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A recent work1 demonstrated, for an ideal spinless p+ip superconductor, that Majorana end-states
can be realized outside the strict one-dimensional limit, so long as: 1) the sample width does not
greatly exceed the superconducting coherence length and 2) an odd number of transverse sub-bands
are occupied. Here we extend this analysis to the case of an effective p+ip superconductor engineered
from Rashba spin-orbit coupled surface with induced magnetization and superconductivity, and find
a number of new features. Specifically, we find that finite size quantization allows Majorana end-
states even when the chemical potential is outside of the induced Zeeman gap where the bulk material
would not be topological. This is relevant to proposals utilizing semiconducting quantum wires,
however, we also find that the bulk energy gap is substantially reduced if the induced magnetization
is too large. We next consider a slightly different geometry, and show that Majorana end-states can
be created at the ends of ferromagnetic domains. Finally, we consider the case of meandering edges
and find, surprisingly, that the existence of well-defined transverse sub-bands is not necessary for
the formation of robust Majorana end-states.

PACS numbers: 71.10.Pm, 74.20.Rp, 74.78.-w, 03.67.Lx

I. INTRODUCTION

Majorana fermion bound states are expected to ex-
hibit non-Abelian exchange statistics2,3, and have been
proposed as a basis for topological quantum computers
which would be protected from decoherence4,5. Conse-
quently, there is a growing interest in producing Majo-
rana fermions in the laboratory. Superconductors with
p+ip pairing symmetry have long been expected to posses
zero-energy Majorana bound states in vortex cores3.
Such p+ ip superconductors are thought to naturally oc-
cur in triplet paired fermionic superfluids (such as 3He A
or Sr2RuO4)

6,7, and in the Pfaffian quantum Hall state at
ν = 5/28. However, despite extensive experimental work
on such systems, direct evidence of Majorana fermions
remains elusive.

Recently, the possibility of engineering effective p + ip
superconductors has arisen9–14. A particularly promising
class of such proposals involves using Rashba-type spin-
orbit coupling in combination with conventional s-wave
superconductivity to produce an effective px ± ipy 2D
superconductor9–11. Magnetization would then be intro-
duced to remove one of the two components, leaving an
effective px + ipy superconductor.

Proposals to to realize Majorana fermions as bound-
states in vortex cores face practical difficulties. In the
core of an Abrikosov vortex there exist Caroli-deGennes
bound states with typical level spacing on the order of the
“mini-gap” ∆MG-Vortex ∼ ∆2/εF . These low lying states
would require one to work at very low temperatures or
to implement complicated interferometric experiments to
measure the occupation of two Majorana fermions15. Us-
ing Josephson vortices, as in the Fu-Kane scheme, would
circumvent this problem. However, control of the phases
of a network of such Josephson junctions may pose diffi-
culties.

The practical difficulties of creating and manipulat-

ing vortices has led to a renewed interest in the original
Kitaev idea5, where Majorana particles are realized as
localized states at the ends of a one-dimensional px + ipy

superconducting wire. The mini-gap for end-states in a
multichannel wire with N occupied sub-bands scales as
∆MG ∼ ∆/

√
N which can greatly exceed ∆MG-Vortex. In

addition to being potentially simpler to implement than
vortex based proposals, creating Majorana fermions as
end-states in quantum wires would allow one to build
scalable networks of gates to braid, fuse, and measure
many Majorana fermions16. A recent work1 demon-
strated, for an ideal (spinless) p+ip superconductor, that
Majorana end-states can be realized outside the strict
one-dimensional limit, so long as: 1) the sample width
does not greatly exceed the superconducting coherence
length ξ0 = πvF /∆, and 2) an odd number of transverse
sub-bands are occupied. Furthermore, since Majorana
end-states emerge only for an odd number of occupied
sub-bands, as chemical potential is swept the system un-
dergoes a sequence of alternating topological phase tran-
sitions between phases with and without Majorana end-
states.

In this paper we extend this analysis to the case of
spinfull fermions with Rashba spin-orbit coupling and
with s-wave pairing and ferromagnetic splitting induced
by proximity effect. Because this system is effectively a
single species p+ ip superconductor for a certain range of
parameters, we expect, and indeed find, that the results
of Ref. 1 still apply. However, because of the presence of
multiple energy scales (Fermi-energy εF , spin-orbit cou-
pling ∆R, magnetization Vz , and superconductivity ∆),
several new features and possibilities emerge.

We begin by analyzing a long narrow strip geometry
with hard-wall boundary conditions. This geometry was
previously considered in Ref. 17, which identifies Majo-
rana end-states by computing a topological invariant for
a small number of occupied sub-bands. Here, we extend
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these results to an arbitrary number of subbands. We
find that, in the parameter regime where the system is
effectively a single component p+ip superconductor, Ma-
jorana end-states exist when an odd number of transverse
sub-bands are occupied. Interestingly for Vz > ∆ > ∆R,
a regime that is relevant to semiconductor materials, fi-
nite width quantization allows the Majorana end-states
to persist even for µ > Vz where a two-dimensional sam-
ple would be topologically trivial. This observation al-
lows one to operate at substantially larger carrier den-
sity than previously expected11, placing less stringent re-
quirements on sample purity. However, our results also
show that the energy gap is substantially reduced if the
Zeeman energy gets too large.

