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Angle-resolved photoemission spectroscopy measurements on the recently discovered superconduc-
tors in the KFe2Se2 family with critical temperatures up to ∼ 33K suggest that no Fermi pockets of
hole character centered on the Γ point of the Brillouin zone are present, in contrast to all other known
ferropnictide and ferrochalcogenide superconductors. Using a fluctuation exchange approximation
and a 5-orbital tight-binding description of the band structure, we calculate the effective pairing
interaction. We find that the pairing state in this system is most likely to have d-wave symmetry
due to pair scattering between the remaining electron Fermi pockets at wave vector q ∼ (π, π), but
without any symmetry-imposed nodes for the given Fermi surface. We propose experimental tests
of this result, including the form of the resonance spectrum probed by inelastic neutron scattering.
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Introduction. Recently a new family of Fe-chalcogenide superconductors AxFe2−ySe2 (A=K,Ca) with Tc ∝ 30K
has been discovered1. These compounds are heavily electron doped, such that there are only electron Fermi surface
pockets, according to angle-resolved photoemission (ARPES) studies2–4. The usual argument5–7 leading to the most
popular “s±” gap structure in the Fe-based superconductors requires a Γ-centered pocket to enhance spin fluctuation
pairing with wave vector Q ∼ (π, 0) in the unfolded (1-Fe) Brillouin zone. In the absence of these hole pockets, which
were present in the previously studied Fe-based superconductors, a gap of the s± type is unlikely. Thus the question
of the pairing mechanism and the structure of the gap in these materials remains open. One possibility is that the
pairing interaction is associated with the exchange of spin-fluctuations, as considered for the older materials6–11, but
that the effective interaction peaks at a wave vector Q = (π, π) rather than at (π, 0). In this case one would expect
that the gap would have B1g (d-wave) symmetry, changing sign between the (π, 0) and (0, π) electron Fermi surfaces.
Since there are no portions of the Fermi surface along the (π, π) direction in the Brillouin zone, there is no symmetry
reason in a 2D d-wave gap to have nodes.

The situation reported by ARPES presents an interesting new theoretical challenge in these systems, namely the
calculation of the possible types of superconductivity arising in the presence of small pockets of only one type of
carrier. The proximity of d-wave pairing to the dominant s± pairing channel in the pnictides generally was discussed
in earlier spin-fluctuation theories6,7, and its likelihood in the situation with pockets of one type was mentioned briefly
in earlier work6,12, but was not explored seriously. Recently, Thomale et al.13 showed that d-wave pairing was likely in
the 3K superconductor KFe2As2, which is believed to possess only hole pockets. The chalcogenide analog KxFe2−ySe2

is of considerable interest not only because the opposite situation obtains, but because the critical temperature is an
order of magnitude higher.

If superconductivity is possible with only one type of pocket, there are in addition two qualitatively different
situations to address: one in which the hole and electron bands overlap in energy, but only one pocket type is present
due to heavy doping. In addition, a new type of situation is suggested by ARPES, one in which an energy gap
exists between two bands. Doping may then lead to a transition between two different symmetry superconducting
states, or from a superconducting state with one symmetry, to an insulating state, and then to another symmetry
superconductor. These different types of gap symmetry transitions as a function of doping will be important to
explore.

The main results of our paper are obtained from a fluctuation exchange RPA calculation for a five orbital tight
binding model based on an LDA calculation for these Fe chalcogen compounds. Within this model, using typical
interaction parameters, we determine the structure of the gap. We then discuss ways in which the nodeless d-wave
state might be distinguished from ordinary s-wave super- conductivity, focussing particularly on the neutron scattering
response that would be expected in such states.

