the ψ12 angular stage of the HRM. The statistical uncertainty ∆ψ12 = 0.1 µrad was the
maximum observed mismatch between different statistical characteristics for the angular position of the reflectivity
curve (e.g., position of the peak maximum vs. the peak center of gravity). The experimental points were determined
as peak positions of either Gaussian or Lorentzian profile fit to the experimental reflectivity curves measured at
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FIG. 4: (a) Linear thermal expansion coefficients of IIa type diamond crystals C1−3 and Ia type C4 obtained using point-by-
point calculation from the results of the measurements. The notation of the symbols is the same as shown in the legend of the
other figure panel. The solid line represents approximation with the empirical formula. The inset shows region of temperatures
below 100 K in more detail. (b) Deviations of the measured thermal expansion coefficients from the empirical approximation.
The dotted line is the difference between the empirical formula and the best fit to the Debye approximation (T 3).

TABLE II: Coefficients of the empirical formula Eq. 4 obtained using least-squares simultaneous fit of all available data.

b = 3.6(6) × 10−14K−4 T0 = 212(24)K

c = 1.21(3) × 10−11K−3 ∆T0 = 47(5)K

different temperatures.
Using Eq. 2 the statistical uncertainty yields δa/a = 1.2 × 10−8 as relative measurement accuracy of the lattice

parameter. The size of the error bars in Figure 4 is

δα =

√

(

2

∆T

δa

a

)2

+

(

α(T )
δ(∆T )

∆T

)2

(3)

The factor of 2 in the first root-mean-squared component of Eq. 3 reflects the fact that two measurements at
neighboring temperature points T1 and T2 are required to obtain the value of the thermal expansion coefficient α(T )
where T = (T1 + T2)/2. The second component represents uncertainty in determination of the temperature interval
∆T = T2 − T1 between the experimental points. The inset in Fig. 4a shows the low temperature regime T <∼ 100 K
where α(T ) <∼ 5 × 10−8K−1. At these low temperatures the measured thermal expansion coefficient occasionally
(i.e., no particular trend) takes small negative values, however those remain within the experimental uncertainty
(<∼ 4 × 10−9K−1). Thus, negative thermal expansion is not observed in our experiment.

The solid line is an empirical formula

x(T ) = bT 3W (T ) + cT 2(1 −W (T )), (4)

W (T ) =

(

1 + exp
T − T0

∆T0

)

−1

,

that approximates the measured linear thermal expansion coefficients of all four crystals simultaneously in the tem-
perature range from 10 to 295 K. The parameters in Eq. 4 determined using least-squares fitting of all available data
are given in Table II.

Deviations of the thermal expansion from the empirical formula ∆α(T ) are shown in Fig. 4b for each of the four
samples. These deviations do not exceed 3 × 10−8K−1 over the studied temperature range. The dotted line in
Fig. 4b represents the difference between the empirical formula and the best fit of all available data to the Debye
approximation (α(T ) = 4.25(2)× 10−14T 3).

As an accurate representation of the thermal expansion coefficient, Eq. 4 illustrates a breakdown of the Debye
approximation at temperatures about T0 = 212 K, which is much less than ΘD ≃ 2220 K, the Debye temperature for
diamond.39,40 At temperatures <∼ 100 K the thermal expansion coefficient is that of a Debye solid (T 3).
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Our result for the thermal expansion coefficient at room temperature is in agreement with a value recommended
earlier in several generalized studies8,41,42 (α = 1 × 10−6K−1 ± 10 − 15%). The accuracy of our data is superior, i.e.,
α = 1.06(3)× 10−6K−1 at 300 K according to Eq. 4. A number of experimental studies report somewhat higher value
at the room temperature. For example, the result of Sato et al.9 for type IIa diamond is α = 1.6 × 10−6K−1, yet the
accuracy is not explicitly stated.

The presence of impurities, even at small concentrations (<∼ 10 ppm)17,18, may alter the thermal expansion coefficient
of a crystalline solid. Although higher concentration of impurities is expected in the studied Ia type diamond (C4),
this does not result in a measurable change of the thermal expansion coefficient. In our earlier work5 we speculate
that the increase in the thermal expansion coefficient observed for sample C1 at T <∼ 20 K could be attributed to
tunneling effects due to low-concentration impurities/vacancies. However, to this date we have not accumulated
sufficient amount of data to neither prove or disprove this hypothesis.

In the vicinity of the room temperature our finding contradicts results by Sato et al.9 where reduced values of the
thermal expansion coefficient were found for <∼ 100 ppm nitrogen-doped and ≈ 100 ppm boron-doped diamonds with
respect to that of a IIa type specimen. This was attributed to increase in the bulk modulus due to impurities. On
the other hand, Brazhkin et al. found that an appreciable change in the thermal expansion of boron-doped diamonds
occurs only at concentrations > 1%.43 To address this controversy a more detailed ultraprecise experimental study is
required, a study on doped crystals with dopant concentration characterized independently. Nevertheless, the present
study offers an unambiguous ultraprecise result for the thermal expansion coefficient of single crystal diamond with
a small (<∼ 100 ppm) impurity concentrations.

V. CONCLUSIONS

In summary, ultraprecise measurements of the thermal expansion of diamond reveal the absence of a negative
thermal expansion in the low temperature region (T <∼ 100 K) with the measurement accuracy of ≈ 10−9K−1.
We conclude that, as suggested in one of the early experimental studies on the topic by Novikova6, the effect of
negative thermal expansion cannot be considered as a physical phenomenon characteristic of diamond crystals. Thus,
the theoretical results15,16,44–46 are now confirmed by direct measurements. Small negative values and faint trends
reported earlier in literature can be attributed to the lack of measurement accuracy and possibly to presence of
impurities, which can alter the thermal expansion coefficient (e.g., tunneling effects).