We also show that spatially non-homogenous magne-
tization profiles can be used to produce Majorana end-
states at the ends of long rectangular Ferromagnetic do-
mains. We further demonstrate that structure of Majo-
rana end-states remains largely unchanged for smoothly
varying magnetization profiles. Such geometries are ad-
vantageous for microfabricated structures, because the
induced magnetization profile will be smooth even if the
etched edges of the ferromagnetic material are rough,
thus diminishing the impact of edge disorder.

In addition, a similar setup could be used to real-
ize end-states in an island of topological insulator (TI)
with induced superconductivity (SC), surrounded by fer-
romagnetic (FM) insulator (see Fig. 1). One can take
advantage of the sensitivity of the existence of Majo-
rana end states to the chemical potential by adopting
the geometry shown in Figure 1. In this geometry, the
Majorana modes could be moved around by selectively
applying gate voltages to locally tune the number of oc-
cupied sub-bands, thus obviating the need to create and
manipulate vortices.

Finally, we consider random, meandering edge geome-
tries in order to address the question of whether or not it
is necessary to have well-defined transverse sub-bands in
order to produce Majorana end-states. Suprisingly, we
find that the existence of Majorana fermions and the al-
ternating structure of topological phase transitions with
chemical potential persists, even when edge variations
are large enough that there is no well-defined concept of
transverse sub-bands.

The paper is organized as follows: we begin with a
short review of the proposed route to engineering an ef-
fective single species p+ip superconductor from materials
with Rashba spin-orbit coupling, and of the results of Ref.
1 for quasi-one-dimensional spinless p + ip superconduc-
tors. We then introduce the tight-binding model which
forms the basis of our analysis, and describe a Green’s
function based method used to treat large system-sizes.
We then describe the resulting analysis of this tight-
binding model for hard-wall boundary conditions, ferro-
magnetic domains, and random non-rectangular samples.

TI+SC

FM

FM

Gates

FIG. 1. (Color online) Proposed setup for electrically manip-
ulating Majorana end-states in topological insulator (TI) ma-
terials. The proposed device would be fabricated on the sur-
face of a 3D topological insulator. A strip of superconductor
(labeled TI+SC) induces superconductivity in the underlying
TI. This superconducting strip is embedded in a ferromag-
netic insulator (labeled FM). Top gates (shown as overlayed
rectangles) are used to locally control the number of occu-
pied sub-bands. Blue shaded gates indicate an even number
of sub-bands, demarking a non-topological region, whereas
un-shaded gates indicate an odd number of sub-bands, de-
marking a topological region. Majorana bound states (shown
as yellow blobs) emerge at the boundary between topological
and non-topological regions.

II. OVERVIEW: TOPOLOGICAL

SUPERCONDUCTIVITY FROM RASHBA

COUPLED SURFACES

In this section we briefly review the proposed route
to engineering an effective p + ip superconductor in 2D
surfaces with Rashba spin-orbit coupling9,10. The Hamil-
tonian for a 2D surface with Rashba coupling is:

HRashba =
∑

k

[ξk + αRẑ · (σ × k)]αβ c†
kαckβ (1)

where ξk = k2

2m − µ is the spin-independent band struc-
ture, µ is the chemical potential, αR is the Rashba cou-
pling strength, σ are the spin-1/2 Pauli matrices, and
α, β =↑↓ are spin indices. The Rashba coupling αR

creates two helical bands with energies ε
(R)
± = ξk ±

αR|k| and spin-wavefunctions Ψ±
R = 1√

2

(

±eiφk

1

)

, where

φk = tan−1 (kx/ky), which wind counter-clockwise and
clockwise respectively. One can introduce s-wave (spin-
singlet) superconductivity by proximity effect:

H∆ =
∑

k

∆c†
k↑c

†
−k↓ + h.c. (2)

Re–expressing H∆ in terms of the helical Rashba surface
bands, one finds that that the induced pairing has p± ip
for Ψ±

R respectively9,11.
While the Rashba splitting has effectively generated p-

wave superconductivity, fermion states on the spin-orbit
coupled surface still occur in degenerate time-reversed
pairs. Consequently, the system is still topologically triv-
ial and will not exhibit Majorana states. To break this
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time-reversal doubling and obtain a topologically non-
trivial single-species p + ip superconductor, one can in-
troduce Zeeman splitting term

HVz
=

∑

k

Vz

(

c†
k↑ck↑ − c†

k↓ck↓
)

(3)

through, for example, proximity to a Ferromagnetic in-
sulator. Such a term modifies the bare (∆ = 0) energy
bands to

ε± = ξk ±
√

V 2
z + α2

Rk2 (4)

Vz also tends to cant the spins of the helical bands out of
the xy-plane, giving them some component along the z-
axis. Re-expressing H∆ in the eigenbasis of both Rashba
and Zeeman couplings, one finds that, in addition to p±ip

pairing ∆p(k)k̂± ∼ 〈ck,±c−k,±〉 between fermions both in
band ε±, this canting introduces an s-wave pairing com-
ponent ∆s(k) ∼ 〈ck,+c−k,−〉 between fermions c+ and c−
in bands ε+ and ε− respectively where:

(

∆s(k)
∆p(k)

)

=
1

2
√

V 2
z + α2

Rk2

(

Vz

−αRk

)

∆ (5)

and k̂
± = (ky ± ikx) /k.

