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We study properties of phase transitions of 2D superconductor liquid crystal phases, and analyze
the competition between the recently proposed Pair Density Wave (PDW) and nematic 4e super-
conductor (4eSC). Nematic fluctuations enhance the 4eSC and suppress the PDW phase. In the
absence of lattice effects, the PDW state exists only at T = 0 and the low temperature phase is a
nematic 4eSC with short ranged PDW order. A geometric description of the 4e SC is presented.

A beautiful series of experiments1,2 have shown that
the cuprate superconductor La2−xBaxCuO4 exhibits a
remarkable dynamical layer decoupling behavior near the
x = 1/8 “anomaly”. In this regime the onset of static
charge and spin stripe order coincides with the develop-
ment of an extreme transport anisotropy. Similar effects
have been seen in stripe-ordered La1.6−xNd0.4SrxCuO4

3,4

and in the magnetic-field induced stripe-ordered phase of
La2−xSrxCuO4

5.

The remarkable layer-decoupling effect suggests that
the inter-layer Josephson coupling is somehow frustrated
when SC order is forced to coexist with charge and/or
spin stripe order. It was proposed by Berg et al6–8,
that this effect can be understood naturally by postu-
lating that the SC order also becomes “striped” and that
all three orders rather than competing are intertwined.
In the resulting striped SC state, a pair-density-wave
(PDW), the (unidirectional) SC pair field oscillates in
space with an ordering wave vector Q. The PDW has
the same structure as an “Fulde, Ferrell, Larkin, Ovchin-
nikov” state, (FFLO)9,10 except that in this case the spa-
tial modulation of the Cooper pairing is not due to Fermi
surfaces mismatched by a (Zeeman) magnetic field (as in
the standard FFLO scenario). Instead, the PDW arises
in a strong coupling regime where the BCS mechanism
is not effective: the modulation of the SC state is due to
the same physics behind the formation of inhomogeneous
states in doped Mott insulators11,12. FFLO states have
been proposed to occur in imbalanced cold atom Fermi
systems with different species13 and in heavy fermions
systems when different orbitals hybridize under external
pressure14. In Ref. 15, the phase diagram of this problem
was studied deep in the (Ising) nematic phase assuming
that the coupling to the lattice is so strong that it com-
pletely suppresses the fluctuations of nematic (orienta-
tional) order.

In this letter, we consider the role of nematic fluctu-
ations on the structure of the phase diagram associated
with the PDW state, and on the properties of its phases.
Here we focus on the interplay between nematic, PDW
and the charge 4e SC which we will show also to have
nematic character. We consider different regimes charac-

terized by the strength of the coupling between the orien-
tational (nematic) degrees of freedom of the PDW with
the underlying lattice, all the way to the decoupled case
where the system has a continuous rotational invariance.
In the absence of a coupling to a lattice it is not possi-
ble to break spontaneously translation invariance in 2D,
and a 2D continuum smectic is always thermally melted
by proliferation of (finite energy) dislocations16. Thus,
the topology of the phase diagram of the PDW state is
strongly affected by the coupling to the lattice.

The PDW is an anisotropic quantum liquid crystal
state that breaks the point group symmetry of the lat-
tice as well as translation and global gauge invariance.
We have constructed a phenomenological theory of the
PDW with a structure reminiscent of the McMillan-de
Gennes theory of the nematic/smectic transition of clas-
sical liquid crystals, with several significant differences:
a) it involves the order parameter of the charge 4e SC
and its geometric coupling to nematic order, b) the ne-
matic order has, in addition to the standard elastic Frank
free energy17, a coupling that breaks the continuous rota-
tional invariance down to the (Ising) point group symme-
try of the lattice. The strength h of the lattice coupling
defines a temperature Th, below which, the coupling to
the lattice breaks the continuous rotational invariance
down to the point group symmetry (say Z2) of the lat-
tice, forcing the director to take only one of two perpen-
dicular orientations. In electronic nematic phases, such
as those occurring in strongly correlated systems, lattice
effects are not normally small. Typically nematic order
occurs on mesoscopic scales, and the effective value of h
can be smaller than the other couplings. As temperature
increases, Ising domain walls proliferate and, above Th

where the domain wall tension vanishes, the Ising order
disappears and the system becomes invariant under 90◦

rotations. We discuss the behavior and role of the topo-
logical excitations of this system as h is varied from 0 to
large values.

