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We present a terahertz spectroscopic study of magnetic excitations in ferroelectric antiferromagnet
BiFeO3. We interpret the observed spectrum of long-wavelength magnetic resonance modes in
terms of the normal modes of the material’s cycloidal antiferromagnetic structure. We find that
the modulated Dzyaloshinski-Moriya interaction leads to a splitting of the out-of-plane resonance
modes. We also assign one of the observed absorption lines to an electromagnon excitation that
results from the magnetoelectric coupling between the ferroelectric polarization and the cycloidal
magnetic structure of BiFeO3.

PACS numbers:

Ferroelectric antiferromagnet BiFeO3 (BFO) combines ferroelectricity1 with an antiferromagnetic order at room
temperature2. Materials that display both magnetic and ferroelectric orders, multiferroics, hold a promise of advanced
devices that exploit the magnetoelectric (ME) effect, e.g., the manipulation of magnetic state by electric field3–6.
BFO is of considerable interest in this respect, as it is a high-temperature ferroelectric7–9 (Tc ≈1100 K) with a large
ferroelectric dipole moment ∼100 µC/cm2. A control of its magnetic state by voltage has been demostrated both
in bulk and in thin film BFO10–13. At room temperature, bulk crystalline BFO adopts a G-type antiferromagnetic
structure (TN=640 K) with a cycloidal spin arrangement with a long modulation period of λ ≈ 620 Å2,10,11. The
cycloidal modulation of the antiferromagnetic vector in BFO results from ME interaction between the ferroelectric
polarization and magnetic moments in the form of the Lifshitz invariant14.

Spectroscopic studies of magnetic and lattice excitations have long been used to gain insight in the nature of both
magnetism and ferroelectricity15–17. Magnetic excitations (magnons), in particular, are extremely sensitive to the
microscopic magnetic interactions in a material. In antiferromagnets, magnon resonance frequencies and dispersion
are determined by the strength of the antiferromagnetic exchange and by magnetic anisotropy18. In multiferroic
manganites, far-infrared spectroscopic studies of magnetic excitations helped unravel the underlying microscopic ME
interactions that were found to mix magnons with phonons19,20. In this article, we present a terahertz (THz) spec-
troscopic study of long-wavelength magnetic excitations in BFO. We find several distinct magnetic-dipole absorption
resonances that are interpreted in terms of the normal modes of the antiferromagnetic cycloid. The selection rules
for magnetic-dipole transitions show that the main observed magnetic resonances are not uniform modes, but those
with the wavevector of the cycloid. A comparison with a calculation of magnon frequencies in BFO21 shows that the
antiferromagnetic exchange and the Lifshitz invariant terms in the free energy are insufficient to describe the magnetic
excitation spectrum. One important additional term in the free energy is the modulated Dzyaloshinksi-Moriya (DM)
exchange interaction that lends a weak local ferromagnetic moment to the cycloid, although the macroscopic magne-
tization remains zero14,22. We conjecture that the modulated DM exchange also leads to a characteristic splitting of
non-uniform normal modes that is prominent in our measured spectra. We also find a resonant absorption mode at
18.4 cm−1 that cannot be accounted for by magnetic-dipole-active excitations of the cycloid but obeys the selection
rule for an electromagnon21. This electromagnon excitation couples to the ac electric field of the THz wave and results
from magnetoelectric coupling between the cycloid and the Eg optical phonon in BFO.

Earlier Raman investigations of magnetic modes in BFO reported a series of magnetic resonance lines that was
described as uniform and higher-order non-uniform magnetic modes of the cycloid23–25. In some cases (Cazayous et
al.24), the relative strength of the observed higher-order magnetic Raman modes compared to the uniform modes
was attributed to their electromagnon character. We observe a lower number of magnetic resonance lines than in the
Raman investigations. Different selection rules between Raman and THz experiments may explain the disparity. As
we show in this article, either uniform or higher-order magnetic modes of the cycloid are silent for certain polarizations
of THz light.