As discussed in Ref. 11, one has a topological super-
conductor with potential Majorana bound states so long
as Vz > ∆, and so long as µ lies within the Zeeman gap
(|µ| < Vz). The latter restriction is potentially problem-
atic for realizing the above outlined scheme in semicon-
ductor heterostructures. These structures exhibit small
Rashba splittings on the order of ∆R ≡ αRkF = 2mα2

R ∼
10−4eV (where kF is the Fermi momentum for µ = 0).
Furthermore, it is also desireable to have Rasbha splitting
comparable or larger than Zeeman splitting such that the
induced superconductivity has a substantial p-wave com-
ponent (see Eq.5). For very small Rasbha splitting, the
conditions |µ| < Vz and ∆R & Vz together require low
carrier density, making such structures susceptible to dis-
order.

III. MAJORANA END-MODES IN RASHBA

COUPLED STRUCTURES

A. Spinless p + ip Case

Before treating the case of spinfull fermions with
Rashba spin-orbit coupling, which will be the focus of
this paper, we briefly review some pertinant results from
Ref. 1 for Majorana end-states in spinless p+ip super-
conductors. Ref. 1 considers a spinless p+ip supercon-
ducting sample of length Lx and width Ly, where the
superconductor is in the weak-coupling BCS regime. In
the 2D limit where Lx, Ly ≫ ξ0 (where ξ0 = πvF /∆ is
the superconducting coherence length), the sample has
a bulk superconducting gap but exhibits a gapless chiral

edge mode whose energy is quantized by the finite sam-
ple perimeter. The edge mode wave-function is localized
on the system boundary with characteristic length-scale
ξ0. As Ly is decreased below ξ0, the tails of the edge
mode wave-functions begin to strongly overlap generat-
ing a gap along the length of the sample that scales as
∼ e−Ly/ξ0 .

In Ref. 1, it was shown that for an odd number of oc-
cupied transverse sub-bands, this ∆edge ∼ e−Ly/ξ0 bulk
gap stabilizes zero-energy Majorana states isolated on
opposite ends of the sample. Because these end-states
occur when an odd number of transverse sub-bands are
occupied, as chemical potential µ is changed, the sys-
tem undergoes alternating sequence of topological phase
transitions between phases with and without Majorana
end-states.

When Majorana end states are spatially well sepa-
rated, the bulk gap ∆edge exponentially suppresses the
probability of an unpaired electron tunneling between
any two Majorana states. This exponential suppression
protects the Fermion parity information that is stored
non-locally between any two Majoranas throughout any
braiding process in which the particles remain well sep-
arated. However, in order to measure the mutual occu-
pation of two Majorana end-states, it is usefull to bring
the Majoranas close together, fusing them into a single
fermion state which is either occupied or unoccupied. For
example, one can measure the occupation of two Majo-
ranas by coupling them accross a Josephson junction and
measuring the sign of the resulting Josephson current5.
When fusing Majoranas for measurement, the important
energy scale is not the gap to extended bulk-excitations
but rather the so-called mini-gap to localized Fermion
end-states.

When Majoranas are realized as bound states in
Abrikosov vortices, this mini-gap scales as ∆MG-Vortex ∼
∆2/εF ≪ ∆. For simple measurement schemes, this
small mini-gap requires working at very low temper-
ature. More sophisticated measurement schemes that
do not require bringing Majoranas close to each other
are possible15, however these schemes are comparatively
more complex, presenting additional challenges for exper-
iment. In comparison, the mini-gap for Majorana end-
states in quasi-one-dimensional wires scales as

∆MG ∼ ∆√
N

(6)

where N is the number of occupied sub-bands. The slow
square-root dependence on the number of occupied sub-
bands indicates that the mini-gap can be a sizeable frac-
tion of the bulk gap even for many occupied sub-bands.
Figure 2 demonstrates this ∆√

N for exact diagonalization

of a quasi-one-dimensional spinless p + ip superconduc-
tor. Panel A and B of Figure 2 show the scaling of the
mini-gap with ∆ and N respectively.

