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We evaluate accurate low-field/low-temperature asymptotics of the thermal conductivity perpen-
dicular to magnetic field for one-band and two-band s-wave superconductors using Keldysh-Usadel
formalism. We show that heat transport in this regime is limited by tunneling of quasiparticles
between adjacent vortices across a number of local points and therefore widely-used approximation
of averaging over the circular unit cell is not valid. In the single-band case, we obtain parameter-free
analytical solution which provides theoretical lower limit for heat transport in the mixed state. In
the two-band case, we show that the heat transport is controlled by the ratio of gaps and diffu-
sion constants in different bands. Presence of a weaker second band strongly enhances the thermal
conductivity at low fields.

PACS numbers: PACS number

I. INTRODUCTION

The thermal conductivity of a metal in the super-
conducting state is markedly different from its value
in the normal state. The physical reason is that the
Cooper pairs give no contribution to the transport of
heat. Therefore heat transport occurs solely due to the
quasiparticle excitations controlled by the energy gap.
Due to this reason, measurements of the thermal con-
ductivity were extensively used during last decades as a
tool to probe the energy gap symmetry in various new
superconducting materials.

Application of a magnetic field H provides a way to
generate quasiparticles in a type-II superconductor. In a
s-wave superconductor at T ≪ Tc, the quasiparticles are
localized near the vortex cores and thermal conduction
perpendicular to the magnetic field is due to tunneling
between adjacent vortices. Thermal conductivity in the
mixed state of superconductors was extensively studied
in the past experimentally1–3 and theoretically4,5. Early
theoretical work4,5 addressed superconductors in diffu-
sive regime (dirty limit) in the mixed state with a tem-
perature gradient applied transverse to the magnetic flux.
The electronic thermal conductivity was calculated using
the quasiclassical time-dependent superconductivity the-
ory, assuming homogeneous temperature gradient, using
the circular-cell approximation, and averaging over the
unit cell. This approach was later extended to study
heat transport in various unconventional superconduc-
tors. Theory for d-wave superconductors was developed
in Ref. 6 for zero magnetic field and in Refs. 7 and
8 for the mixed state. More recently, with the dis-
covery of magnesium diboride (MgB2), theory was ex-
tended to the case of multiband superconductivity9. Dis-
covery of pnictides, with possibly unconventional pair-
ing mechanism due to spin fluctuations leading to the
so-called s± pairing state, motivated extension of heat
transport theory10 taking into account multiband su-
perconductivity and resonant interband impurity scat-

tering. Many recent experimental studies reconsider old
superconductors, such as NbSe2

12, and addressed novel
superconductors, such as borocarbides (LuNi2B2C)11,
Sr2RuO4

13, C6Y b14, heavy-fermion compounds CeIrIn5,
CeCoIn5 and UPt3

13, MgB2
15, pnictides16,17 and iron-

silicides18. Being very sensitive to the gap structure,
thermal transport at low magnetic fields varies consid-
erably for different compounds.

In this paper we reconsider more accurately the prob-
lem of the thermal conductivity across the magnetic fields
for s-wave superconductors. The case of s-wave supercon-
ductor is a standard reference, all other situations are
compared with this case. Surprisingly, an accurate result
for the low-field asymptotics of the thermal conductiv-
ity was never derived. The widely-used circular unit cell
approximation does not give correct result in low mag-
netic fields because it misses essential physics. Namely,
as the local thermal conductivity is strongly inhomoge-
neous, the heat transport is limited by tunneling between
adjacent vortices across certain local points in the vortex
lattice unit cell (bottlenecks). This leads to general low-
field asymptotics of the electronic thermal conductivity,
κ ∝ exp(−β

√

Bc2/B), where Bc2 is the upper critical
field.2 Surprisingly, the theoretical value of the numeri-
cal constant β is not available neither for clean nor for
dirty s-wave superconductors. For clean case, we provide
estimate for this numerical constant using asymptotics of
the Bogolyubov wave functions of the localized states at
zero energy and microscopic value of the upper critical
field. In the dirty case we were able to perform more
quantitative analysis using the Keldysh-Usadel formal-
ism. We calculate the thermal conductance at low tem-
perature and low magnetic field for single- and two-band
superconductors in the dirty limit. In this regime we ob-
tain parameter-free analytical solution in a single-band
case which provides theoretical lower limit for heat trans-
port in the mixed state. We find that in dirty case the
low-field thermal conductivity is drastically suppressed
in comparison with clean case. Further, we generalize
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the developed formalism to a two-band superconductor,
taking MgB2 as an example.