Crystals of two different types were studied. Three of the samples were high-quality crystals of IIa type from
different manufacturers and one crystal of Ia type of lower quality and with an increased impurity content. Indirect
measurements of the absolute lattice parameter show an increased value for the Ia type crystal, which is consistent
with earlier observations interpreted as dilatation of diamond by an impurity. The result for the thermal expansion is
essentially the same for all studied samples as approximated with a single empirical formula. Contrary to the findings
of Sato et al.9, no difference in thermal expansion was found for the two different types of diamond crystals with
different concentrations of nitrogen impurities. The empirical law is in agreement with thermal expansion of a Debye
solid (T 3) at low temperatures (<∼ 100 K). The accuracy of the obtained approximation is ≃ 3 × 10−8K−1 in the
temperature range 10 - 295 K. With this accuracy, presence of low-concentration impurities in the Ia type sample
does not alter the thermal expansion coefficient.

Appendix A: Alignment procedure

The cryostat was mounted onto a θ−χ−φ goniometer with χ and θ being the angles in the horizontal and vertical
planes respectively. The ion chamber (IC) positioned at ≈ 0.5 m from the sample facilitated alignment of the reflected
x rays on the APD detector as follows. The goniometer angles χ and θ were consecutively scanned in angular ranges
where the Bragg condition at a chosen energy is fulfilled two times. The backscattering signal was recorded with
the ion chamber. The resulting χ and θ scans, each containing two diffraction peaks are shown in Fig. 5. Angles of
the exact backscattering χ0 and θ0 were estimated as average angular positions of the two diffraction peaks. While
χ = χ0 was chosen, an angular deviation from the exact backscattering Θ ≃ 1.3 × 10−4 was introduced to direct the
reflected beam to the APD detector.

Appendix B: Determination of the lattice parameter

Absolute measurement of the lattice parameter in our experiment required a reference on the energy/wavelength
scale of the HRM (i.e., the angular scale of the cooled channel cut). The reference value was obtained by tuning the
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FIG. 5: Backscattering signal from the ion chamber as a function of: χ (rotation in the plane perpendicular to the diffraction
plane) (a) and the diffraction angle θ (b). At a chosen energy, the Bragg condition is fulfilled two times. For each scan the
angle of the exact backscattering is approximated with the average angular position of the two peaks.

energy of the HRM to backscattering from a Si (12 12 12) analyzer at room temperature. Since Bragg reflections
from Si at different temperatures are involved in the measurement, the knowledge of temperature dependence of the
Si lattice parameter was required to perform the calibration. An empirical formula of Okada and Tokumaru47 was
chosen:

aSi(T ) = aSi
0 [

∫ T

T0

αSi(T )dT + 1],

αSi(T ) = A1(1 − exp[−A2(T − T0)]) +A3T (B1)

where aSi
0 is the lattice parameter at T0 = 273.2 K, A1 = 3.725 × 10−6, A2 = 5.88 × 10−3, A3 = 5.548 × 10−10 and

T1 = 124 K. This formula describes the temperature variation of the lattice parameter for high resistivity Si (30 - 100
kΩcm) and is applicable in the temperature range from 120 K to 1500 K. In the temperature range 120 - 300 K the
formula is based on experimental data of Lyon et al.48.

The Bragg law was applied to backscattering from the analyzer crystal and to the backscattering from a diamond
crystal. In each of these cases the wavelength of the incident radiation was expressed using the Bragg law in the
general form applied to the working reflection of the channel cut:

λ(1 + w2) = 2d2 sin θ2 (B2)

where d2 is the interplane distance at 124 K, θ2 is the glancing angle of incidence to the atomic planes and w2 is the
refraction correction.

Backscattering from the atomic planes with the interplanar distance dSi of the Si analyzer yields:

λ(1 + wSi) = 2dSi(1 − Θ2
Si/2) (B3)

Here, wSi is the refraction correction and ΘSi is the angular deviation from the exact backscattering.
Initially, the HRM was tuned to the backscattering from the Si (12 12 12) planes of the analyzer. The output

intensity was maximized and the backscattering signal was recorded while scanning θ2. The backscattering signal
reached its maximum at a certain angular position of the θ2 motor which we denote as ρ1. Under these conditions,
the region of wavelengths selected by the HRM is centered at λ defined by Eq. B2 and this wavelength also satisfies
Eq. B3. Thus, the unknown glancing angle of incidence θSi

2 at which the analyzer backscattering is observed can be
related to characteristics of a Si crystal:

sin θSi
2 =

dSi

d2

1 + w2

1 + wSi

(1 − Θ2
Si/2) (B4)

Similarly, the HRM was tuned to the diamond reflection of interest and the maximum of the backscattering signal
was observed at the motor position ρ2. Application of the Bragg law as in the previous case yields the following
expression for the interplanar distance of the diamond crystal:

dC =
d2 sin θC

2

1 − Θ2
C/2

1 + wC

1 + w2

(B5)
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where θC
2 is the glancing angle of incidence for the channel cut at which the HRM is tuned to the diamond backscat-

tering, wC is the refraction correction and ΘC is the deviation from the exact backscattering. The difference between
the actual θ2 angles corresponding to backscattering from Si and diamond is equal to that of the motor positions:
θC
2 − θSi

2 = ρ2 − ρ1 = ∆ρ. Using this relationship, we calculate the interplanar distance for diamond from the Si
crystal characteristics of and the known experimental parameters:

dC =
d2 sin[θSi

2 + ∆ρ]

1 − Θ2
C/2

1 + wC

1 + w2

(B6)

The lattice parameter was obtained as:

a = dC

√

n2 + k2 + l2, (B7)

where n, k, l are the Miller indices of the studied reflection.
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