The parametric scaling of the mini-gap can be under-
stood simply, by considering each sub-band as contribut-
ing a Majorana end-state, which overlap spatially, and
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FIG. 2. Demonstration that the mini-gap ∆MG protecting
the Majorana end-statesof a spinless p + ip superconductor
scales as ∆/

√
N rather than ∆2/εF as is the case for vortex

core states. The simulations were perfomed for a Lx×Ly strip
of the tight-binding model considered in Ref. 1 with hopping
t and p-wave BCS pairing ∆. Panel A shows the linear scaling
of ∆MG with ∆ for Lx = 150, Ly = 10, t = 10 and chemical
potential µ = −2t (corresponding to N = 5 filled sub-bands).

Panel B shows the 1/
√
N scaling of the mini-gap (where N

is the number of occupied subbands), for Lx = 250, Ly = 20,
t = 40, and ∆ = 1. In Panel B, the dashed line shows the
best power-law fit to the simulation data scales as N−0.501.

are coupled to one another by the p-wave pairing gap
∼ ∆. Specifically, the ∆/

√
N excitation scaling is consis-

tent with that of a random N×N antisymmetric matrix,
whose entries are normally distributed with width ∆.

In what follows, we demonstrate that a similar picture
holds for effective p+ ip superconductors generated from
spinfull fermions with Rashba spin-orbit coupling, Zee-
man splitting, and induced s-wave pairing. However, the
story is complicated because of the presence of multiple
energy scales (Fermi energy, Rashba and Zeeman split-
tings, and superconducting gap) which gives rise to new
features, and allows for a number of generalizations.

B. Tight-Binding Model and Green’s Function

Method

To analyze the structure of Majorana zero-modes in
p+ip superconductors engineered from Rasbha coupled
structures, we study numerically a discrete square-lattice
tight-binding model version of the continuum Hamilto-
nian:

HTB = Ht + HSO + HFM + H∆

Ht =
∑

R,d,α

−t
(

c†
R+d,αcR,α + h.c.

)

− µc†
RαcRα

HFM =
∑

R,α,β

Vzc
†
R,α (σz)αβ cRβ + h.c.

HSO =
∑

R,d,α,β

−iαRc†
R+d,αẑ · (~σαβ × d) cR,β + h.c.

HSC =
∑

R

∆c†
R↑c

†
R↓ + h.c. (7)

where R labels lattice sites, d ∈ {êx, êy} is a unit vector
connecting nearest neighboring sites, (α, β) ∈ {↑↓} are

FIG. 3. (Color online) Schematic depiction of recursive
Green’s function method (eq. 8,9). (a) Green’s function for

the end of an Lx-layer sample G(Lx) is calculated recursively
from G(n−1) → G(n) by adding one transverse layer at a time.
(b) Green’s function for any layer can then be recovered from
solving (9) for the desired location, using the intermediate

results for G(Lx−x) and G(x−1) from the top procedure.

spin-indices, and {σj}j=x,y,z are spin-1/2 Pauli matrices.
These terms represent the kinetic hopping energy (Ht),
induced ferromagnetic Zeeman splitting (HFM), Rashba
spin-orbit coupling (HSO), and induced spin-singlet pair-
ing (H∆) respectively.

For sufficiently small system size, the full 2D tight-
bonding model (7) can be analyzed directly by exact di-
agonalization. For larger systems, where exact diagonal-
ization becomes computationally intractable, we employ
a recursive Green’s function method20 depicted schemat-
ically in Fig. 3. Starting with the Green’s function for

the right (left) end of a strip of length n, G
(n)
R(L)(y, y′) one

can construct the Green’s function for the right (left) end
of a strip of length n + 1 by:

G
(n+1)
R (ω) =

1

ω + iη − Hn − V †G(n)
R V

G
(n+1)
L (ω) =

1

ω + iη − Hn − V G
(n)
L V †

(8)

where Hn is the Hamiltonian for the strip at location
x = n, V is the matrix containing all elements of (7) that
connect x = n to x = n + 1, and η > 0 gives the poles of
G a small imaginary component. By repeated recursion
of (8), one can find the Green’s function for the end of
an arbitrarily long strip. The Green’s function for any
fixed value of x can then be calculated from:

G(Lx)(x, x; y1, y2; ω) =

1

ω + iη − Hx − V †G(x−1)
R V − V G

(Lx−x)
L V †

(9)

Once calculated, the Green’s function can yield the den-
sity of states: ρ(ω) = − 1

π TrℑmG(ω), which has a δ-
function peak at each energy level. Furthermore, for
ω → εn, where εn is an eigen-energy of (7), the Green’s
function becomes a projector onto the corresponding
eigenstate Ψn(R): limω→εn

(iη)G(R,R; ω) → |Ψn(R)|2.
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FIG. 4. (Color online) Phase diagram as a function of chem-
ical potential µ and Zeeman splitting Vz for strip of width
Ly = 10, with hard-wall boundaries and t = 10, ∆ = 1,
and αR = 2. White regions correspond to the topologically
trivial phase with no Majorana end-states. Colored regions
indicate topologically non-trivial phases with Majorana end-
states, color indicates size of bulk excitation gap ∆edge which
sets the length scale ℓM ∼ vF /∆edge over which the end-
states decay along the length of the wire. Note the reduction
of ∆edge as Vz becomes large. Dashed lines show the location
of the non-superconducting (∆ = 0) transverse sub-bands,
which are closely related to the location of topological phase-
transitions.