Model. In the following, we consider a general two-body onsite interaction Hamiltonian

H = H0 + Ū
∑

i,ℓ

niℓ↑niℓ↓ + Ū ′
∑

i,ℓ′<ℓ

niℓniℓ′

+J̄
∑

i,ℓ′<ℓ

∑

σ,σ′

c†iℓσc†iℓ′σ′ciℓσ′ciℓ′σ (1)

+J̄ ′
∑

i,ℓ′ 6=ℓ

c†iℓ↑c
†
iℓ↓ciℓ′↓ciℓ′↑

where the interaction parameters Ū , Ū ′, J̄ , J̄ ′ are used in the notation of Kuroki et al.6. The tight-binding Hamiltonian
H0 is fitted to the full DFT band structure of the parent compound KFe2Se2, calculated within a plane wave basis
set with ultrasoft pseudopotentials using the tools of the quantum espresso package14. A Wannier projection15 onto a
10-orbital Fe d basis allows the determination of the position and the orbital composition of the energy bands that can
then be fitted by a reduced 5-orbital tight-binding model similar to the one found for the isostructural BaFe2As2

16.
Considering the recent ARPES resuls on K0.8Fe1.7Se2 reported by T. Qian et al.2 we have artificially enhanced

the splitting between the two dxz/dyz bands and the two dxy bands at the Γ point of the backfolded Brillouin zone
by changing the nearest neighbor hopping tx(dxz, dxz) by -0.064 eV and tx(dxy, dxy) by 0.072 eV, respectively. This
allows us to push the hole pockets below the Fermi level without changing the orbital character of the respective
bands (see Fig. 1). The effect of a simultaneous downward shift of the hole bands together with an upward shift of
the electron bands, which we have imposed artificially on the electronic structure,may be related to the downward
renormalization of the pocket sizes due to interband interactions, as discussed in Ref.17. We have also adjusted the
chemical potential to account for the reduced electron doping of KxFe2−ySe2 with x = 0.8 and y = 0.3 (0.1 electrons
per Fe) compared to the parent compound with x = 1 and y = 0 (0.5 electrons per Fe). In Fig. 2 the Fermi surface
for µ = EF − 0.2 is shown with a color encoding of the majority orbital character. Note that the square Fermi surface
pockets found here allow for the possibility of nesting at vectors away from (π, π).
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FIG. 1. (Color online) The 5-orbital fit to the LDA band structure with colors indicating the majority orbital character
(red=dxz, green=dyz, blue=dxy, orange=dx2

−y2 , and magenta=d3z2
−r2). The gray points indicate the 10-orbital Wannier fit

to the full DFT band structure. The splitting of the dxz/dyz and the dxy bands at Γ has been enlarged to remove the hole
pockets.

To determine the pairing symmetry arising from a spin fluctuation exchange picture, we define the following
scattering vertex Γ(k,k′) in the singlet channel,

Γij(k,k′) = Re
∑

ℓ1ℓ2ℓ3ℓ4

aℓ2,∗
νi

(k)aℓ3,∗
νi

(−k) (2)

× [Γℓ1ℓ2ℓ3ℓ4(k,k′, ω = 0)] aℓ1
νj

(k′)aℓ4
νj

(−k′)

Here the momenta k and k′ are restricted to the electron pockets k ∈ Ci and k′ ∈ Cj where i and j label either the
β1 or the β2 Fermi surface, and al

ν(k) are the orbital-band matrix-elements. The orbital vertex functions Γℓ1ℓ2ℓ3ℓ4

represent the particle-particle scattering of electrons in orbitals ℓ1, ℓ4 into ℓ2, ℓ3 and are given by

Γℓ1ℓ2ℓ3ℓ4(k,k′, ω) =

[

3

2
ŪsχRPA

1 (k − k′, ω)Ūs+

1

2
Ūs −

1

2
Ū cχRPA

0 (k − k′, ω)Ū c +
1

2
Ū c

]

ℓ1ℓ2ℓ3ℓ4

(3)

The interaction matrices Ūs and Ū c in orbital space are built from linear combinations of the interaction parameters.
Their explicit form can be found e.g. in Ref.12. Here χRPA

1 and χRPA
0 denote the spin-fluctuation contribution and

the orbital-fluctuation contribution to the RPA susceptibility, respectively.
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FIG. 2. (Color online) The Fermi surface with β1 and β2 sheets of the 5-orbital tight-binding fit with µ = EF − 0.25. The
colors represent the major orbital character of the Fermi surface with the same color code as in in Fig. 1.