II. TUNNELING OF QUASIPARTICLES

BETWEEN VORTEX CORES IN CLEAN

ISOTROPIC SUPERCONDUCTOR

The electronic transverse thermal conductivity in
mixed state at low temperatures and fields is determined
by the probability quasiparticle tunneling between the
cores of neighboring vortices. In this section we eval-
uate this quantity with exponential accuracy for clean
isotropic superconductors. Even though this estimate is
very straightforward and could be done long time ago, to
our great surprise, we did not succeed to find it in the
literature.

The Bogolyubov wave function of the localized state
in the vortex core at E = 0 decays as19

Ψ(r) ∝ exp(−r/ξ∆), ξ∆ = vF /∆ (1)

where ∆ is the superconducting gap and vF is the Fermi
velocity. Therefore, the probability of tunneling between

the vortex cores separated by distance a =
√

2Φ0/
√

3B

can be estimated as

P ∝|Ψ(a)|2∝exp(−2a/ξ∆)=exp

(

−
√

8Φ0√
3Bξ2

∆

)

(2)

The upper critical field Bc2 for a clean isotropic super-
conductor at T = 0 is given by20

Bc2 =
e2

4γ

Φ0

2πξ2
0

, ξ0 =
vF

2πTc
(3)

with γ = exp(0.5772) = 1.781 being the Euler constant.
Using also the BCS relation πTc = γ∆, we evaluate

2

√

2Φ0√
3Bc2ξ2

∆

=

√

16π√
3γe2

≈ 1.486.

This allows us to represent the tunneling probability (2)
as

P ∝exp

(

−
√

16π√
3γe2

Bc2

B

)

≈exp

(

−1.486

√

Bc2

B

)

. (4)

This result also determines the low-field asymptotics of
the electronic thermal conductivity of clean isotropic su-
perconductor. The constant in the exponent is obviously
sensitive to anisotropy of Fermi surface. A more quanti-
tative analysis which would include also evaluation of the
preexponential factor requires much more complicated
microscopic kinetic theory for clean limit. In the follow-
ing sections we make quantitative calculations of thermal
transport at low fields for dirty superconductor.

III. THE FORMALISM: THERMAL

TRANSPORT IN DIRTY SUPERCONDUCTORS

WITHIN QUASICLASSICAL KELDYSH-USADEL

MODEL

Our study is based on the quasiclassical Keldysh-
Usadel formalism21–23 which was developed to describe
nonequilibrium properties of dirty superconductors. Be-
low we will reproduce the main relations of this formal-
ism needed for our derivations. Within this formalism a
superconductor is described by the Green’s function

G =

(

ĜR ĜK

0 ĜA

)

, (5)

where in dirty limit the retarded (advanced) Green’s
functions GR(A) satisfy the Usadel equation24

−~D∇(ĜR(A)∇ĜR(A)) =
[

iEτ̂3 + ∆̂, ĜR(A)
]

. (6)

Here E is quasiparticle energy, D is the electronic diffu-
sion coefficient, ∆ is the pair potential

∆̂ =

(

0 ∆
∆∗ 0

)

, (7)

ĜK = ĜRf̂ − f̂ ĜA, f̂ is the distribution function,
ĜR = τ̂3G + τ̂1F , ĜA = −τ̂3Ĝ

R†τ̂3, where G and F are
the normal and anomalous Green’s functions and τ̂i are
Pauli matrices.

Thermal current is given by

Jth =
N0D

4

∫

ETr
[

τ̂3

(

ĜR∇ĜK + ĜK∇ĜA
)]

dE, (8)

where N0 is the normal density of states the Fermi level.