IV. HARD-WALL CONFINEMENT

We first consider the the tight-binding Hamiltonian (7)
on a long strip of length Lx and width Ly with hard-
wall boundaries. These boundary conditions correspond
to strong confinement and are relevant, for example, to
self-assembled semiconductor nano-wires or etched semi-
conductor or metallic microstrips.

The bulk excitation gap, ∆edge, for an infinitely long
strip of width Ly provides a convenient way of charac-
terizing topological phase transitions. The locations of
topological phase transitions, corresponding to closings
of the bulk-gap, can be simply obtained by solving the
effectively 1D problem of diagonalizing (7) at zero mo-
mentum along x (kx = 0). Using the Green’s function
method outlined above, we verify that closings of the bulk
gap (∆edge = 0) in an infinitely long strip signify topo-
logical phase transitions in a finite length strip. These
transitions are between states with zero-energy Majo-
rana end-modes, and topologically trivial states without
zero-energy end-modes. Fig. 4 shows the topological
phase-diagram as a function of chemical potential µ and
Zeeman splitting Vz for a strip of width Ly = 10 with
parameters t = 10, ∆ = 1, and αR = 2. Fig. 4 is com-
patible with the results of Ref. 17, which computes the
phase diagram restricted to the lowest two sub-bands.

The effect of transverse confinement in the y-direction
is to quantize y-momenta ky to discrete values: kn with
n ∈ {1, 2, . . .}, each with a corresponding a 1D transverse
sub-band. In Fig. 4, the transverse sub-band bottoms for

the infinite strip with ∆ = 0 are shown as dashed lines.
These transverse sub-bands are doubly spin-degenerate
for Vz = 0, and are split linearly as Vz is increased. With-
out Rashba splitting, this would result in a fan of crossing
levels as Vz is increased, however the presence of Rashba
splitting leads to avoided crossings between the different
sub-bands.

Similarly to the case of multi-band of spinless p+ip su-
perconducting quantum wires1, we find that zero-energy
Majorana end-states exist only when an odd-number of
these transverse sub-bands are occupied. However, the
picture here is complicated by the presence of additional
energy scales αRkF and Vz which give rise to two spin-
split surface bands with energies ε± = ξk±

√

V 2
z + α2

Rk2.
As described above, pairing between two electrons of the
same helicity has px ∓ ipy symmetry and amplitude ∆p,
whereas pairing between electrons of different helicity has
s-wave symmetry with amplitude ∆s (see eq. 5). When
Vz is small enough that ε+(kn)−ε−(kn) < ∆, both p+ip
and p− ip pairing occurs and the system is topologically
trivial for all µ. In contrast, for sufficiently large Vz such
that ε+(kn)−ε−(kn) > ∆ only one of the two p±ip com-
ponents remains. In this regime, so long as the quantized
levels of ε±(ky = kn) are offset, there are intervals of µ
for which an odd number, N of occupied sub-bands. In
such intervals there are pairs of p + ip and p − ip bands,
and one unpaired p+ ip band. One can picture each sub-
band as contributing a single Majorana end-state; these
are intercoupled and mix, to form ⌊(N/2)⌋ full fermions
at non-zero energy and Nmod2 Majorana zero-modes.

By these considerations alone, it would seem that
larger Vz is always favorable for creating Majorana end-
states. However, the gap protecting the Majorana end-
states from bulk excitations depends on the p-wave com-
ponent ∆p of the induced pairing gap, which for Vz ≫
mα2

R scales as: ∆edge ≃ ∆p →
√

mα2

R

Vz
∆ ≪ ∆ (see Eq.

5). Consequently, there is a trade off between increas-
ing Vz to stabilize Majorana end-states, and in avoiding
Vz ≫ αR to protect the bulk pairing gap.

This picture of each sub-band contributing a Majorana
end-state is supported by Fig. 5a.–d. which show the
spectral function for a Lx = 200, Ly = 10 strip, projected
onto the end of the strip. Fig. 5a.–d. were simulated us-
ing the same parameters as for Fig. 4 with fixed Vz = 6,
and µ adjusted such that N = 1, 2, 3, and 5 transverse
sub-bands are occupied respectively. In each subfigure,
one finds two types of excitations. The first are bulk ex-
citations above ∆edge ∼ 0.25∆. These reside along the
length of the strip and have small projection ∼ 1/Lx onto
the end-layer. The second are end-states. The end state
wave-functions are exponentially localized to the sam-
ple ends, with localization length ξM ∼ vF /∆edge set by
the bulk excitation gap. Consequently, these states have
large projection onto the end-layer that is independent of
Lx for Lx ≫ ξM . As shown in Fig. 5 for N occupied sub-
bands, there are N end-states, and we have verified that
they are roughly equally spaced in energy ∼ ∆p/

√
N .
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FIG. 5. Spectral function for the end layer of a 200 × 10
strip for the tight-binding model (7) with hard-wall bound-
aries as determined by Green’s function method (8) with
η/∆ = 0.001. Simulation parameters used were: t = 10,
∆ = 1, αR = 2, and Vz = 6. From left to right and top to
bottom, the chemical potentials are µ/t = -4.37, -4.09, -3.72,
and -3.265 corresponding to N = 1,2, 3 and 5 transverse sub-
bands occupied respectively. There is a zero-energy pole only
for N odd. For general N there are N end-states split by the
effective p-wave gap ∼ ∆p.

