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We present a well-controlled perturbative renormalization group (RG) treatment of supercon-
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I. INTRODUCTION

In a variety of recently discovered materials, supercon-
ductivity apparently arises directly from the electron cor-
relations themselves. However, these materials are com-
plex, and many material specific details can play a role
in the mechanism of superconductivity. The problem is
greatly simplified in the weak coupling limit, where we
recently showed1 that an asymptotically exact treatment
of the problem is possible, valid in cases in which the su-
perconducting state emerges at low temperatures from a
well-formed Fermi liquid. Nonetheless, even under these
circumstances, the character of the superconducting state
and the transition temperature depend in a complicated
way on details of the band-structure, both near and far
from the Fermi surface.

To the extent that there are basic principles at work
underlying the mechanism of unconventional supercon-
ductivity, it would be a great advance to find simple
model systems which exhibit such behavior. Here, we
consider the possibility of unconventional superconduc-
tivity in some model systems with particularly simple
electronic structures, where controlled theory is possible,
and where, conceivably, experimental tests of the theory
are feasible. Specifically, we consider circumstances in
which superconductivity may occur in a two dimensional
electron gas (2DEG) in a high mobility heterostructure.
Here, due to the the stiffness of the lattice and the lim-
ited phase space for electron-phonon scattering, electron-
phonon coupling is probably negligible, and the single-
particle dynamics can be treated accurately within a ro-
tationally invariant effective mass approximation. More-
over, the strength of the correlations can, to a large ex-
tent, be tuned by varying the electron density.

The possibility of an electronic pairing mechanism in
systems with rotational invariance was first put forth in
a seminal paper by Kohn and Luttinger2. Although U ,
the bare interactions among electrons are repulsive, there
are effective attractive interactions that arise at O(U2).
Kohn and Luttinger focussed on the portion of the ef-
fective attractions associated with the non-analyticities
in χ(q), the particle-hole susceptibility, at momentum
q = 2kF which reflect the sharpness of the Fermi surface
at zero temperature. More generally, what is required for

this mechanism to work is strong q dependence of χ(q)
for q ≤ 2kF . Indeed, the Kohn Luttinger instability of a
3 dimensional rotationally invariant system results in the
formation of a p-wave superconducting ground state due
to the peak in χ(q) near q = 03,4. While this result is
valid only in the weak-coupling regime where U ≪ EF , it
is widely believed that the p-wave ground state obtained
this way is adiabatically connected to the more realistic
(and more strongly correlated) example of Helium-35.

However, the Kohn-Luttinger effect is exponentially
weaker in a rotationally invariant 2DEG6–8, due to the
fact χ(q) is independent of momentum for momenta
q ≤ 2kF . It was later shown that at O(U3), the 2DEG
does exhibit a pairing instability9. Still, at least in weak-
coupling, electronically mediated superconductivity in
the 2DEG is negligible.

In this paper, we show that by perturbing the 2DEG,
it is possible to significantly enhance the superconduct-
ing transition temperature by engineering circumstances
in which instabilities arise at O(U2) in perturbation the-
ory. We present asymptotically exact1 weak coupling so-
lutions of the superconducting instability in several sys-
tems that are variants of the simplest, rotationally in-
variant 2DEG. As a first example, we show that par-
tially spin-polarizing the 2DEG produces a non-unitary
p+ ip superconductor. Y. Kagan and A. Chubukov have
previously addressed this problem using an expansion in
powers of the electron concentration10, and their result
reduces to ours in the weak coupling limit. As a second
example, we consider the 2DEG in a semiconductor het-
erostructure quantum well with two populated subbands.
We show that this system can possess both p-wave and
d-wave ground states and present the phase diagram of
this system.

This paper is organized as follows. In the next section,
we review the method developed in Ref.1 and discuss
its straightforward generalization needed for the present
context. In Section III, the effect of partially polarizing
the 2DEG is studied. In Section IV, we consider two
subbands in a 2DEG quantum well. Technical details of
the various calculations are presented in the Appendix.
In a forthcoming paper11 we will consider a variety of
slightly more complex situations pertinent to particular
semiconductor heterostructures.



II. PERTURBATIVE RENORMALIZATION

GROUP TREATMENT OF

SUPERCONDUCTVITY

In this section, we review the prescription of Ref.1 and
discuss its generalization to the present context. We in-
tegrate out high energy modes in two steps. In the first
step, we integrate out all modes outside a narrow range
of energies Ω about the Fermi energy. Ω is not a phys-
ical energy in the problem, but rather a calculational
device. It is chosen large enough so that the interactions
can be treated perturbatively but small enough that it
can be set to zero in all non-singular expressions with-
out causing significant error, i.e. it is chosen to satisfy
the inequalities ρU2 ≫ Ω ≫ µ exp{−[1/ρU ]}, where ρ
is the density of states at the Fermi energy and µ is the
Fermi energy. The effective interactions generated in the
process then serve as the “bare” interactions in a second
step, in which the remaining problem is solved using the
perturbative renormalization group procedure of Shankar
and Polchinski12,13. Tc is, up to an unknown multiplica-
tive constant, given by the energy scale, T ∗, at which a
relevant interaction grows to be of order 1. It was shown
by careful analysis of perturbative expressions up to 4th
order in the interaction strength that the resulting ex-
pression for T ∗ is independent of Ω.