Writing f̂ = fL1̂ + fT τ̂3 , where fL and fT are odd and
even in energy components of the distribution function,
one can rewrite the thermal current in the form25

Jth = N0

∫

E [DL (E)∇fL (E) + ImJEfT ] dE, (9)

where

DT = D
[

(ReG)2 + (ReF )2
]

,

DL = D
[

(ReG)
2 − (ImF )

2
]

are the energy-dependent spectral diffusion coefficients
and ImJE is the spectral supercurrent given by ImJE =
1
4Tr[τ̂3(Ĝ

R∇ĜR − ĜA∇ĜA)] = ImFRReFR∇χ, where χ
is the superconducting phase. In the mixed state all
quantities are spatially inhomogeneous (coordinate de-
pendences are dropped for brevity). Functions fL and
fT satisfy the following kinetic equations22,23

∇ (DT∇fT ) + ImJE∇fL = 2RfT , (10)

∇ (DL∇fL) + ImJE∇fT = 0. (11)
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FIG. 1. Left: Graylevel map of the local thermal resistance
∝ 1/DL(0, r) in the vortex lattice. Light regions correspond
to low thermal resistance. Arrows illustrate heat flow in the
bottleneck regions. Right: Three-dimensional plot of the local
thermal resistance in the bottleneck region marked by rect-
angle in the left picture.

where R = 1
4Tr

[

∆̂(ĜR + ĜA)
]

. In thermal equilibrium

fL = tanh (E/2kBT ) and fT = 0. The thermal conduc-
tivity components are defined as

κα = 〈Jth,α〉/〈∇αT 〉, (12)

where 〈∇T 〉 is the average temperature gradient and α =
(x, y, z).

In the following, we shall use the standard θ-
parametrization, ĜR(r) = τ̂3 cos[θ(r)] + τ̂1 sin[θ(r)] in
which the Usadel equation has the following form26,27

D
(

∇2θ − p2 cos θ sin θ
)

+ 2∆cos θ + 2iE sin θ = 0 (13)

where p(r) = ∇φ − (2π/Φ0)A is superconducting mo-
mentum (within circular cell approximation p = 1/r −
r/r2

s , rs =
√

Φ0/πH). The selfconsistency equation has
the form

∆ ln
T

Tc
=

T

Tc

∑

ω

(

sin θ − ∆

ω

)

(14)

The diffusion coefficients in the θ-parametrization
are given by the expressions DT (E, r) =
D cosh2 (Im[θ(E, r)]), DL(E, r) = D cos2 (Re[θ(E, r)]).

IV. THERMAL TRANSPORT IN THE VORTEX

STATE AT LOW FIELDS

We consider a superconductor in low magnetic field,
B ≪ Bc2. We assume an ideal triangular vortex lat-
tice of vortex lines and study thermal transport in the
direction perpendicular to the field. The local ther-
mal conductivity is mostly determined by the diffusion
constant DL(E, r) at low energies. This quantity is
very inhomogeneous in the vortex state. It has max-
ima at the vortex cores and rapidly drops away from the

cores reflecting localization of quasiparticles in the core
regions. This means that the local thermal resistance
∝ 1/DL(0, r) is maximal at the boundaries of the lattice
unit cell. In such situation the temperature is mostly
homogeneous within the unit cells and only changes in
the boundary regions between the cells, see Fig. 1. This
means that thermal transport occurs via “bottlenecks“,
saddle points of DL(E, r). Our purpose is to evaluate
average thermal conductivity limited by these bottle-
necks. Since in the vicinity of bottlenecks, the spectral
supercurrent ImJE vanishes by symmetry, the expres-
sion for local energy current simplifies and has the form:
Jth(r) ≈ N0

∫

dEEDL∇fL.
We start with evaluation of the diffusion constant

DL(E, r) which is determined by the real part of the
Green’s function θ(E, r). For an isolated vortex, at dis-
tances r ≫ ξ from its core we can present ∆ and θ as
θ(r) = θ0 + θ̃(r), ∆(r) = ∆0 + ∆̃(r) where ∆0 and
θ0 are the equilibrium values at zero magnetic field,
tan θ0 = i∆0/E and θ̃(r) = θ̃r(r)+ iθ̃i(r) is small cor-
rection. For E ≪ ∆0 , θ0 ≈ π/2+iE/∆0, therefore the

energy-diffusion constant in this region DL(E, r)≈Dθ̃2
r .

The real and imaginary parts of θ̃ obey the following
equations

D∇2θ̃r − D
E2 + ∆2

0

E2 − ∆2
0

p2θ̃r − 2
√

∆2
0 − E2θ̃r = 0, (15)

D∇2θ̃i − D
E2 + ∆2

0

E2 − ∆2
0

p2θ̃i − 2
√

∆2
0 − E2θ̃i

=
2E∆̃

√

∆2
0 − E2

− D
E∆0

∆2
0 − E2

p2, (16)

where p = 1/r is the gauge-invariant phase gradient. For

an isolated vortex θ̃r and θ̃i have qualitatively different
behavior at large distances for E < ∆0: θ̃i decays as
p2 ∝ 1/r2 and θ̃r decays exponentially

θ̃v,r(r) = Cv
exp(−kξr)
√

kξr
, (17)

kξ(E) =
√

2
(

∆2
0 − E2

)1/4
/
√

D.