The symmetry function g(k) of the pairing state can then be found by solving an eigenvalue problem of the form

−
∑

j

∮

Cj

dk′
‖

2πvF (k′
‖)

Γij(k,k′)g(k′) = λg(k) (4)

where the eigenfunction g(k) corresponding to the largest eigenvalue λ gives the leading pair instability of the system.

In the following we parameterize the superconducting gap in low-order harmonics and calculate the susceptibility
in the symmetry-broken state as18,19

χ0
rstu(q) = −

1

2

∑

k,µν

Mµν
rstu(k,q) (5)

×{Gµ(k + q)Gν(k) + Fµ(−k − q)F ν(k)}

where the generalized momenta q = (q, ωm) and k = (k, ωn) comprise both the momenta and the Matsubara frequen-
cies. The normal and anomalous Green’s functions are given as

Gµ(k) =
iωn + ξν(k)

ω2
n + E2

ν(k)
, Fµ(k) =

∆(k)

ω2
n + E2

ν(k)
(6)

Here the matrix elements connecting band and orbital space determine

Mµν
rstu(k,q) = ar,∗

µ (k + q)as
ν(k)at,∗

ν (k)au
µ(k + q) (7)

and the quasiparticle energies for a band ν are given as Eν(k) =
√

ξ2
ν(k) + ∆2(k). The inelastic neutron intensity is

proportional to the imaginary part of the spin susceptibility in the symmetry-broken state

χ(q, ω) =
∑

rt

χRPA
rrtt (q, ω) (8)
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FIG. 3. (Color online) The real part of the RPA enhanced static susceptibility for U = 0.96, J = U/4 in the normal state
showing a broad peak at q = (π, π).

The multiorbital RPA enhanced spin susceptibility is defined by a Dyson-like equation

χRPA
rstu (q, ω) =

{

χ0(q, ω)
[

1 − Ūsχ0(q, ω)
]−1

}

rstu
(9)

with interaction matrices Us as discussed in Ref.12.
Results. The absence of the hole pocket around Γ in the unfolded 1 Fe per unit cell Brillouin zone removes the

dominant q = (π, 0) nesting that is characteristic of the LaOFeAs and the BaFe2As2 compounds and is responsible
not only for the stripe-like SDW instability of the undoped parent compounds but also for the sign changing s-wave
superconducting state as first pointed out by Mazin et al.5 and later consistently reported by RPA, fRG and FLEX
calculations for the doped superconducting materials6,7,9–11. With only the electron pockets present, the real part
of the susceptibility reflecting the nesting properties of the electron pockets around (π, 0) and (0, π) takes a broad
plateau-like maximum around q = (π, π) that is bordered by two weak peaks at q ≈ (π, 0.625π) and q ≈ (0.625π, π)
resulting from an enhanced scattering between the flat top and bottom parts of the β1 and β2 sheets respectively
(compare Fig. 2). Here we note that the broad flat maximum corresponding to the nesting of the two electron pockets
is in contrast to the sharp peak features expected from the nesting of an electron and a hypothetical hole pocket. The
orbital (charge) susceptibility not shown here has no pronounced momentum space structure and does not approach
an instability for the parameters chosen.

In Fig. 4 we show the leading d-wave eigenvalue as a function of U for a Hund’s rule coupling J = U/4, a pair
hopping term J ′ = J and an inter-orbital Coulomb interaction U ′ = U −2J where the latter two are fixed by the local
spin-rotational invariance. It reaches an instability around U = 1 corresponding to a nodeless superconducting gap on
the electron sheets as shown in the inset to Fig. 4. Similar to what was found for the systems with hole pockets, the
gap is fairly anisotropic in contrast to the isotropic gap observed in recent ARPES studies2–4. Due to the I4/mmm
symmetry of the crystal, the backfolding of the bands from the effective BZ of the 1 Fe unit cell to the real BZ of the
2 Fe unit cell leads to two concentric electron pockets of different size around the M point of the backfolded zone.
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FIG. 4. The leading d-wave eigenvalue as a function of the intra-orbital interaction strength U . Insert: the symmetry function
g(k) for U = 0.96, J = U/4 along the electron pockets β1 (red) and β2 (blue) as a function of the winding angle θ parameterizing
the Fermi vector k relative to the center of each pocket. A parameterized fit of g(k) used in the neutron scattering calculation
is shown as the solid line.