The analysis of Ref.1 leads to the following prescrip-
tion for computing the leading order asymptotic behav-
ior of Tc for weak interactions: First, compute the effec-
tive interaction in the Cooper channel at energy scale Ω,

Γ(a)(k̂, k̂′), to second order in the interactions. Here, k̂

and k̂′ denote points on the Fermi surface, and Γ is the
vertex for scattering a pair of electrons with momenta

k̂ and −k̂ to states with momenta k̂′ and −k̂′, where if
there are multiple band indices, the subband index is im-
plicitly determined depending on whether the momenta
are on one Fermi surface or the other, and where there
is a different matrix depending on whether the electron
pair forms a spin singlet (Γ(s)) or a spin triplet (Γ(t)).
We then construct the related dimensionless matrix

g
(a)

k̂,k̂′
≡ ρ

√

v̄/v(k̂)Γ(a)(k̂, k̂′)

√

v̄/v(k̂′), (1)

where v(k̂) is the magnitude of the Fermi velocity on the
Fermi surface of the corresponding subband, and ρ is the
total density of states at the Fermi energy. Manifestly, g
is a real, symmetric, hence Hermitian matrix, so it has a
complete set of eigenstates and eigenvalues,

∑

k̂′

g
(a)

k̂,k̂′
φ

(a,m)

k̂′
= λ(a,m)φ

(a,m)

k̂
. (2)

Among all the possible solutions, we identify the most
negative eigenvalue,

λ ≡ Min
[

λ(a,m)
]

, λ < 0 (3)

Then,

Tc ∼ µ exp[−1/|λ|]. (4)

III. PARTIALLY POLARIZED FERMI SURFACE

As a first example, we consider a partially spin polar-
ized 2DEG with short-ranged repulsive interactions:

H = H0 +H1

H0 =
∑

σ

∫

d2k

(2π)2
Eσ,σ′ (k)ψ†

σ(k)ψσ′(k)

H1 = U

∫

d2k1d
2k2d

2k3

(2π)6
ψ†
↑(k1)ψ

†
↓(k2)ψ↓(k3)ψ↑(k4)

(5)

where k4 = k1 + k2 − k3,

Eσ,σ′ = ǫkδσ,σ′ + h · τσσ′ , (6)

and h is a mean-field that renders the ground state
spin-polarized. Such a partially-polarized system can
occur in a narrow-well semiconductor heterostructure in
the presence of a parallel magnetic field (in which case
h = gµBH‖), or in a ferromagnetic phase with spon-
taneously broken symmetry, such as probably occurs in
the Hubbard model away from half-filling in the strong-
coupling limit U ≫ t14,15. (However, in the latter case, it
requires something of an intuitive leap to treat the resid-
ual interactions beyond those that produce the mean-
field h as “weak.”)

Since the Fermi surfaces are spin-polarized, singlet
pairing is suppressed, so the leading superconducting in-
stability will therefore be in the spin triplet channel. We
first consider the limit in which there is no spin-orbit
coupling, in which case, the two particle scattering am-
plitude is a separate function for each spin-polarization.
As derived in the appendix,

Γ↑(k̂, q̂) = −U2χ↓(~k − ~q)

Γ↓(k̂, q̂) = −U2χ↑(~k − ~q)

where χσ is the contribution of spin σ electrons to the
susceptibility.

In the case of a rotationally invariant system with

ǫ~k,σ = k2/2m+σh, vf,σ(k̂) = kf,σ/m and ρσ = ρ = m/2π

is independent of the spin-polarization. Therefore the
matrix gk̂,q̂ defined in the previous section is

gσ
k̂,q̂

= ρΓσ(k̂, k̂′) (7)

The particle-hole susceptibility for this system has the
following well-known form (see the appendix):

χσ(~q) =
ρ

2

[

1 − Re
√

q2 − (2kFσ)2

q

]

(8)

Thus, χσ(q) is a constant for q < 2kFσ, has a derivative
discontinuity at q = 2kFσ, and vanishes as 1/q2 when
q >> 2kFσ.
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The rotational invariance of the problem implies that
the triplet eigenfunctions are of the form

ψt,m
σ (k̂) = ψ(kFσ) cos

(

mθk̂

)

(9)

where m is an odd integer. The eigenvalue problem for
this system therefore reduces to the integral expressions:

λ(m,↑) = −ρU2

∫

dθ

2π
χ↓ (2kF↑ |sin (θ/2)|) cos (mθ)

λ(m,↓) = −ρU2

∫

dθ

2π
χ↑ (2kF↓ |sin (θ/2)|) cos (mθ)

(10)

where θ is the angle relative between k̂ and q̂.
Without loss of generality, we suppose that kF↓ < kF↑.