For N odd, one of these end states sits at exactly zero
energy, and is a Majorana state protected from excita-
tions by energy gap: ∼ ∆p. For N even the end-states
sit at non-zero energy and are not Majorana fermions.

A similar phase diagram is derived in Ref. 17 for the
four-sub-band case. This work introduces an additional
parameter ∆12 describing the pairing between electrons
in different sub-bands. Our results agree with Ref. 17
when ∆12 = 0. In Ref. 17, this inter-band pairing
parameter ∆12 creates a narrow range of values for Vz,
termed the “sweet-spot”, for which the system is in the
topologically non-trivial regime for any value of chemi-
cal potential µ. However, we believe that this parameter
∆12 was not introduced in a consistent manner and that
the presence of this sweet-spot is an artifact. Specifi-
cally, ∆12 is induced by interfacial roughness between
the Rashba coupled nanowire and its superconducting
substrate. However, the roughness which creates ∆12

also inherently provides a random disorder potential for
the nanowire. Ref. 17 does not consider the effects of
this disorder on the induced superconductivity. Because
disorder is pair breaking in the effective p + ip supercon-
ductor (this was shown in numerical simulations in Ref.
1, and a detailed analytical analysis of disorder in this
system will appear in a separate publication), and be-
cause the sweet-spot occurs precisely where the induced
gap is smallest (and therefore most susceptible to disor-
der), we believe that disorder required to induce ∆12 will
simultaneously destroy this sweet-spot.

To summarize, we find that, in hard-wall confined
strips, Majorana end states exist as long as the ε+−ε− >

∆ and so long as there are an odd number of occu-
pied transverse sub-bands. Surprisingly, this alternating
even-odd behavior persists in confined systems even for
|µ| > Vz , where the 2D bulk material would be non-

topological. This resilience is due to the fact that the
bulk p + ip and p − ip subbands are offset by different
quantization energies.

These results offer two principal advantages for realiz-
ing Majorana fermions as end states in multi-band con-
fined structures. First, the chemical potential in candi-
date materials may naturally lie far away from µ = 0.
For non-confined schemes, one would need to shift µ to
lie in the Zeeman gap, possibly requiring chemical dop-
ing or large electrostatic gate voltages. Here, one only
needs to fine-tune the chemical potential on the order

of Esb ∼ π2

2mL2
y
. Secondly, as discussed in Ref. 11, be-

cause of the extremely small Rashba splittings available
in semiconductor nanowires, restricting |µ| < Vz in these
materials would require operating at exceedingly small
carrier density. However, the above results demonstrate
that one may work far outside this |µ| < Vz regime, open-
ing the door to substantially higher densities.

Despite this, small Rashba couplings still pose a serious
problem for semiconductor materials. In order to remain
in the topological regime, one needs Vz > ∆. Given that
typical values of ∆R in semiconductor materials are of
the order of 0.2K11, and assuming that Vz ∼ ∆ is on the
order of a few Kelvin, one has Vz/mα2

R . 1/10. This
means that only a small fraction of the superconducting
gap would be converted into p-wave pairing, requiring
one to operate at very low temperatures in order to avoid
thermal excitations.

V. FERROMAGNETIC DOMAINS

We next consider a fully two-dimensional version of (7)
in which Vz is non-zero only inside a long finite strip of
length Lx and width Ly. This could be accomplished by
depositing a narrow strip of FM insulator on a fully 2D
Rashba coupled surface. The idea here is that, under the
right conditions, the ferromagnetic strip creates a strip of
topological p+ip superconductor embedded in a topolog-
ically trivially p± ip superconducting background. Such
spatial interfaces between regions with different topolog-
ical ordering generally give rise to localized zero-modes.

Fig. 6a. shows the edge excitation gap ∆edge as a func-
tion of chemical potential µ for an infinitely long FM strip
of width Ly = 20 embedded in a large non-FM coupled
background with parameters t = 20, ∆ = 10, αR = 10,
and Vz = 5. The plot of ∆edge reveals the location of
topological phase transitions, occuring when ∆edge = 0,
but does not contain information about the mini-gap to
localized end-states. In this simulation Vz has a sharp
step profile, and drops abruptly from Vz = 5 inside the
strip to Vz = 0 outside. Red shaded regions indicate
the presence of Majorana end-states as determined us-
ing the Green’s function method (8). As with the case
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of hard-wall boundary conditions, we find an alternating
sequence of topological phase transitions as µ is varied.
These transitions again occur where the bulk gap for an
infinitely long strip closes. However, unlike the hard-wall
boundary case considered above, ky is no longer quan-
tized by confinement and the bulk gap closings are not de-
termined by transverse momenta quantization. Rather,
the spatially inhomogenous Vz profile gives rise to an ef-
fective step potential which binds discretely spaced 1D
energy bands, whose bottoms lie within the bulk super-
conducting gap. Once again, Majorana end-states appear
when an odd number of these discrete energy bands are
occupied.