In bulk crystals, BFO adopts a rhombohedral R3c structure, which can be obtained from the cubic perosvkite
structure by elongating the cubic unit cell (a ≈ 3.96 Å, α ≈ 89.4o) along the [111] diagonal2, which also corresponds
to the direction of the ferroelectric polarization P . The antiferromagnetic cycloid wavevector q belongs to the plane
perpendicular to the ferroelectric polarization and possesses 3 equivalent directions in that plane: [10-1], [1-10], and
[01-1] (Fig. 2). The plane of the cycloid is defined2 by vectors P and q, within which the antiferromagnetic vector
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L = M1 − M2 slowly rotates with the period λ. M1 and M2 are magnetic moments on nearest neighbor Fe ions.
The magnitude of q = 2π/λ is determined by the competition between the antiferromagnetic exchange and the ME
interaction in the form of the Lifshitz invariant in the magnetic free energy

F = A
∑

i

(∇Li)2 − γP · [L(∇ · L) + L × (∇× L)] , (1)

where A is the exchange stiffness constant and γ is the ME coefficient. The minimum of the free energy in Eq. (1)
occurs at the wave vector14,21 q = γP/2A, which allows the estimate of ME coefficient γ = 105 erg/C using the
known values14 of λ and A = 3 × 10−7 erg/cm. The corresponding cycloidal magnetic structure is described by
a harmonic spatial dependence of the antiferromagnetic vector L = L0 [cos(qx)ẑ + sin(qx)x̂] along the direction of
vector q (Fig. 2). At low temperatures (T ≤ 77 K), the cycloid was found to develop strong anharmonicity due to
uniaxial magnetic anistropy with an easy c axis14,26. The anisotropy causes the spins to orient preferentially within a
small angle with the c axis for most of the cycloid period, as was deduced from asymmetric shapes of nuclear magnetic
resonance lines26.

The bulk BFO crystal used in this work was grown using Bi2O3 flux. Our measurements were carried out on a
220µm-thick single crystal with (001)cubic orientation mounted on a 3 mm aperture. The crystal was found to consist
of a single ferroelectric domain in THz wave emission experiments27, in which the orientation of the ferroelectric c
axis was also determined. THz transmission of the crystal was measured in two different polarizations (h1 and h2)
using a home-built time-domain THz spectrometer based on photoconductive switches used as emitter and receiver
of the THz wave. In the inset of Fig. 2, h1 and h2 designate the ac magnetic field of the THz wave incident on the
(001)cubic face of the BFO sample mounted on the cold finger of a He flow cryostat. Complex amplitude transmission
of the sample was measured in time domain by using an empty aperture of the same size as a reference. Fig. 1 shows
the amplitude of the complex transmission in the two polarizations at various temperatures. Prominent absorption
resonances indicated by vertical arrows (and labeled with numbers 1, 2, and 3) can be distiguished in the spectra. The
oscillation of the transmission amplitude with a 1.5-2 cm−1 period is due to a Fabri-Perot effect between the front
and back surfaces of the sample. The h1- and h2-polarization spectra differ sharply, as the resonance 2 (at 20.5 cm−1

at 10 K) is completely absent from the h1 spectrum and the resonance 3 (at 18.4 cm−1 at 14 K) is completely absent
from the h2 spectrum. The resonance 1 (at 22.5 cm−1 at 10K) is observed and shows a similar strength in both
polarizations.

We assign the resonances 1 and 2 to magnetic-dipole transitions corresponding to the normal modes of magnetic
motion of the cycloid (antiferromagnetic resonance, AFMR), as their measured frequency is considerably lower than
the frequency of the lowest optical phonon in BFO15,16 - the Eg mode at 74 cm−1 (at 5 K). Magnetic excitations
at similar frequencies to our resonances have also been observed in single crystals using Raman scattering23–25 and
in submillimeter wave spectroscopy on BFO ceramics28. Fig. 2 displays a softening of resonance frequencies with
increasing temperature, which is typical of AFMR frequencies that are expected to reach zero a TN (dashed line in
Fig. 2). The strong polarization dependence of the measured spectra suggests that the magnetic state of the sample
consists of a single magnetic domain out of the 3 energetically equivalent magnetic domains corresponding to the
3 possible directions of the cycloid wavevector q. Since the direction of q also determines the plane of the cycloid,
we argue that the actual orientation of q in our sample is that shown in the inset of Fig. 2 with q parallel to the
magnetic field of the THz wave in h1 polarization. As it is the only orientation of q that allows the magnetic field of
the incident THz wave in the two polarizations to be either along or perpendicular to the q direction, the transmision
spectra for this magnetic domain are expected to exhibit the sharpest difference between polarizations h1 and h2.