Evaluation of numerical constant requires solution of full
nonlinear problem. Numerical solution by the method
described27 provides Cv ≈ 4.2. In the vortex lattice away
from the core regions θ̃r can be represented as a sum of
contributions from individual vortices

θ̃lat,r(r)≈
∑

R

θ̃v,r (r−R)=
∑

R

Cv
exp(−kξ|r−R|)
√

kξ|r − R|
,

(18)
where R are the vortex coordinates. In particular, for
triangular lattice R = (a/2 + ma + na/2, n

√
3/2) where

a =
√

2Φ0/
√

3B is the lattice constant and m and n are

integers.
At small field thermal transport is determined by en-

ergy flow via bottlenecks, saddlepoints of DL(E, r) at
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boundaries of the lattice unit cell. Near the bottleneck
point, (x, y) = (0, 0), we can keep only contribution from
two neighboring vortices located at (±a/2, 0) which gives

θ̃lat,r(r) ≈
2Cv

√

kξa/2
exp (−kξa/2) cosh (kξx) exp(−kξy

2/a)

(19)
and

DL(E, r) ≈ D
8C2

v

kξa
exp (−kξa) cosh2 (kξx) exp(−2kξy

2/a).

(20)

Using also quasiequilibrium approximation
for the gradient of fL(E, r), ∇xfL(E, r) ≈
− cosh−2(E/2kBT )(E/2kBT 2)∇xT (r), we obtain the
heat flow near the bottleneck Jth,x(r) ≈ −κx(r)∇xT (r),
where the local thermal conductivity κx(r) is given by

κx(r) ≈ 8C2
vDN0

∫ ∞

−∞

dEE
exp (−kξa)

kξa
cosh2 (kξx) exp

(

−2kξy
2

a

)

E/2kBT 2

cosh2 (E/2kBT )
.

At low temperatures T < ∆0ξ/a the main contribution
to the energy integral comes from the region E . T . This
allows us to neglect the energy dependence of kξ(E) and

replace kξ(E) → kξ0 =
√

2∆0/D = 1/ξ∆. In this case,

using
∫∞

−∞
x2 cosh−2x dx = π2/6, we obtain

κx(r) =
16π2

3
C2

vk2
BTN0D

exp (−kξ0a)

kξ0a

× cosh2 (kξ0x) exp

(

−2kξ0y
2

a

)

. (21)

Near the bottleneck region the local thermal conductivity
has a form κ(x, y) = κ0Fx(x)Fy(y), where the function

Fx(x) = cosh2 (kξ0x) has minimum at x = 0 and Fy(y) =
exp

(

−2kξ0y
2/a
)

has maximum at y = 0. The total flow
per unit length along the field through the bottleneck is
given by

Ith ≈ κ0Fx(x)

[∫ ∞

−∞

Fy(y)dy

]

∇xT. (22)

Energy conservation requires that Ith has to be x-
independent. Therefore, the temperature drop ∆T across
the bottleneck can be evaluated as

∆T ≈
∫∞

−∞
F−1

x (x)dx

κ0

∫∞

−∞
Fy(y)dy

Ith (23)

meaning that the total thermal conductance through this
region K = Ith/∆T can be evaluated as

K = κ0

∫∞

−∞
Fy(y)dy

∫∞

−∞
F−1

x (x)dx
=

8π5/2C2
v

3
√

2
k2

BTN0D
exp (−kξ0a)
√

akξ0

.

(24)
Evaluating the total average energy flow density

Jth =
Ith + Ith/4

a
√

3/2
=

5

2
√

3
K

∆T

a
, (25)

we obtain the final result for the low-field/low-
temperature limit for the thermal conductivity in the
vortex-lattice state

κ/T ≈ 10
√

2π5/2C2
v

3
√

3
k2

BN0D
exp (−kξ0a)
√

kξ0a

=
10

√
2π5/2C2

v

3
√

3
k2

BN0D

exp

(

−
√

(8π/
√

3)Bc2/B

)

(

(8π/
√

3)Bc2/B
)1/4

(26)

where we used relations Bc2 = Φ0k
2
ξ0/4π and kξ0a =

√

(8π/
√

3)Bc2/B.