For any k̂, q̂ on the smaller (spin-down) Fermi surface, k̂−
q̂ < 2kF↓ < 2kF↑ so the effective interaction, ∼ χ↑(k̂− q̂),
is a constant. Therefore, it follows that λm↓ = 0 for
all m or in other words, the smaller Fermi surface has
no superconducting instability to O(U2). ( Presumably,
λm,↓ ∼ O(U3). )

Conversely, the effective interaction between electrons

on the larger (spin-up) Fermi surface is ∼ χ↓(k̂−q̂), which
does depend on the relative position of the incoming and
outgoing electrons on the Fermi surface. Using Eq. 8, the
above expression for the eigenvalue on the larger Fermi
surface becomes

λm↑(η) =
ρ2U2

π

∫ π

θc

dθ

√

sin2 θ
2 − η2

sin θ
2

cos (mθ) (11)

where η = (kF↓/kF↑), 0 ≤ η ≤ 1, and θc = 2 sin−1 η. As
can be seen from the equation above, λm↑(0) = λm↑(1) =
0. That is, in the limit where the Fermi surface is either
completely polarized, or completely unpolarized, there
is no superconducting instability to O(U2). However,
for intermediate values of the polarization, the integral
above yields

λ1↑(η) = −ρ2U2η (1 − η) (12)

which is clearly negative for all intermediate values of η.
This is the main result of this section: by polarizing the
Fermi surfaces in two dimensions, there is a significant
enhancement of p-wave superconductivity. The optimal
pairing strength occurs when η = 1/2, so that

Max [λm↑(η)] = λ1↑(η = 0.5) = − (ρU)2

4
(13)

( Note that Eq. 7 of Ref.10 reduces to this result in the
limit of weak interaction. ) For completeness, we quote
the next leading eigenvalue, which corresponds to the f-
wave (i.e. m = 3) solution:

λ3↑(η) = −ρ2U2η
[

1 − η
(

3 − 4η2 + 2η4
)]

(14)

which is not symmetric about the point η = 0.5.

Weak but non-vanishing spin orbit coupling will gener-
ically change this situation, since superconductivity will
be induced in the minority fluid by the proximity effect as
soon as the majority fluid becomes superconducting. In
2D, this induced superconductivity will generally track
the fundamental order parameter.

IV. TWO SUBBANDS IN A 2DEG

In this section, we consider the case of a 2DEG in
a semiconductor heterostructure having two subbands,
with Hamiltonian:

H = H0 +H1

H0 =
∑

a=1,2

∑

σ

∫

d2k

(2π)2
ǫk,aψ

†
a,σ(k)ψa,σ(k)

H1 =
∑

a..d

∑

σ,σ′

V σ,σ′

ab,cd

∫

d2k1d
2k2d

2k3

(2π)6
[

ψ†
a,σ(k1)ψ

†
b,σ′ψc,σ′(k3)ψd,σ(k4)] (15)

where a is the subband index and is used to distinguish
the smaller (a = 1) and larger (a = 2) Fermi surface, and
ǫk,a = k2/2m + δa with δ1 = 0 and δ2 > 0. The inter-
actions are assumed to be short-ranged, consisting of an
intra-band repulsion U , an inter-band repulsion V , and
an inter-band pair-hopping amplitude J . The interaction
matrix in the basis (1σ1σ′, 1σ2σ′, 2σ1σ′, 2σ2σ′) is thus

V σ,σ′

ab,cd =







Uσσ′ 0 0 Jσσ′

0 0 Vσσ′ 0
0 Vσσ′ 0 0

Jσσ′ 0 0 Uσσ′






(16)

where

Uσσ′ = U (1 − δσσ′ )

Jσσ′ = J (1 − δσσ′)

Vσσ′ = V (17)

As before, rotational invariance enables us to label the
eigenstates by the eigenvalue of the rotation operator,

φ
(m)

k̂
= φ(m)

a cos (mθ) (18)

where the complex amplitude φ
(m)
a depends only on the

subband index associated with k̂, θ is the angle between

k̂ and an arbitrarily defined x axis, and m must be an
even integer in the singlet channel and an odd integer
in the triplet channel. Consequently, for each integer m,
rotational symmetry reduces the eigenvalue problem to a
2 × 2 problem,

∑

a,a′

g̃
(m)
a,a′φ

(m)
a′ = λ(m)φ(m)

a (19)
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where

g̃
(m)
a,a′ ≡

∫

a

dk̂

2π

∫

a′

dk̂

2π
g
(y)

k̂,k̂′
e−imθeimθ′

, (20)

where y = s (singlet) for m even and y = t (triplet) for
m odd. The most negative eigenvalue for fixed m is