Due to the origin of the two concentric electron pockets in the backfolded BZ from different positions in the unfolded
zone, the superconducting gap exhibits a phase difference of π between them but respects the overall B1g symmetry.

The present calculation was performed using the 1-Fe Brillouin zone representation of the band states, which
neglects the hybridization between the two electron pockets backfolded onto one another via the body-centered cubic
symmetry operation translation by (π, π, π). It is interesting to ask how the result will change if this hybridization or
spin-orbit coupling is included. In the simplest case, if the unhybridized pockets do not cross at kz = 0 or ±π when
backfolded, the hybridization will affect only the states near kz = ±π/2, leading to a horizontal node if the pairing
interaction is relatively kz independent, as we have found in other studies16. If the band structure involves crossings
at kz = 0 or ±π, nodes with some vertical character may be formed on the electron sheets. In contrast to nodes
driven by the dominant point group symmetry microscopic 2D interaction, however, these nodes are a consequence
of the crystal space group symmetry and their strength is proportional to the hybridization between the 1-Fe bands.
The density of associated quasiparticle excitations is therefore expected to be weak. Further calculations in the 2-Fe
zone are underway to confirm this.

To calculate the neutron response we parametrize the superconducting gap as ∆(k) = ∆0g(k) with

g(k) = (cos kx − cos ky) + 1.62(cos2kx − cos 2ky) (10)
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FIG. 5. (Color online) The imaginary part of the RPA-BCS dynamic spin susceptibility versus ω for q = (π, 0.625π) (a) and
q = (π, π) (b) for the normal, d-wave and s-wave states. The interaction parameters were chosen as U = 0.96 and J = U/4.

This fit is shown as the solid line in the inset of Fig. 4. In Fig. 5 we show the imaginary part of the RPA enhanced
susceptibility in the d-wave state for a momentum transfer of q = (π, 0.625π) in (a) and q = (π, π) in (b) in the
1Fe/unit cell Brillouin zone. Here the low energy spectral weight is suppressed upon the opening of the superconducting
gap and is transferred to higher energies. The pronounced resonance peak around ω = 2∆ appears only for a relative
sign change of the gap on the two electron pockets such that the coherence factor 1−∆(k)∆(k + q)/(E(k)E(k + q))
does not vanish.

There are proposals that an s-wave gap may arise from the orbital term in Eq. 3 when local Fe phonon modes are
included20,21. In Fig. 5 we have added results for an isotropic s-wave gap taken equal to the average magnitude of the
d-wave gap for comparison. While an s-wave gap could well have anisotropic structure, we expect that the difference
in χ′′(q, w) between a B1g and an A1g gap will be significant. In particular if the orbital fluctuations are dominant, the
response in the magnetic scattering channel will be further suppressed compared to the d-wave response illustrated
in Fig. 5.

Conclusions. We have argued, based on an RPA treatment of a generalized multiorbital Hubbard model, that
the absence of the Γ-centered hole pocket in the KFe2Se2 superconducting materials should lead directly to a strong
d-wave pairing instability without nodes on the remaining M -centered electron pockets. The appearance of d-wave
pairing in this family of unconventional superconductors in the limit when only one pocket is present would be strong
support for pairing by spin fluctuations in these systems. It appears to us that the measurement of a peak in the
inelastic neutron scattering spectrum near (π, π) would be the easiest way to test this prediction.

Since the inelastic neutron scattering is mostly sensitive to the Fe lattice, it is possible to distinguish with this
technique between the low q and the q = (π, π) scattering in the unfolded 1Fe/unit cell Brillouin zone22, although
both signals would be backfolded on the Γ point in the 2Fe/unit cell relevant e.g. for the interpretation of the angle
resolved photoemission results. Therefore the proposed experiment can provide a direct measurement of the q vector
dominating the repulsive interaction and eventually leading to a sign change of the superconducting gap on Fermi
surface regions connected by q.
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In a recent preprint using a functional renormalization group approach, F. Wang et al. also conclude that the
leading pairing instability of a KxFe2−ySe2 model occurs in the dx2−y2 channel23.
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