Introducing the thermal conductivity in the normal

state κN = π2

3 k2
BN0DT, we rewrite the final result in

the form

κ

κN
≈ 10

√

2π

3
C2

v

exp

(

−
√

(8π/
√

3)Bc2/B

)

(

(8π/
√

3)Bc2/B
)1/4

≈ 130

(

B

Bc2

)1/4

exp

(

−3.81

√

Bc2

B

)

. (27)

This parameter-free analytical result provides theoretical
lower limit for the heat transport in the mixed state in an
isotropic dirty s-wave superconductor at low field. The
constant 3.81 in the exponent is significantly higher than
the constant 1.486 which we evaluated for the clean case
(4) meaning that the scattering drastically suppresses the
quasiparticle thermal conductivity at low fields.

V. DISCUSSION OF EXPERIMENT

Rather limited set of experimental data is available on
electronic contribution to the thermal conductivity at low
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temperatures and low magnetic fields, since phonon con-
tribution should be accurately subtracted in this regime.
To our knowledge, the only experimental data on elec-
tronic thermal conductivity which clearly demonstrate
low-field/low-temperature behavior expected for an s-
wave superconductor are reported for Nb in Refs. 1 and
2 and for V3Si in Ref. 12. In these experiments the
samples were in the clean limit. In Ref. 2 the elec-
tronic thermal conductivity was fitted by the expression
κ ∝ exp(−β

√

Bc2/B) for values of B up to about Bc2/3,
with β = 1.66. This number is slightly higher than our
estimate of β = 1.486 in Eq. (4). This difference can be
explained by the influence of impurity scattering. The
shape of field dependence of thermal conductivity for
V3Si reported in Ref. 12 is in qualitative agreement with
the predicted exponential dependence, however the quan-
titative analysis was not made and the value of β was not
explicitly extracted. In a field B = Bc2/20 the value of
κ ≈ 2.5 · 10−3κN provided in Ref. 12 exceeds our dirty-
limit estimate, Eq. (27), by about two orders of mag-
nitude. This discrepancy can be naturally attributed to
the fact that measured V3Si samples were in the clean
limit. The magnitude of thermal conductivity at not
very small magnetic fields is in good qualitative agree-
ment with calculations made for the clean limit using
the Landau-level expansion and assuming homogeneous
temperature gradient28. To our knowledge, there are no
data available on electronic thermal conductivity of dirty
s-wave superconductors in the low-field/low-temperature
limit. In available measurements of alloys1 and dirty Nb
samples3 the thermal conductivity at low fields and tem-
peratures is dominated by phonons and separating elec-
tronic contribution is a challenging task.

VI. EXTENSION TO A TWO-BAND

SUPERCONDUCTOR

Here we extend the above formalism to a two-band
superconductor. At present, the most established exam-
ple of such system is MgB2, which is characterized by
two electronic bands: π-band and σ-band, see, e. g. re-
cent review Ref. 29. The quasi-two-dimensional σ-band
is characterized by stronger superconductivity than the
three-dimensional π -band. Heat transport in a two-band
superconductor was studied theoretically in Ref. 9 assum-
ing clean limit conditions and using the averaging over
unit cell method4,5. In the dirty limit, theory of density
of states in the mixed state and the upper critical field

for MgB2 was developed in Refs. 30 and 31. Below we
extend the calculations of the heat transport presented
above, to the case of a diffusive two-band superconduc-
tor, taking MgB2 as an example.

In the presence of two electronic bands with different
energy gaps, low-temperature behavior of thermal trans-
port is determined by the band with lower gap (π-band).
Still, the generalization from single-band to two-band
case involves not simply renormalization of the energy
gap, but also correction to the asymptotic behavior of
Green’s function in the π -band and to the upper critical
field.

The Usadel equation for the π-band reads

Dπ

(

∇2θπ−p2 cos θπ sin θπ

)

+2∆π cos θπ+2iE sin θπ =0,
(28)

where Dπ and ∆π(r) are the diffusion constant and gap
for the π-band. Similar to a single-band case, asymp-
totics of the Green’s function in the π-band at large dis-
tance from the vortex core is given by

θ̃π,r(r) = Cπ
exp(−kπr)√

kπr
. (29)

with

kπ(E) =
√

2
(

∆2
π0 − E2

)1/4
/
√

Dπ.