λ(m) = −
(

g̃
(m)
1,1 + g̃

(m)
2,2

2

)

(21)

−

√

√

√

√

(

g̃
(m)
1,1 − g̃

(m)
2,2

2

)2

+ |g̃(m)
1,2 |2

We first consider the spin triplet channel (m odd)
which is only a slight extension of the result obtained
for a partially polarized Fermi surface. As shown in the
Appendix, for odd m, the effective interaction is diagonal
in the subband index, and depends on U , V , but not J :

g
(t)
1,1(k̂, q̂) = −ρU2χ1,1(k̂ − q̂) − 2ρV 2χ2,2(k̂ − q̂)

g
(t)
2,2(k̂, q̂) = −ρU2χ2,2(k̂ − q̂) − 2ρV 2χ1,1(k̂ − q̂)

g
(t)
1,2(k̂, q̂) = 0 (22)

where

χa,b(k) =

∫

d2p

(2π)2
f(ǫp+k,a) − f(ǫp,b)

ǫp+k,a − ǫp,b
(23)

is the particle-hole susceptibility generalized to the two
band system. The intraband susceptibilities are precisely
the same functions used before:

χa,a(~q) =
ρ

2

[

1 − Re
√

q2 − (2kFa)2

q

]

(24)

with the subband index playing the role that the spin
played in the previous section. Therefore, we may sim-
ply transcribe the results found in the previous section to
the present context. The band which forms the smaller
Fermi surface (a = 1) does not exhibit a superconducting
instability to O(U2). The larger Fermi surface exhibits a
triplet p-wave instability with a pairing strength deter-
mined solely by V :

λ(1)(η) = −4ρ2V 2η(1 − η) (25)

where η = (kF1/kF2).
In the spin-singlet channel, the matrix g has off-

diagonal components:

g
(s)
1,1(k̂, q̂) = ρU1 − 2ρV 2χ2,2(k̂ − q̂) (26)

g
(s)
2,2(k̂, q̂) = ρU2 − 2ρV 2χ1,1(k̂ − q̂)

g
(s)
1,2(k̂, q̂) = ρU12 + ρV J

[

χ1,2(k̂ + q̂) + χ1,2(k̂ − q̂)
]

where Uab are momentum independent interactions,

U1 ≡ U + U2P1(Ω) + J2P2(Ω) + U2χ1,1(k̂ + q̂)

U2 ≡ U + U2P2(Ω) + J2P1(Ω) + U2χ2,2(k̂ + q̂)

U12 ≡ UJ [P1(Ω) + P2(Ω)] (27)

where the particle-particle susceptibility,

Pa(Ω) ≡
∫

d2q

(2π)2
2f(ǫq,a) − 1

iΩ − 2ǫq,a

∼ ρ log

[

EF − δa
Ω

]

+ O(Ω), (28)

is a momentum-independent constant which diverges log-
arithmically at low energies. Despite this divergence, the
second order contributions to Uα are unimportant, since
they do not enter the gap equation for any m 6= 0, and
any s-wave solution is already killed by the first order
terms proportional to U .

For m > 0 and even, the effective intra-band interac-
tion depends only on the interaction V and is non-zero
only for the larger Fermi surface, whereas the inter-band
interaction depends both on V and J :

g̃
(m)
1,1 = 0

g̃
(m)
2,2 = −2V 2ρ

∫

dθ

2π
χ1,1 (2kF2 |sin (θ/2)|) cos (mθ)

g̃
(m)
1,2 = 2V Jρ

∫

dθ

2π
χ1,2 (kθ) cos (mθ)

kθ = kF2

√

(1 − η)
2
+ 4η sin2 (θ/2). (29)

The explicit expression for the inter-band susceptibility
χ1,2(q) is derived in the Appendix. Since the m = 0
eigenvalues are always positive, the dominant singlet in-
stability is in the d-wave (m = 2) channel. The quantity

g̃
(2)
2,2 is obtained by computing

g̃
(2)
2,2 = −2V 2ρ2

∫ π

−π

dθ

2π
dθ

Re
√

sin2 θ
2 − η2

sin θ
2

cos (2θ)

= −V 2ρ2η (η − 1)
(

η2 + η − 1
)

(30)

The interband interaction g̃
(2)
1,2 is also obtained using Eq.