As evident from Fig. 1, resonance 3 disappears at 150 K, while resonances 1 and 2 persist until about 400 K, when
they too become unobservable. We suggest that the disappearance of resonance 3 results from a phase transition
occurring around 140 K23,24,29,30 and associated with a spin reorientation. The normal modes of the cycloid described
by the free energy in Eq. (1) where calculated by de Sousa and Moore21, who found that in addition to zero-
wavevector magnons, the magnons at integer multiples of the cycloid wavevector q can couple to the THz wave due
to the periodicity of the static magnetic structure and magnon zone folding. We will now use those normal modes
together with magnetic dipole selection rules to try and assign the resonances 1 and 2 to specific magnons of the
cycloid.

We start by briefly summarizing the findings of de Sousa and Moore, who parametrized the small motions of the
antiferromagnetic vector L in the normal modes of the cycloid as

δL =
(

φ(r)D̂(x) + ψ(r)ŷ
)

e−iωt, (2)

where vector D̂(x) = cos(qx)x̂−sin(qx)ẑ belongs to the cycloid plane and is transverse to vector L (Fig. 3). Equation
(2) shows that the normal modes separate into in-plane cyclon modes (φ) and out-of-plane modes (ψ). The zero-
wavevector (uniform) cyclon mode φ0 is gapless, i.e., has zero eigenfrequency, while the uniform out-of-plane mode ψ0
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has an eigenfrequency ωψ0 = γP/
√

2A. In addition to the uniform modes of motion, non-uniform φn, ψn ∼ einqx modes
appear in the THz spectrum of BFO due to the periodic nature of the cycloid (magnon zone folding). The frequencies

of non-uniform modes form the series ωψn = γ(P/
√

2A)
√
n2 + 1 and ωφn = γ(P/

√
2A) |n| with integer n 6= 0.

To determine the magnetic-dipole selection rules for the φn and ψn modes, we consider the torque of the ac magnetic
field of the THz wave on the antiferromagnetic vector L: T = L×h. In polarization h1, the ac field h1 belongs to the
x− z plane and is parallel to direction of vector q||x̂ (Fig. 2 inset). The corresponding torque T1 possesses non-zero
components only along the ŷ direction, and T1y(x) varies sinusoidally with x (Fig. 3) for the harmonic cycloid. The
absence of x̂ and ẑ components in T1 prohibits the coupling to the in-plane φn modes in h1 polarization for any n.
The sinusoidal variation of T1y(x) determines which of the ψn modes couple to the h1 polarization. For example, as
the product δLy [ψ0(x)] ·T1y(x) averages to zero over a cycloid period, the coupling of h1 polarization to the ψ0 mode
is prohibited. In fact, the quantity δLy [ψn(x)] · T1y(x) averages to a non-zero value only for n = ±1, as shown in
Fig. 3, which means that only the ψ±1 modes can be excited in h1 polarization in a harmonic cycloid. Our measured
spectra contain only one absorption line in the broad temperature range in h1 polarization (with the exception of
resonance line 3, which is only observed below 150 K and will be discussed in more detail below). This agrees with
the selection rule that we described, as we expect the frequencies of the modes with n = ±1 to be the same. Thus,
we assign the resonance line 1 as the ψ±1 modes in h1 polarization.

In h2 polarization, the ac magnetic field has components along the ŷ and ẑ directions: hy2 and hz2. Considering

the components of the torque of field hy2, we find that T = L × h
y

2
∝ D̂. Accordingly, the only mode that can be

excited by the field hy2 is the uniform φ0 mode with zero frequency in the model described by Eq. (1). Such low
frequency makes the mode unobservable in our spectra. The torque of the field hz2 has only components along the ŷ

direction and only excites the ψ±1 modes. The measured spectra display two prominent absorption lines in the h2

polarization. Since the ψ±1 modes have the same frequency in the de Sousa-Moore description21, the origin of the
observed doublet needs to be explained. Possible candidates for additional absorption lines include the higher order
ψn modes with n > 1 that become allowed for an anharmonic cycloid. When the anharmonicity is caused by easy-axis
anisotropy, only odd integers n = 1, 3, ... are allowed in the series Lz = L0

∑

n bn cos(nqx) describing the anharmonic
cycloid (the Lx components are set by the condition L2

0 = L2
z + L2

x). The strength of such higher order absorption
with |n| ≥ 3 is expected to be considerably lower than that of the ψ±1 absorption, while our spectra show an almost
identical absoprtion strength for the components of the doublet. In addition, frequency separation between ψ±1 and
ψ±3 modes at the lowest temperatures is expected to be23,24 ∼ 7.5− 8 cm−1, which is much higher than the observed
separation of 1.7 cm−1. On these grounds, we exclude the higher order modes from being a part of the doublet.