The main exponential dependence of the zero-energy
Green’s function at the bottleneck point is ∝ exp(−kπ0a),

where kπ0 = kπ(0) =
√

2∆π0/Dπ, which gives

kπ0a =
√

Bπ/B, (30)

Bπ =
2∆π0

Dπ

2Φ0√
3

. (31)

Therefore, the magnetic field dependence of thermal con-
ductivity is determined by the field scale Bπ and can be
presented in the form similar to Eq. (27),

κ

κπN
≈ 10

√

2π

3
C2

π

exp
(

−
√

Bπ/B
)

(Bπ/B)
1/4

, (32)

where κπN = π2

3 k2
BNπDπT is the partial π-band contri-

bution to the normal-state thermal conductivity.
To proceed further, we have to find relation between

the π-band field scale Bπ and the upper critical field Bc2

for a two-band superconductor. The upper critical field
at low temperatures, T ≪ Tc, is given by31

Bc2(0) = ac2B
s
c2(0), ac2 = exp



−W1+W2−ln rx

2
+

√

(W1+W2−ln rx)2

4
+ W1 ln rx



 , (33)

where indices 1 and 2 correspond to the σ and π bands,

W1,2 =
∓(Λ11 − Λ22)/2 +

√

(Λ11 − Λ22)2/4 + Λ12Λ21

Λ11Λ22 − Λ12Λ21
,

Λαβ is the coupling-constant matrix, rx = Dσ/Dπ, Dσ,π
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are the diffusion constants in σ and π bands,

Bs
c2(0) =

∆BCSΦ0

2πDσ
(34)

is the single-band upper critical field for the σ-band, and
∆BCS = πe−γETc ≈ 1.764Tc (γE ≈ 0.5772 is the Euler
constant).

To make estimates for MgB2, we use the follow-
ing coupling matrix elements30,31: Λ11 ≈ 0.81, Λ22 ≈
0.278, Λ12≈ 0.115, Λ21≈ 0.091, which gives W1≈ 0.088
and W2 ≈ 2.56. With such coupling matrix the two-
band BCS model gives30 ∆π0 ≃ 0.3∆σ0 ≃ 0.177πTc.
Since the parameter W1 is small, typically the inequal-
ity W1| ln rx| ≪ (W2 − ln rx)

2
/4 is valid. In this case

one can expand Eq. (33) with respect to W1 and obtain
simple result

ac2 ≈ 1 +
W1 ln rx

W2 − ln rx
, (35)

meaning that the upper critical field is close to Bs
c2(0)

and is mostly determined by the coherence length of the
σ-band. Using Eqs. (31), (33), and (34), we obtain the
relation between Bπ and Bc2(0)

Bπ =
8π√
3ac2

∆π0

∆BCS

Dσ

Dπ
Bc2(0), (36)

which presents the main result of this section. This scale
has to be compared with the scale (8π/

√
3)Bc2(0) for the

single-band case.
In order to determine the pre-exponential factor Cπ

in Eqs. (29) and (32), we have to calculate the Green’s

function θ̃π,r(r), which requires solution of the full two-
band Usadel problem, as described in Ref. 30. An im-
portant parameter is the ratio of diffusion coefficients
in two bands rx . For illustration, we consider two
cases here: rx = 1 and 0.2, for which the ratios of
the coherence lengths in the two bands are ξπ/ξσ =
√

(Dπ/Dσ)(∆σ0/∆π0) = 1.83 and 4.1. For these two

cases we compute Bπ ≈ 0.32(8π/
√

3)Bc2(0), Cπ ≈ 3.6

for rx = 1 and Bπ ≈ 0.065(8π/
√

3)Bc2(0), Cπ ≈ 2.9 for
rx = 0.2. This gives

κ

κπN
≈130

(

B

Bc2(0)

)1/4

exp

(

−2.15

√

Bc2(0)

B

)

, rx = 1

≈130

(

B

Bc2(0)

)1/4

exp

(

−0.98

√

Bc2(0)

B

)

, rx =0.2

We can see that the field scale in the two-band case is
strongly reduced in comparison with the single-band case
leading to large enhancement of the thermal conductiv-
ity at low fields. This reduction is mostly caused by the
smaller energy gap in the π band. Another factor which
may contribute is possible large value of the diffusion
constant Dπ. The smaller field scale caused by the larger
coherence length in the π-band is an established feature

and important fingerprint of the two-band superconduc-
tivity in MgB2. This small scale was experimentally ob-
served not only in the thermal conductivity15, but also
in the specific heat32 and flux-flow resistivity33. For the
magnetic field applied along c-axis it is 3-5 times smaller
than Bc2. In this case, the low-field regime described by
Eq. (32) is expected at fields < Bc2/30 ≈ 100G. Unfortu-
nately, most experimental data of Ref. 15 are presented
for higher magnetic fields.