26:

g̃
(2)
1,2 = −V Jρ

2

2π
Φ(η) (31)

where, for 0 ≤ x < 1,

Φ(x) =
πx4 + 2 sin−1 x

x2
− 2

√
1 − x2

x
(32)

This function is discussed in detail in the Appendix.
An important property of Φ(x) is that it is a monotoni-
cally increasing function of x for 0 ≤ x < 1 (see Fig. 3).
Therefore, the effective interband scattering grows with
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η. The pairing strength in the d-wave channel is obtained
from these quantities via

λ(2)(η) =
g̃
(2)
2,2

2
− 1

2

√

(

g̃
(2)
2,2

)2

+ 4
(

g̃
(2)
1,2

)2

(33)

Having derived closed form expressions for the p-wave
and d-wave pairing strengths, we can construct the phase
diagram, shown in Fig. 1. The phases are labeled ac-
cording to the symmetry of the most negative eigen-
value, so the phase boundaries are the lines at which
λ(2) = λ(1) < 0. Since the d-wave and p-wave eigenval-
ues are both negative for all 0 ≤ η ≤ 1, where one phase is
stable, the other is metastable. It would require different
methods of analysis to completely characterize the phase
competition. However, in weak coupling, the phase with
the larger |λm| has an exponentially larger Tc, and so
gaps the entire Fermi surface at temperatures far above
the putative transition temperature of the subdominant
phase. Thus, a BCS mean-field treatment of this prob-
lem would suggest that at low temperatures, there is a
direct, first order transition, or at most an exponentially
narrow region of phase coexistence between the extremal
pure d-wave and p-wave phases.

Since the pair-hopping term only affects spin-singlet

superconductivity, and since |λ(1)| > |g̃(2)
2,2|, it follows that

for J = 0, the p-wave solution always remains the favored
ground state, as can be seen from Fig. 1(a). However, as
the interband scattering is enhanced, the d-wave pairing
strength grows. Since the interband scattering increases
monotonically as a function of both η and J , it is seen
that for sufficiently large values of either parameter the
p-wave superconductivity gives way to a d-wave ground
state. In Figs. 1(c-d), we show how the magnitude of
λ(1) and λ(2) depend on η, from which one can see that
Tc is maximal in the p-wave channel when η = 0.5. How-
ever, when J 6= 0, the d-wave channel grows monotoni-
cally with η and ultimately overtakes the p-wave pairing
strength as η → 1. Note, however, that η can never
equal unity in this context, since it is determined by the
thickness of the quantum well.

V. DISCUSSION

We have obtained analytical expressions for various
unconventional superconducting ground states of a clean
2DEG in the presence of weak, short-ranged repulsive in-
teractions. Ultimately, to make contact with experiments
involving real 2DEGs, we must take into account the
Coulomb interactions. In the small rs limit, the Coulomb
interactions are sufficiently well screened that it may be
reasonable to treat them as weak and short-ranged18.
We thus imagine we can relate the physical problem to
a problem with short-ranged interactions and speculate
on two ways in which unconventional superconductivity
could be found in the 2DEG in physically realizable semi-
conductor heterostructures. (We shall present more com-
plicated examples in a forthcoming publication.11)

In the first scenario, an in-plane magnetic field is ap-
plied to partially polarize the 2DEG in a narrow quantum
well. This system is predicted to exhibit p-wave pairing
with a transition temperature which is non-monotonic in
the magnetic field. The optimal transition temperature
is obtained for a magnetic field at which the ratio of the
distinct spin Fermi momenta is η = 1/2. In the sec-
ond scenario, the 2DEG is confined to a relatively broad
quantum well, and the density is tuned to the range in
which two transverse subbands are occupied. For fixed
total electron density, the ratio, η2, of densities in the
two subbands increases with increasing thickness w of
the quantum well. When this ratio is small, a p-wave
groundstate arises, with a Tc that rises sharply with in-
creasing η so long as η < 1/2. However, this gives rise to
a d-wave ground states above a certain critical thickness.

Insight into the dependence of V/J on the thickness, w,
is obtained by considering the Coulomb interactions. A
simple estimate shows that for kFw ≪ 1, V ∼ e2/kF and
J ∼ V (wkF ). Therefore, for thicker quantum wells, J
becomes increasingly important and favors d-wave pair-
ing whereas thinner quantum wells should exhibit p-wave
pairing. Depending on the ratio of V/J , the optimal Tc

occurs either for η ≈ 1/2 (p-wave) or for the largest pos-
sible η (d-wave). In both cases, Tc ∼ EF exp

[

−α/(ρV )2
]

where α is an O(1) constant. We have found that for d-
wave superconductivity in the 2 subband system, values
as low as α ∼ 1 are within reach.