Since the two lines of the doublet have almost identical oscillator strength, we propose that they represent a splitting
between ψ+1 and ψ−1 modes. To achieve such splitting, additional terms are needed in Eq. (1). One of the terms
that have been omitted from Eq. (1) is a modulated DM term of the form14,31

FDM = DPz(MyLx −MxLy), (3)

where D is the DM constant. The DM term leads to a local canting of antiferromagnetic sublattices that results in
a local magnetization along the ŷ direction My = M1y +M2y that is modulated with the same wavevector q as the
cycloid and does not give rise to a macroscopic magnetic moment14. Since the weak magnetization My is modulated
with the same wavevector as the antiferromagnetic cycloid, we conjecture that it is the DM term of Eq. (3) that
causes the ψ+1/ψ−1 splitting.

The ψ+1/ψ−1 splitting is not observed in h1 polarization because the absolute value of the torque T1y(x) reaches its
maxima at points along the cycloid direction x where the vector L aligns along the z direction and where Lx = Ly = 0
(Fig. 3). These are the points of the strongest coupling of the h1-polarized wave to the ψ±1 modes of the cycloid.
At the same time, these are the points where the canting of antiferromagnetic sublattices is zero, according to Eq.
(3). The strongest sublattice canting happens at the points where the torque T1y(x) vanishes (Eq. (3) and Fig. 3).
This makes the wave of h1 polarization insensitive to the ψ+1/ψ−1 splitting. By contrast, the absolute value of the
torque of the field hz2 is maximum at the same points where the sublattice canting is the highest, which renders the
ψ+1/ψ−1 splitting observable. In the description of de Sousa and Moore, all ψ±1 modes are degenerate and possess
the same resonance frequency. Our measurements and analysis show that the introduction of the DM term of Eq.
(3) lifts the degeneracy and splits the ψ±1 modes into at least three groups - the doublet observed in h2 polarization
and the single mode observed in h1 polarization. Perhaps by accident, one line of the doublet and the singlet display
very similar frequencies (Figs. 1 and 2). A calculation of magnetic resonance modes taking account of the DM term
is needed to confirm and completely describe the observed splitting.

A closer look at the spectra in Fig. 1 allows us to discern a weak absorption at ∼ 27 cm−1 indicated by arrow 4
in both polarizations. The strength of resonance 4 is considerably smaller than resonances 1 and 2, which leads to
the assignment of resonance 4 as the higher-order ψ±3 magnon of the cycloid. The ψ±3 mode is separated from the
ψ±1 modes by 5.3 cm−1 in both polarizations h1 and h2, which is compatible with the ∼ 7.5 − 8 cm−1 estimate from
Raman experiments23,24. The ψ±3 mode softens with elevated temperature following the same dependence as the
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more prominent ψ±1 modes and becomes unobservable between 150 and 200 K, most likely due to the reduction in
cycloid anharmonicity observed in nuclear magnetic resonance studies26.

We now consider resonance 3 that happens at 18.4 cm−1 (Fig 1(a)) and disappears at approximately 150 K, close
to the temperature at which a magnetic phase transition occurs, possibly associated with a spin reorientation. Only
ψ±1 modes are allowed in the h1 polarization, and we cannot assign resonance 3 to the ψ0 mode of the out-of-plane
series. The spin reorientation below 140 K may render some of the in-plane modes φn observable in h1 polarization,
but that would lead to an expectation of an even stronger resonance at the same frequency in the h2 polarization.
Since no such resonance appears in h2 spectra, we conclude that no magnon mode (either φ or ψ) in the de Sousa
- Moore description21 is a good candidate for the resonance 3 assignment. One conceivable explanation is a severe
modification of the cycloid structure at the 140-K transition, which would allow new lines (in addition to in-plane
and out-of-plane cycloid modes) to appear in the magnon spectrum. This possibility is inconsistent with the smooth
evolution of the ψ±1 modes across the 140-K transition. In addition, no new lines appear at the phase transition in
the magnon spectra recorded using Raman scattering23,24. de Sousa and Moore do predict a resonance at a frequency
below that of the ψ±1 modes: this resonance is excited by the y component of the ac electric field of THz wave and
is referred to as electromagnon. The electromagnon selection rule is satisfied in h1 polarization for mode 3, and the
frequency of the mode is indeed lower than the frequency of the ψ±1 modes. This suggests an assignment of mode
3 as the electromagnon predicted by de Sousa and Moore21. This assignment leaves open the question of mode 3
disappearance at 150 K. We tentatively attribute changes in electromagnon excitation conditions to the effects of the
magnetic phase transition at 140 K.