We shall note that in available MgB2 single crystals
estimates suggest that the σ band is in the clean limit.
However, our results should be qualitatively applicable
even in this case. The reason is that dominant contribu-
tion comes from the π-band which is in the dirty limit,
as argued in Ref. 30 where the low-energy DoS in the
vortex state of MgB2 was calculated.

In summary, we have readdressed the problem of the
heat transport of a superconductor in the mixed state
at low temperatures and low magnetic fields, going be-
yond the circular unit cell approximation. In the clean
limit we estimated the numerical constant β in the low-
field asymptotics of the electronic thermal conductiv-
ity, κ ∝ exp(−β

√

Bc2/B), using the Bogolyubov wave
functions of the localized states at zero energy. In the
dirty limit we have performed quantitative analysis of
heat transport using Keldysh-Usadel formalism and have
shown that heat transport is limited by tunneling be-
tween adjacent vortices across certain local points (bot-
tlenecks). In the isotropic s-wave superconductor we have
obtained parameter-free analytical solution which pro-
vides theoretical lower limit for heat transport in the
mixed state. Based on this solution, one can conclude
that low-field/low-temperature thermal conductivity in
the mixed state is drastically suppressed by impurity
scattering. We have extended our results to the case of a
two-band superconductor, taking MgB2 as an example.
In this case, we predict an enhancement of heat transport
with strong dependence on the ratio of gaps and diffusion
constants in different bands.
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8 C. Kübert and P. J. Hirschfeld, Phys. Rev. Lett. 80,

4963(1998).
9 H. Kusunose, T. M. Rice, and M. Sigrist, Phys. Rev. B,

66, 214503 (2002).
10 V. Mishra, A. Vorontsov, P. J. Hirschfeld, and I. Vekhter,

Phys. Rev. B 80, 224525 (2009)
11 E. Boaknin, R. W. Hill, Cyril Proust, C. Lupien, and L.

Taillefer, and P. C. Canfield, Phys. Rev. Lett. 87, 237001
(2001).

12 E. Boaknin, M. A. Tanatar, J. Paglione, D. Hawthorn, F.
Ronning, R. W. Hill, M. Sutherland, L. Taillefer, J. Sonier,
S. M. Hayden, and J. W. Brill, Phys. Rev. Lett. 90, 117003
(2003).

13 H. Shakeripour, C. Petrovic, and Louis Taillefer, New Jour-
nal of Physics, 11, 055065 (2009).

14 M. Sutherland, N. Doiron-Leyraud, L.Taillefer, T. Weller,
M. Ellerby, and S. S. Saxena, Phys. Rev. Lett. 98, 067003
(2007)

15 A. V. Sologubenko, J. Jun, S. M. Kazakov, J. Karpinski,
and H. R. Ott, Phys. Rev. B, 66, 014504 (2002).

16 M. A. Tanatar, J.-Ph. Reid, H. Shakeripour, X. G. Luo,
N. Doiron-Leyraud, N. Ni, S. L. Bud’ko, P. C. Canfield, R.
Prozorov, and L. Taillefer, Phys. Rev. Lett. 104, 067002
(2010).

17 J.-Ph. Reid, M. A. Tanatar, X. G. Luo, H. Shakeripour,
N. Doiron-Leyraud, N. Ni, S. L. Bud’ko, P. C. Canfield,

R. Prozorov, and L. Taillefer, Phys. Rev. B 82, 064501
(2010).

18 Y. Machida, S. Sakai, K. Izawa, H. Okuyama, and T.
Watanabe, arXiv:1009.2432.

19 C. Caroli, P. -G. de Gennes, and J. Matricon, Phys. Letters
9, 307 (1964); C. Caroli and J. Matricon, Physik Konden-
sienten Materie 3, 380 (1965); J. Bardeen, R. Kümmel, A.
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