Fig. 6c.–e. show wavefunction profiles of the spin-up
and down components of the Majorana end-states for N
= 1, 3, and 5 occupied subbands. The wave-functions are
exponentially localized to the ends of the FM strip, with
characteristic localization length set by the bulk excita-
tion gap. The number of nodes in the end-state wave-
function increases with N .

In realistically fabricated structures where Vz is in-
duced by proximity to a FM insulator, the Vz profile
will likely not be a sharp step function. Fortunately, we
find that the above picture is largely insensitive to the

FIG. 6. (Color online) (Top) Bulk excitation spectrum for
infinitely long ferromagnetic (FM) strip-domain of width Ly

with sharp edges (a) and Gaussian-smoothed edges (b). High-
lighted red regions denote the presence of zero-energy end
states as determined by the Green’s function method (8) for
strips of length Lx = 100. Insets show Vz(y) profiles. Tight-
binding parameters used were t = 20, αR = 10, Vz = 5, and
Ly = 20. (Bottom) Corresponding wave-function |Ψ|2 profiles
for finite length (Lx = 100) strips with sharp Vz profile as in
(a). Subfigures (c),(d), and (e) show |Ψ|2 for selected chemical
potentials µ/t = −4.22, −4.12, and −3.87, which correspond
to N = 1, 3 and 5 occupied sub-bands respectively. Spin-down
(left) and spin-up (right) components shown separately. Faint
dashed-lines mark the boundary of the FM strip.

details Zeeman splitting spatial profile Vz(y). For exam-
ple, Fig. 6b. repeats Fig. 6a. with smoothly varying
Vz(y), obtained by applying a Gaussian filter with width
of 3 lattice spacings to a sharp step-profile. The alternat-
ing phase transition structure and presence of Majoranas
is very similar to the sharp step-profile case. The main
difference being that the larger N sub-bands are more
shallowly confined by the smoother Vz potential.

We have shown that the existence of Majorana end
states in this setup is robust, persisting so long as the FM
domains are narrow, elongated structures with gapped
mid-sections. These results make it feasible to produce
Majorana states in FM domains patterned on top of bulk
2D Rashba split surfaces with induced superconductivity.

VI. MAJORANA END-MODES WITHOUT

TRANSVERSE SUB-BANDS

A. Random Edge Geometries

In the long rectangular strip geometries considered
above, the system is neatly separable in the x and y
directions. So far, the existence of discrete transverse
sub-bands (in the y-direction) has played a central role
in understanding the topological phase transitions in
these structures. Naturally, one might therefore wonder
whether the existence of transverse sub-bands is essential
to the formation of Majorana end-states. Specifically,
the presence of spatially varying and non-parallel edges
mixes different transverse sub-bands, destroying the no-
tion of the “number of occupied channels”. Since, for
rectangular samples, Majorana end-states exist only for
an odd-number of transverse channels, it is possible that
the mixing of even and odd number of channels may de-
stroy the Majorana end-states in non-rectangular sam-
ples.

To address this question, we consider samples confined
to a narrow region by electrostatic confinement potential
Vconf(x, y) with smooth, random meandering boundaries.
Here it is important that the edge variation is relatively
smooth, as jagged edge variations produce a scattering
mean-free path ℓ ≃ W . Due to the condition W . ξ0,
scattering from sharp edge variations tends to destroy
the p-wave pairing gap1.

To produce random edges with width variance σW

and correlation length ξD, we start by choosing the y-
location of the top and bottom edges yt,b(x) indepen-
dently for each x, identically distributed normally with
variance

√

2σ2
W ξD and mean Ly/2 (where the over-bar

indicates averaging with respect to edge configuration).
We then apply an exponential smoothing filter yt,b(x) →
∑

x′

1
ξD

e−|x−x′|/ξDyt,b(x
′), which correlates yt,b(x) and

yt,b(x
′) on lengthscales, |x − x′| . ξD, on the order of

the edge-correlation length ξD.
Since the sample width at any x must be an integer

number of lattice spacings, {yt,b(x)} are rounded to the
nearest integer, resulting in discrete steps rather than
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FIG. 7. (Color online) (a) and (b) show the two lowest en-
ergy in-gap excitations for an electrostatically confined strip
with Lx = 100, Ly = 20, t = 10, ∆ = 1, Vz = 2, αR = 2.
Red shading indicates the presence of isolated Majorana end-
modes at zero-energy. The results in (a) are for straight edges
(σW = 0), and those in (b) are for a random sample with
σW = 4 and ξD = 15; (c) shows a colormap of the random
edge geometry used to generate (b). Importantly the Ma-
jorana edge states survive, retaining a substantial excitation
gap even for large edge variation (in this case ∼ 40% of the
average width Ly) and demonstrating that these states do not
rely on the existence of transverse sub-bands.