The qualitative structure of the phase diagrams is sum-
marized in Figs.1, 2, and 3. In the regime in which
Th is large (Fig.1a), the nematic is the ordered phase
with higher Tc. In this regime the physics is qualita-
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FIG. 1. Schematic 2D phase diagrams for high Th: PDW/N-
SC, Nematic, CDW are KT transitions. The Isotropic-
Nematic line is an Ising transition and the Isotropic-CDW
is first order.
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FIG. 2. Schematic 2D phase diagram for low Th. Labels are
the same as in Fig.1.

tively similar to that of Ref.15. The main effect of ne-
matic fluctuations is to soften the smectic stiffness (κ)
to κeff = κ/(1 + κ|Q|2/h) where Q is the the smectic
ordering wave vector. As the strength of the coupling
constant h is reduced, the effective CDW stiffness κeff

gets weaker, the PDW portion of the phase diagram
shrinks and the region of N-SC grows. There is also
an isotropic/Ising-nematic transition that takes place at
temperatures higher than the SC transition. For large
κeff , as the temperature T increases the PDW phase may
melt (or may not) by a direct PDW to isotropic tran-
sition or through an intermediate CDW depending on
the sign of the coupling between the order parameters in
the Landau theory. The PDW to nematic superconduc-
tor (N-SC), CDW and nematic, are Kosterlitz-Thouless
(KT) transitions, mediated by unbinding of double dislo-
cations, vortices or half-vortices-single dislocations13,15,18

respectively. The direct CDW/isotropic transition is
likely first order.

For lower values of Th we have a softer nematic (Fig.2).
Still, Th is an upper bound for the Tc of the PDW since,
above this temperature, no translational order is possible.
Similarly, the CDW phase is also absent.

In the extreme case of a system decoupled from the
underlying lattice, Th = 0, the otherwise logarithmically

divergent dislocations have now a finite energy and pro-
liferate at all temperatures. In this case, the PDW phase
occurs only at T = 0 as shown in Fig. 3. Provided ρs

remains finite, in this regime the non-SC nematic phase
also cannot exist since, as we will see below, in the N-
SC vortices are strongly bound to disclinations, and thus
proliferate simultaneously. Hence, at Th = 0 the nematic
phase disappears. In addition, a tetracritical point is
now possible: nematic and SC order are decoupled and
the N-SC is a coexistence phase.
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FIG. 3. Schematic 2D phase diagrams for Th = 0: all lines
are KT transitions. Labels are the same as in Fig.1.

a. Order parameters and Landau theory: The PDW
state has two complex order parameters ∆±Q(r) ∼
|∆| exp(iθ±Q(r)), with Q = Qn and n is the director
of the nematic order. We now define the SC phase field
θ = (θ+Q + θ−Q)/2 and the smectic phase field ϕ =
(θ+Q−θ−Q)/213,15,18. In this work, unlike Ref.15, the di-
rector field n = (cos α, sin α) is allowed to fluctuate. The
coupling of the orientational degree of freedom n̂ couples
to the lattice through a potential V (n) = −(h/8) cos(4α)
with h > 0, that reduces the continuous rotational sym-
metry to a discrete subgroup, i.e. Z2 for a square lat-
tice. For h 6= 0 the Ising nematic has a critical temper-
ature Th > 0, above which the Ising degrees of freedom
disorder19,20. The structure of the phase diagram de-
pends on the values of Th, the superconductor stiffness
ρs and the CDW stiffness κ.

Aside from standard quadratic and quartic terms in
the PDW order parameters ∆±Q, the CDW order pa-
rameter ρK, and the charge 4e N-SC order parameter
∆4e, the PDW free energy contain trilinear couplings
that relate all the order parameters leading, in particu-
lar, to the relation K = 2Q, and the PDW order induces
a uniform charge 4e N-SC8. The phase fluctuations of
the CDW and the 4eSC are locked to 2ϕ and 2θ respec-
tively. In addition, we consider a nematic order parame-
ter, the symmetric traceless tensor N̂ij = N(n̂in̂j−δij/2)
where i, j = 1, 2 for (x̂, ŷ) orientations respectively. For
T << Th, Nij has essentially two values ±N character-
izing an Ising symmetry. The competition between the
nematic and the 4e SC is governed by the quartic term
βTrN2|∆4e|

2. If β < 0, the condensation of one phase
enhances the other. For Th > T SC

c a multicritical point
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may occur.

b. Nematic-SC couplings: Local nematic order can
be regarded as a fluctuating metric gij = δij + λNij de-
scribing the local anisotropy of the stiffness terms of the
free energy

Fd =

∫

dx2
√

detg gij
{

(

Dcdw
i ρK

)∗ (

Dcdw
j ρK

)

+ (1)

+ (Dsc
i ∆±Q)∗

(

Dsc
j ∆±Q

)

+
(

D4e
i ∆4e

)∗ (

D4e
j ∆4e

)

}

where the covariant derivatives are given by

Dsc
i = ∇i − i2eAi ± iQ δni (2)

Dcdw
i = ∇i + i2Q δni (3)

D4e
i = ∇i − i4eAi (4)

Here, A is the electromagnetic vector potential, and
δn = n−n0 is the director fluctuation about an arbitrary
direction n0. The ± sign in Eq.(2) depends on whether
the covariant derivative acts on ∆±Q respectively.