The observation of magnetic resonance in optical transmission was first reported by Komandin et al.28 who studied
BFO ceramics. They found four distinct magnetic resonance lines in the 20-30 cm−1 range at low temperature and an
additional absorption in the 30-60 cm−1 range with a large dielectric contribution that was identified with an optical
phonon. The temperature dependence of the phonon and magnetic resonance modes revealed a coupling between
magnetic and lattice excitations. Three magnetic resonance lines found by Komandin et al. coincide in frequency
and exhibit the same temperature dependence as the resonances 1, 2, and 4 in both polarizations reported in this
paper. The temperature dependence of resonances 1 and 2 in h2 polarization - a doublet at low temperature and a
singlet at high temperature (Fig. 2) - closely follows the behavior of the two strongest magnetic resonances reported
by Komandin et al., which suggests that those resonances correspond to the ψ+1/ψ−1 doublet. The third common
resonance (our resonance 4) corresponds to the the ψ±3 modes. An additional resonance at 24.5 cm−1 appeared at
low temperature in Komandin’s observations and is absent from our spectra. The electromagnon mode at 18.4 cm−1

reported here is notably absent from Komandin’s results. These differences are likely explained by a combination
of two factors, one of which is a sample-to-sample variation. The other is the appearance of additional lines in the
spectra (in the work of Komandin et al.28 and in Raman spectroscopy23–25), which can be accounted for by including
single-ion anisotropy and DM terms in the magnetic free energy. As we have shown, a more realistic free energy than
the one used by de Sousa and Moore21 is needed for a detailed description of the magnetic resonance spectrum in
BFO.

To summarize, we measured THz transmission spectra of BFO at various temperatures and found several absorption
resonances which we ascribed to the modes of antiferromagnetic cycloid motion. Magnetic dipole selection rules result
in the assignment of the most prominent resonances in h1 and h2 polarizations to the ψ±1 modes of the cycloid.
The uniform mode ψ0 is silent, while the higher-order ψ±3 modes exhibit a much smaller oscillator strength. The
uniform mode φ0 is allowed in the h2 polarization but is not observed due to its low frequency. A series of magnetic
resonance modes at similar frequencies as in our measurements was found in Raman scattering23–25,29 and millimeter
wave spectroscopy28 studies of BFO. The most prominent Raman resonances were found in the 18 − 30 cm−1 range.
Some of the Raman results24 showed several weak absorption lines below 18 cm−1 which where attributed to uniform
and higher-order modes with n=1,2. The strongest absorption lines between 18 and 30 cm−1 were ascribed to a
combined magnon and electromagnon response of the ψ3, φ3, and φ4 modes. Remarkably, the observed Raman modes
were attributed to excitations with both even and odd indices n in the φn and ψn series24,25. In our description, the
anharmonic spiral is parametrized as Lz = L0

∑

n bn cos(nqx) with odd integers n = 1, 3, ... The resulting magnetic
dipole selection rules for the ψn modes allow only odd indices n, while for the φn modes only even indices are allowed.
We assigned most of the observed absorption lines to magnetic dipole modes ψn with n = 1, 3 with the exception
of mode 3, for which the de Sousa-Moore electromagnon selection rule is satisfied. Thus, we suggest that mode 3
is an electromagnon due to magnetoelectric coupling between the Eg phonon16 and the ψ±1 magnons. Finally, we
found a splitting between the ψ+1 and ψ−1 modes in the h1 polarization and we proposed that it could be due to the
modulated DM term in the free energy (Eq. (3)).
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FIG. 1: (Color online) THz amplitude transmission spectra of BiFeO3 at different temperatures. (a) Polarization h1. (b)
Polarization h2. The spectra are offset vertically for clarity. Vertical arrows indicate the observed magnetic resonance lines.
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FIG. 2: (Color online) Temperature dependence of the frequencies of all observed magnetic resonance modes. The resonance
labels are the same as in Fig. 1. Inset: geometry of the BFO crystal and of the THz transmission measurement.



8

h
1 L

x

x

z

T1y

x

[ ])(1 xLy ±yd

x

[ ])(0 xLy yd

P

q
D
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ψ0, ψ±1 in h1 polarization. Also shown are the ferroelectric polarization P , the cycloid propagation vector q, and vector D̂ of
cycloid motion in mode φ0.