a) b)

FIG. 8. (Color online) Spatial profile of the Majorana wave-
function intensity, |Ψ(x, y)|2, for L-shaped junction, for t =
10, ∆ = 1, αR = 5, and Vz = 2. The dimensions of each leg
of the junction are 5× 50 lattice sites. The left (a) shows the
wave-function with three occupied sub-bands in each leg (µ =
−3t). In this case the Majorana states exist at the extreme
ends of the the L. The right (b) shows the wave-function with
three sub-bands occupied in the horizontal leg (µ = −3t), and
two sub-bands occupied in the vertical leg (µ = −3.4t). In
this case the second Majorana mode appears at the junction
between topological and non-topological regions at the elbow
of the L-junction.

smooth edges. These steps introduce sharp, short range
scattering potentials, and in order to separate out the
effects of this discretization, from those of the smoothly
wandering edges, we smooth the Vconf along the lateral
(y–) direction with a Gaussian filter of width 2 lattice
spacings.

Fig. 7a. and b. show the results of simulations with a
smoothly random electrostatic confinement potential for
samples with average width Ly = 20, length Lx = 100,

edge correlation length ξD = 15, and with edge variance
σW = 0 and 4 respectively. We find that the Majo-
rana end modes, and corresponding sequence of alternat-
ing phase transitions survives even for substantial edge
variations, that is, even when there are no well-defined
transverse sub-bands. Despite the lack of transverse sub-
bands, as one sweeps µ, discrete bulk levels inside the su-
perconducting gap are still pulled down one-by-one across
zero-energy, resulting again in an alternating sequence of
topological phase transitions. However, the locations of
these transitions occur at different values of µ compared
to the rectangular case. In contrast to the rectangu-
lar sample case, these discrete levels cannot be simply
identified with transverse band-bottoms, but rather are
bulk states with some more complicated structure. The
excitation gap protecting Majorana end-states in these
random edge geometries is reduced from the rectangular
case. However, as seen by comparing Fig. 7a. and b.,
this excitation gap remains a substantial fraction of the
straight edge rectangular case even for large variations in
the edge geometry (in the case of Fig. 7 b. the fractional

variation in width, (δy2
t + δy2

b )/Ly = 2σW /Ly, is 40%).
These simulations demonstrate that the existence Ma-

jorana end-states is highly insensitive to the details of
sample geometry, and in particular does not require the
existence of transverse sub-bands. This robustness to
edge-variations highlights the truly topological nature of
these states. Also from a practical perspective, the abil-
ity to tolerate substantial (smooth) edge variance eases
the requirements for sample fabrication, making an ex-
perimental realization more feasible.

B. L-shaped Junction

Majorana end-states can be moved, braided, and fused
using appropriate networks of quantum wires16. A com-
mon feature of such networks are right-angle junctions
(either L- or T- shaped). Fig. 8 provides an explicit
demonstration that the Majorana end-states with mulit-
ply occupied sub-bands, even in geometries with sharp
corners. Fig. 8 a) shows the wave-function for an odd-
number of occupied sub-bands in both the horizontal and
vertical legs of an L-junction, whereas Fig. 8 b) shows
the wave-function for an odd-number of occupied sub-
bands in the horizontal and leg and an even number in
the vertical leg. In the former case, the entire L-junction
is topological, and Majorana end-states reside at the ex-
tremal ends, whereas in the latter case, the Majorans lie
entirely within the horizontal leg, with the second Ma-
jorana occuring at the junction between topological and
non-topological regions.

VII. CONCLUSION AND DISCUSSION

In conclusion, by numerically diagonalizing the tight-
binding model 7, we have shown that quasi-one-
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dimensional microstructures with Rashba spin-orbit cou-
pling are are a robust medium in which to realize Majo-
rana fermions. In spatially confined structures, such as
semiconductor nanowires, confinement quantization en-
ables one to operate at substantially higher carrier densi-
ties where a bulk 2D material would be non-topological.
Additionally, the presence of multiple energy scales al-
lows one to trap Majorana fermions at the ends of quasi-
one-dimensional ferromagnetic domains, or in electro-
statically confined strips.

Importantly, Majorana end-states realized in this way
are largely immune to both bulk disorder1 and random
sample geometry (so long as the edges are relatively
smooth). Furthermore, for end-states, the mini-gap to
localized excitation scales as ∆, rather than ∆2/εF as for
vortex core states. While it has been argued that mini-
gaps are irrelevant for detection schemes based solely on
electron number parity15 (in which Majoranas are kept
far apart from each other), our results show that Majo-
rana end-states allow for simpler fusion based measure-
ment schemes. Finally, the ability to selectively tune seg-
ments of these systems through a topological phase tran-
sition, simply by electrostatic gating, provides a conve-
nient, scalable avenue towards manipulating and braiding
many Majorana fermions.
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