The effect of nematicity is, in several aspects, very sim-
ilar with the effect that a curved surface has on an or-
der parameter21: due to geometrical frustration, discli-
nations can be regarded as representing an intrinsic cur-
vature of the geometry whose sign is the sign of its topo-
logical charge of the disclination22. From Eqs.(1), (3)
and (4), the SC phase field couples to the nematic order
through the metric, whereas the CDW order parameter
also couples to the nematic in the standard way through
the covariant derivative17,23. Thus, vortices and discli-
nations have an attractive (“gravitational”) interaction.

The way that δn enters in the covariant derivatives
resembles the McMillan-DeGennes17,24 theory for the
smectic-nematic phase transition in classical liquid crys-
tals. For small rotations, α << 1, δn·n0 = 0+O(α2) and
the metric only represents a rigid anisotropy. At this level
of approximation, smectic and SC degrees of freedom
are only coupled by topological constraints15. This limit
is suitable to describe smectic-nematic phase transition.
However, to study the properties of the phase, we need
to consider the full structure of δn. Also, note that in
Eqs. (3) and (4), the “gauge fields” couple with the twice
the value of the smectic and the electric charge. This
is a direct consequence of global translation and gauge
invariance that force the CDW wave vector K = 2Q,
and the superconductor charge to be 4e. The factor
det(g) = 1 − λ2N2/4 is important near the isotropic-
nematic phase transition where N fluctuates strongly.

c. PDW fluctuations: Deep in the PDW phase, we
take the amplitudes of the order parameters |∆±Q| = ∆,
|∆4e| and |ρK| = ρ as constants. The low energy physics
is governed by SC (θ) and smectic (ϕ) phase fluctuations.
Since the temperature T << Th, n̂0 points in the direc-
tion α = 0 or α = π/2. The potential V (n̂0 +δn) induces

a “mass” term ∼ h|δn|2. From Eq. (1) we obtain,

F =

∫

d2x
{ρs

2
gij (∂iθ − 2eAi)(∂jθ − 2eAj)

+
κ

2
gij (∂iϕ + Qδni)(∂jϕ + Qδnj)

+ K1 (∇ · δn)
2

+ K3 (∇× δn)
2
+ h|δn|2

}

(5)

where ρs = ∆2 + |∆4e|
2 is the superfluid stiffness of the

4e SC, and κ = ∆2 + ρ2 is the CDW stiffness; K1 and
K3 are the nematic Frank constants17. In what follows
we will assume that both ρs > 0 and κ > 0 and that
they never become small. We can now safely integrate
over the massive nematic fluctuations. Let n0 be in the
x direction. By expanding δn to leading order in α, we
obtain in the long wavelength limit

F =

∫

d2x
{

ρs

(

λs (∂xθ)2 + λ−1
s (∂yθ)2

)

+ κeff

(

λc(∂xϕ)2 + λ−1
c (∂yϕ)2

)}

(6)

For simplicity, we have set A = 0; λc and λs are (finite)
anisotropies. The low energy physics is governed by two
anisotropic XY models where the effective CDW stiffness
is renormalized to κeff = κ/(1 + κ|Q|2/h). Hence, at low
temperatures, the nematic fluctuations soften the CDW
stiffness and the part of the phase diagram of the 4e N-SC
is enhanced while that of the PDW shrinks.

In the limit Th ≫ T , Berg et al15 derived a phase di-
agram for the thermal melting of the PDW state. In
this regime, the phase transitions are driven by the KT
mechanism of unbinding (in this case) double disloca-
tions, vortices or half vortices bounded to single disloca-
tions (see also Refs.13,25). However, for T & Th not all
of these processes are possible since in this regime the
free energy of the dislocations of the smectic becomes
finite and thus always proliferate16. In this case, dis-
locations get an energy Ed ∼ ln(ξ/a) where a is the
core of the defect and ξ is a typical length scale con-
trolled by the competition between the Frank constant
K3 and the CDW stiffness κ, ξ ∼

√

K3/κ. Thus, if Th

is low enough, all smectic orders (PDW and CDW) are
destroyed and only nematic and the charge 4e N-SC are
possible. Thus, the PDW state can only exist for T < Th

and, if Th → 0, the PDW is suppressed at all T > 0.
At T > 0 we have short ranged smectic correlations
〈∆+Q(x)∆∗