Three practical considerations warrant mention. Due
to the unconventional nature of the superconductvity, it
is very fragile to even weak quenched disorder. There-
fore, the results presented here are likely to be realized
only in the purest samples with mean free paths exceed-
ing the Fermi wavelength by several orders of magnitude.
Furthermore, for small rs, the plasma frequency is small
compared to the Fermi energy, i.e. ωp ∼ √

rsEF , so
even if it is reasonable to treat the interactions as short-
ranged at low energies, this approximation is certainly
not valid all the way to the Fermi energy. Finally, since
the transition temperatures are exponentially low in the
effective interactions, ultimately the superconductivity
studied here is likely to be observable only in the regime
rs ∼ 1, where the long-range character of the Coulomb
interaction may not be negligible, and where, even for
short-range interactions, a well-controlled solution to the
problem is unfeasible. We therefore are forced rely on the
hope that the asymptotic results smoothly extrapolate to
the intermediate coupling regime, where it is conceivable
that these states can be observed in experiment.

With these caveats, we turn to the most uncertain part
of the discussion, and make the following crude quan-
titative estimate of Tc based on our calculations: We
identify V with the Fourier transform of the Coulomb
interaction evaluated at kF , i.e. V ≈ e2π/kF , from
which it follows that ρV ≈ (rs/4). Since we are go-
ing to extrapolate to rs ∼ 1 in any case, we simply
ignore subtleties associated with the small value of ωp.
Then, Tc ∼ EF exp[−α(4/rs)

2], where, for optimal cir-

5



ρ V
ρ 

J
0 0.1 0.2

0

0.2

0.4

0.2 0.4 0.6

0.2

0.4

0.6

η

ρ 
J

0 0.5 1
0

1

2

η

λ/
(ρ

 V
)2

 

 

0 0.5 1
0

1

2

η

λ/
(ρ

 V
)2

p−wave
d−wave

d−wave d−wave

p−wave

J=0.2VJ=0

p−wave

(b)

(c)

(a)(a)

(d)

ρV=0.1η=0.5

FIG. 1: Phase diagram of a 2DEG having two subbands. (a) Phase diagram for fixed η ≡ kF1/kF2 = 0.5 as a function of
the dimensionless couplings ρV and ρJ . U does not enter the problem except in that it is responsible for the suppression of
s-wave pairing. (b) Phase diagram for fixed ρV = 0.1 as a function of η and ρJ . c) The dimensionless strength of the pairing
interaction in the p-wave (solid line) and d-wave (dashed line) channels for fixed J = 0. d) Same as c), but for J = 0.2V .

cumstances α ≈ 1.
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Appendix: Perturbation Theory

In this section, we derive the perturbative expansion
of the effective interaction in the Cooper channel for the
problems studied in the main text. Due to the presence
of multiple bands, adopting a more compact notation
enables us to treat all of the above problems in a unified
fashion. We consider a Hamiltonian of the form

H = H0 +H1

H0 =
∑

k,a

ǫk,ac
†
k,ack,a

H1 =
∑

k1,k2,k3

∑

a,b,c,d

Vab,cdc
†
k1,ac

†
k2,bck3,cck4,d (A.1)

where k4 = k1 + k2 − k3. The Latin subscripts denote
a collective set of “band indices” which label the energy
eigenstates. In the problem of partially polarized Fermi
surfaces, they simply label the majority and minority
spin bands. In the problem of multiple subbands in a
quantum well, it indexes the subbands, and in the prob-
lem involving Rashba spin-orbit coupling, the Latin index
refers to the positive and negative helicity subband. The
bare interaction H1 is to be interpreted as a matrix; it’s

(1) (2a) (2b)

(2c) (2d) (2e)

k, a

−k, a −q, b

q, b

FIG. 2: Diagrams which contribute to V (k, q), shown to
quadratic order in the interactions. Each of the incoming
quasiparticles has momentum ±k and band index a. The
outgoing electrons have momentum ±q, and are in band b
(with the exception of the first diagram, the momenta and
band indices of each diagram are not shown). Both intra-
band and inter-band scattering processes contribute to the
effective interaction.

rows labels the outgoing states and its columns label the
incoming states.

Higher order scattering processes are derived using di-
agrammatic perturbation theory in the usual manner16.
In addition to integrating over the internal momenta, the
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band indices of any internal line are also summed over,
weighted by the appropriate component of the interaction
vertex, as will be made clear from the examples below.

The primary quantity of interest here is the two-
particle scattering amplitude in the Cooper channel, de-
noted Γ(k, q), which is the amplitude for scattering a pair
of electrons with momenta ±k into a pair with momenta
±q. If the system at hand possesses inversion symme-
try (so that the Kinetic energy consists of terms that are
even powers of momentum), superconducting states can
be classified has being even or odd parity states; the for-
mer include (e.g. s-wave, d-wave, etc.), and the latter
include, (p-wave, f-wave, etc.) instabilities are perfectly
decoupled from one another. If, in addition to inversion
symmetry, spin-rotation symmetry is also preserved, then
the scattering amplitudes in the singlet channel consist of
processes in which the incoming electrons have opposite
spin polarizations, whereas in the triplet channel, they
have identical spin polarizations. On the other hand,
when inversion symmetry is broken by the presence of
Rashba spin-orbit coupling, there is no sharp distinction
between even and odd parity pairing. However, since
the Rashba coupling breaks the 2-fold degeneracy of sin-
gle particle states at each momenta, there is pairing be-
tween states of opposite helicity (i.e. opposite momenta
and opposite in-plane component of the spin).