+Q(0)〉 ∼ exp (−|x|/ξ) cos(2Q · x), while the
correlations of the uniform charge 4e N-SC exhibit quasi-
long-ranged order 〈∆4e(x)∆∗

4e(0)〉 ∼ 1/|x|η(T ), with a
non-universal temperature-dependent exponent η(T ).

d. Nematic superconductor: Deep in the 4e N-SC
phase, above the PDW melting, the free energy becomes

F =

∫

d2x

{

K|∇α|2 + ρs|∇θ|2 +
ρsN

2
(n · ∇θ)

2

}

(7)

where we have set K3 = K1 = K. The last term in Eq.(7)
is due to the coupling between the SC currents and the
nematic fluctuations: NijJiJj , where J = ρs∇θ is the SC
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current. This coupling is non-polynomial in the angle α
of the nematic order, since n = (cosα, sin α). In order
to minimize the free energy, the current should be lo-
cally perpendicular to the director n. We find two types
of topological configurations that minimize Eq.(7): a)
isolated disclinations, and b) (half) vortices bounded to
disclinations, in such a way that J·n̂ = 0 at all points. For
instance the disclination ni = xi/r and ∂iθ = ǫijxj/r2 is
one such configuration. Vortices and disclinations have
an attractive logarithmic interaction, whose sign is inde-
pendent of the sign of their topological charges. There-
fore, once again provided ρs > 0 is that is never small, the
disordering of N-SC can only be produced in two ways:
a) by unbinding disclinations, which restores isotropy but
does not affect the SC (the N-SC/SC transition), or b) by
the proliferation of (half) vortices tightly bound to discli-
nations (the N-SC/normal transition). The coupling to
the lattice anisotropy h changes this scenario. For h > 0
the nematic transition becomes Ising like and it is driven
by the proliferation of domain walls, not by disclinations.
Hence vortices are no longer bound to disclinations. This
leads to the phase diagram Figs.1-3. Notice that a non-
SC nematic can only occur (in this regime) if ρs → 0.

e. Quasiparticles of the 4e N-SC: Within a
Bogoliubov-deGennes approach we expect that a spin-
singlet bilinear of quasiparticle Fermi fields to couple
linearly to the pair field ∆(r). In a conventional SC,
BCS theory predicts that coupling to lead to a gap in
the quasiparticle spectrum once the pair field acquires
an expectation value. However, in the N-SC only the
charge 4e field has an expectation value. This order
parameter is equivalent to the condensation of a quartet

of fermionic quasiparticles. Alternatively, we can view
the charge 4e N-SC as a state in which a composite

operator of pair fields has an expectation value, i.e. a
pairing of pairs. Thus, in the N-SC the pair field remains
strongly fluctuating and uncondensed. Since the pair
field couples directly to the Bogoliubov quasiparticles,
unlike a conventional (paired) SC, there is no net energy
gap in the N-SC. Nevertheless, the strongly fluctuating
pair field of this phase strong scatters the quasiparticles
resulting in a reduction of their spectral density, an
effective “pseudogap”.

f. External currents: Consider a current J in the
4e N-SC state. The coupling between nematic and SC
currents is given by a term of the free energy of the
form (ρs/2) Tr(N̂ Ĵ), where N̂ is the nematic tensor and

Ĵij = JiJj −
1
2J2δij . Thus, a constant current 〈J〉, acts

as an external nematic field that explicitly breaks con-
tinuous rotational symmetry. This term competes with
the potential V (n). Integrating over nematic fluctua-
tions and considering, as before, n̂0 along the x direc-
tion and expanding δn(α) to O(α(x)2) we obtain the
effective strength of the symmetry breaking potential,
heff = h + γ2(J

2
y − J2

x). The effect of a current along the
director is to soften the smectic order. In this way, it
may be possible to tune the effective CDW stiffness κeff

and the relative weight of PDW, 4e N-SC and nematic

phases.
Here we discussed the phase diagram for PDW/N-SC

phase transitions as the strength of coupling to the un-
derlying lattice is varied. So far the only known physical
system in which a case for PDW order can be made is the
cuprate La2−xBaxCuO4 near doping 1/8, which would
put it on the right hand side of Fig.1. The observation
of “fluctuating stripe order” and nematic order in under-
doped cuprates26 leads us to suspect that a fraction of
these phase diagrams of Figs.13 may possibly hide in the
pseudogap regime, including a form of charge 4e N-SC
order. These phases may be masked by the effects of
disorder as “glassy” regimes.
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