Figure 2 shows the lowest order Feynman diagrams
which contribute to Γ(k, q). Generally, all of these dia-
grams contribute both in the singlet and triplet channel.
The diagrams are each equivalent to

1 : Vbb,aa

2a :
∑

c

Vbb,ccVcc,aa

∫

p

Gc(−p)Gc(p)

2b :
∑

c,d

Vbc,adVdb,ca

∫

p

Gc(p)Gd(p+ k + q)

2c :
∑

c,d

Vbc,adVdb,ac

∫

p

Gc(p)Gd(p+ q − k)

2d :
∑

c,d

Vbd,caVbc,ad

∫

p

Gc(p)Gd(p+ k − q)

2e : −
∑

c,d

Vbd,caVcb,ad

∫

p

Gc(p)Gd(p+ k − q)

(A.2)

where
∫

p

≡
∫

dωpd
2p

(2π)
3 (A.3)

and

G(p) =
1

iωp − ǫp
(A.4)

is the single particle Green function of the non-
interacting system. We next apply this general formalism
to the three problems studied in this paper.

1. Partially polarized Fermi surfaces

Although this problem is rather simple, and the Feyn-
man rules for a single band system are sufficient, we will
apply the notation above to this problem. This will cer-
tainly prove to be valuable in the more non-trivial ex-
amples studied thereafter. The interaction vertex, in the
basis (↑↑, ↑↓, ↓↑, ↓↓), is

Vab,cd =







0 0 0 0
0 0 U 0
0 U 0 0
0 0 0 0






. (A.5)

Note that in this problem, there are no processes which
scatter two electrons from one Fermi surface, to two elec-
trons in a different Fermi surface. Therefore, Γ(k, q)
is diagonal in the band index - which is just a long-
winded way of saying that only equal spin pairing (i.e.
spin-triplet pairing) can occur. Indeed, the only diagram
which contributes to the effective interaction is 2e, which
yields:

Γ↑↑(k, q) = −U2χ↓(k − q) + O(Ω0)

Γ↓↓(k, q) = −U2χ↑(k − q) + O(Ω0) (A.6)

where

χσ(k) =

∫

p

Gσ(p)Gσ(p+ k)

= −
∫

d2p

(2π)2
f(ǫp+k,σ) − f(ǫp,σ)

ǫp+k,σ − ǫp,σ
(A.7)

is the non-interacting susceptibility of each spin band.

2. Multiple subbands in a 2DEG quantum well

For the problem involving two-subbands in
a quantum well, we choose the basis to be
(1σ1σ′, 1σ2σ′, 2σ1σ′, 2σ2σ′) and

Vαβ,γδ =







Uσσ′ 0 0 Jσσ′

0 0 Vσσ′ 0
0 Vσσ′ 0 0

Jσσ′ 0 0 Uσσ′






(A.8)

where

Uσσ′ = U (1 − δσσ′ )

Jσσ′ = J (1 − δσσ′)

Vσσ′ = V (A.9)

In this basis σ and σ′ refer to the spins of the incom-
ing electron states. Since there is inversion and spin-
rotational symmetry in this problem, we can study the
effective interaction in the singlet (σ = −σ′) and triplet
(σ = σ′) channels separately. We shall refer to the ef-
fective interaction as Γs(t) where the subscript stands for
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singlet and triplet. Having specified the spin polariza-
tions of the electrons, Γs(t) will still be a 2 × 2 matrix
due to the presence of two subbands. We will denote this
as

Γs(t)(ka, qb) =

(

Γs(t)(k1, q1) Γs(t)(k1, q2)
Γs(t)(k2, q1) Γs(t)(k2, q2)

)

(A.10)

with the understanding that ka denote momentum states
associated with band a.

Next, we state the contributions from each of the dia-
grams in Fig. 2. First, in the singlet channel,

Γs(1) =

(

U J
J U

)

Γs(2a) =

(

U2P1 + J2P2 UJ(P1 + P2)
UJ(P1 + P2) U2P2 + J2P1

)

Γs(2b) =

(

U2χ1,1(k1 + q1) V Jχ1,2(k1 + q2)
V Jχ2,1(k2 + q1) U2χ2,2(k2 + q2)

)

Γs(2c) =

(

0 V Jχ1,2(k1 − q2)
V Jχ2,1(k2 − q1) 0

)

Γs(2d) =

(

0 V Jχ1,2(k1 − q2)
V Jχ2,1(k2 − q1) 0

)

Γs(2e) = −
(

2V 2χ2,2(k1 − q1) 0
0 2V 2χ1,1(k2 − q2)

)

(A.11)

where

Pa =

∫

p

Ga(p)Ga(−p)

= ρa log [A/Ω0] + O(Ω0)

χa,b(k) =

∫

p

Ga(p+ k)Gb(p)

=

∫

d2p

(2π)2
f(ǫp+k,a) − f(ǫp,b)

ǫp+k,a − ǫp,b
+ O(Ω0)

(A.12)

are the particle-particle and particle-hole susceptibilities,
respectively.

In the triplet channel, only diagram 2e has a contribu-
tion and Γt(ka, qb) is diagonal in subband index:

Γt(k1, q1) = −U2χ1,1(k1 − q1) − 2V 2χ2,2(k1 − q1)

Γt(k2, q2) = −U2χ2,2(k2 − q2) − 2V 2χ1,1(k2 − q2)

Γt(k1, q2) = 0 (A.13)

Having computed the effective interaction Γs,t, we define
the quantity

gs,t(ka, qb) ≡
√

v̄f

vf (k̂a)
Γ(k̂a, q̂b)

√

v̄f

vf (q̂b)
(A.14)

which is also a matrix whose row and column indices are
the set of momentum states on the Fermi surface.

3. Some relevant integrals

In this section, we compute the particle-hole suscepti-
bility matrix of the two subband problem:

χa,b(k) = −
∫

d2p

(2π)2
f(ǫp+k,a) − f(ǫp,b)

ǫp+k,a − ǫp,b
(A.15)

We let

ǫk,1 = ǫk

ǫk,2 = ǫk + ∆ (A.16)

and set ∆ = (k2
F1 − k2

F2)/2m > 0 without loss of gener-
ality. It follows that the intraband susceptibilities are

χaa(q) = 2

∫ kF a

0

kdk

(2π)2

∫ 2π

0

dθ

ǫq + kq cos θ/m
(A.17)

where kF1 = (2mµ)1/2 and kF2 = (2m(µ+ ∆))1/2. The
integrals are standard, resulting in the following:

χa,a =
m

2π



1 −
Re

√

q2 − (2kFa)2

q



 (A.18)

The interband susceptibility is

χ1,2(q) =

∫ kF1

0

kdk

(2π)2

∫ 2π

0

dθ

ǫq − ∆ + kq cos θ/m
∫ kF2

0

kdk

(2π)2

∫ 2π

0

dθ

ǫq + ∆ + kq cos θ/m

(A.19)

These integrals are straightforward and they produce the
final result:

χ1,2(q) = −ρ
2





Re

√

q2 [1 − λ(q)]2 − (2ηkF2)
2

q
+

Re

√

q2 [1 + λ(q)]2 − (2kF2)
2

q
− [1 + λ(q)] − |1 − λ(q)|



 (A.20)
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where

η =
kF1

kF2

λ(q) =
k2

F2

q2
(

1 − η2
)

(A.21)

The effective inter-band attraction g̃s,m
1,2 in the singlet

channel is related to this susceptibility, as discussed in
section IV:

g̃
(s,m)
1,2 = 2V Jρ

∫

dθ

2π
χ1,2 (kθ) cos (mθ)

kθ = kF2

√

(1 − η)
2
+ 4η sin2 (θ/2) (A.22)

It is easy to show that the first two terms in Eq. A.20
do not contribute to χ1,2(kθ) since

√

k2
θ [1 − λ(kθ)]

2 − (2ηkF2)
2

kθ
=

2η

kθ

√

− sin2 θ (A.23)

is purely imaginary for 0 ≤ η ≤ 1. Thus,

χ1,2(kθ) =
ρ

2
[1 + λ(kθ) + |1 − λ(kθ)|] (A.24)

This in turn can be rewritten as

χ1,2(kθ) = ρ

{

1, cos θ < η
(1−η2)

ℓ2
θ

, cos θ > η
(A.25)

where ℓθ = kθ/kF2. The integration in Eq. A.22 is per-
formed in the complex plane defining z = −iθ. We find,
for the d-wave case (m = 2),

g̃
(s,2)
1,2 = −V Jρ

2

2π
Φ(η) (A.26)

where, for 0 ≤ x < 1,

Φ(x) =
πx4 + 2 sin−1 x

x2
− 2

√
1 − x2

x
(A.27)

and Φ(1) = 0. The function Φ(x) is shown in Fig. 3.
It should be noted that Φ(x) is discontinuous at x = 1,
which results from the singluar behavior of the interband
susceptibility in the limit where the bands become degen-
erate:

lim
η→1

lim
q→0

χ1,2(q) = ρ
1 + η2

1 − η2
. (A.28)

However, this feature does not have a physical conse-
quence since there is always a non-zero splitting between
the bands caused by the finite thickness of the semicon-
ductor heterostructure.
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FIG. 3: The scaling function Φ(η) which determines the ef-
fective interband interaction g̃s,2

1,2.
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